Skip to main content

Desirable Objective Ranges in Preference-Based Evolutionary Multiobjective Optimization

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12694))

  • 1552 Accesses

Abstract

In this paper, we propose a preference-based Evolutionary Multiobjective Optimization algorithm, at which the preferences are given in the form of desirable ranges for the objective functions, i.e. by means of aspiration and reservation levels. The aspiration levels are values to be achieved by the objectives, while the reservation levels are objective values not to be worsen. In the algorithm proposed, the first generations are performed using a set of weight vectors to initially converge to the region of the Pareto optimal front associated with the point formed with the reservation levels. At a certain moment, these weights are updated using the nondominated solutions generated so far, to re-direct the search towards the region which contains the Pareto optimal solutions with objective values among the desirable ranges. To this aim, the remaining number of generations are run using the updated weight vectors and the point formed with the aspiration levels. The computational experiment show the potential of our proposal in 2, 3 and 5-objective problems, in comparison to other state-of-the-art algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The code is available upon request to any of the authors.

  2. 2.

    https://stat.ethz.ch/R-manual/R-devel/library/stats/html/wilcox.test.html.

  3. 3.

    https://cran.r-project.org/web/packages/effsize/.

  4. 4.

    This means that the difference between the distributions is not significant.

References

  1. Branke, J., Deb, K., Miettinen, K., Slowinski, R. (eds.): Multiobjective Optimization. Interactive and Evolutionary Approaches. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88908-3

  2. Cliff, N.: Ordinal Methods for Behavioral Data Analysis. Psychology Press (2014)

    Google Scholar 

  3. Coello, C.A.C., Lamont, G.B., Veldhuizen, D.A.V.: Evolutionary Algorithms for Solving Multi-Objective Problems, 2nd edn. Springer, New York (2007). https://doi.org/10.1007/978-0-387-36797-2.pdf

  4. Deb, K.: Multi-objective Optimization using Evolutionary Algorithms. Wiley, Chichester (2001)

    MATH  Google Scholar 

  5. Deb, K.: Salient issues of multi-objective evolutionary algorithms. In: Deb, K. (ed.) Multi-objective Optimization using Evolutionary Algorithms, pp. 315–445. Wiley (2001)

    Google Scholar 

  6. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014)

    Article  Google Scholar 

  7. Deb, K., Sundar, J., Ubay, B., Chaudhuri, S.: Reference point based multi-objective optimization using evolutionary algorithm. Int. J. Comput. Intell. Res. 2(6), 273–286 (2006)

    MathSciNet  Google Scholar 

  8. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable multi-objective optimization test problems. In: Congress on Evolutionary Computation, pp. 825–830 (2002)

    Google Scholar 

  9. Gong, M., Liu, F., Zhang, W., Jiao, L., Zhang, Q.: Interactive MOEA/D for multi-objective decision making. In: Conference on Genetic and Evolutionary Computation, pp. 721–728 (2011)

    Google Scholar 

  10. González-Gallardo, S., Saborido, R., Ruiz, A.B., Luque, M.: An improvement study of the decomposition-based algorithm Global WASF-GA for evolutionary multiobjective optimization. In: Herrera, F., et al. (eds.) CAEPIA 2018. LNCS (LNAI), vol. 11160, pp. 219–229. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00374-6_21

    Chapter  Google Scholar 

  11. Hakanen, J., Chugh, T., Sindhya, K., Jin, Y., Miettinen, K.: Connections of reference vectors and different types of preference information in interactive multiobjective evolutionary algorithms. In: IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–8 (2016)

    Google Scholar 

  12. Huband, S., Hingston, P., Barone, L., While, L.: A review of multi-objective test problems and a scalable test problem toolkit. IEEE Trans. Evol. Comput. 10(5), 477–506 (2007)

    Article  Google Scholar 

  13. Ishibuchi, H., Setoguchi, Y., Masuda, H., Nojima, Y.: Performance of decomposition-based many-objective algorithms strongly depends on Pareto front shapes. IEEE Trans. Evol. Comput. 21(2), 169–190 (2017)

    Article  Google Scholar 

  14. Jain, H., Deb, K.: An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part II: handling constraints and extending to an adaptive approach. IEEE Trans. Evol. Comput. 18(4), 602–622 (2014)

    Article  Google Scholar 

  15. Li, H., Landa-Silva, D.: An adaptive evolutionary multi-objective approach based on simulated annealing. Evol. Comput. 19(4), 561–595 (2011)

    Article  Google Scholar 

  16. Li, H., Zhang, Q.: Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. IEEE Trans. Evol. Comput. 12(2), 284–302 (2009)

    Article  Google Scholar 

  17. Li, K., Deb, K., Kwong, S.: An evolutionary many-objective optimization algorithm based on dominance and decomposition. IEEE Trans. Evol. Comput. 19(5), 694–716 (2015)

    Article  Google Scholar 

  18. Luque, M.: Modified interactive Chebyshev algorithm (MICA) for non-convex multiobjective programming. Optim. Lett. 9(1), 173–187 (2014). https://doi.org/10.1007/s11590-014-0743-9

    Article  MathSciNet  MATH  Google Scholar 

  19. Luque, M., Gonzalez-Gallardo, S., Saborido, R., Ruiz, A.B.: Adaptive GlobalWASF-GA to handle many-objective optimization problems. Swarm Evol. Comput. 54, 100644 (2020)

    Google Scholar 

  20. Luque, M., Ruiz, F., Steuer, R.E.: Modified interactive chebyshev algorithm (MICA) for convex multiobjective programming. Eur. J. Oper. Res. 204(3), 557–564 (2010)

    Article  MathSciNet  Google Scholar 

  21. Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, Boston (1999)

    MATH  Google Scholar 

  22. Nebro, A.J., Durillo, J.J., Vergne, M.: Redesigning the jMetal multi-objective optimization framework. In: Conference on Genetic and Evolutionary Computation, pp. 1093–1100 (2015)

    Google Scholar 

  23. Qi, Y., Ma, X., Liu, F., Jiao, L., Sun, J., Wu, J.: MOEA/D with adaptive weight adjustment. Evol. Comput. 22(2), 231–264 (2014)

    Article  Google Scholar 

  24. Romano, J., Kromrey, J.D., Coraggio, J., Skowronek, J., Devine, L.: Exploring methods for evaluating group differences on the NSSE and other surveys: are T-test and Cohen’s d indices the most appropriate choices. In: Annual Meeting of the Southern Association for Institutional Research (2006)

    Google Scholar 

  25. Ruiz, A.B., Luque, M., Miettinen, K., Saborido, R.: An interactive evolutionary multiobjective optimization method: Interactive WASF-GA. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9019, pp. 249–263. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15892-1_17

    Chapter  Google Scholar 

  26. Ruiz, A.B., Saborido, R., Luque, M.: A preference-based evolutionary algorithm for multiobjective optimization: the weighting achievement scalarizing function genetic algorithm. J. Global Optim. 62(1), 101–129 (2015)

    Article  MathSciNet  Google Scholar 

  27. Saborido, R., Ruiz, A.B., Luque, M.: Global WASF-GA: an evolutionary algorithm in multiobjective optimization to approximate the whole Pareto optimal front. Evol. Comput. 25(2), 309–349 (2017)

    Article  Google Scholar 

  28. Saborido, R., Ruiz, A.B., Luque, M., Miettinen, K.: IRA-EMO: interactive method using reservation and aspiration levels for evolutionary multiobjective optimization. In: Deb, K., et al. (eds.) EMO 2019. LNCS, vol. 11411, pp. 618–630. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12598-1_49

    Chapter  Google Scholar 

  29. Siwei, J., Zhihua, C., Jie, Z., Yew-Soon, O.: Multiobjective optimization by decomposition with Pareto-adaptive weight vectors. In: International Conference on Natural Computation, vol. 3, pp. 1260–1264 (2011)

    Google Scholar 

  30. Wang, R., Purshouse, R.C., Fleming, P.J.: Whatever works best for you- a new method for a priori and progressive multi-objective optimisation. In: Purshouse, R.C., Fleming, P.J., Fonseca, C.M., Greco, S., Shaw, J. (eds.) EMO 2013. LNCS, vol. 7811, pp. 337–351. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37140-0_27

    Chapter  Google Scholar 

  31. While, L., Bradstreet, L., Barone, L.: A fast way of calculating exact hypervolumes. IEEE Trans. Evol. Comput. 16(1), 86–95 (2012)

    Article  Google Scholar 

  32. Wierzbicki, A.P.: The use of reference objectives in multiobjective optimization. In: Fandel, G., Gal, T. (eds.) Multiple Criteria Decision Making, Theory and Applications, pp. 468–486. Springer (1980). https://doi.org/10.1007/978-3-642-48782-8_32

  33. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics Bull. 1(6), 80–83 (1945)

    Article  Google Scholar 

  34. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  35. Zhang, Q., Zhou, A., Zhao, S., Suganthan, P.N., Liu, W., Tiwari, S.: Multiobjective optimization test instances for the CEC 2009 special session and competition. Technical Report (CES-487, University of Essex and Nanyang Technological University) (2008)

    Google Scholar 

  36. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: empirical results. Evol. Comput. 8(2), 173–195 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Spanish Ministry of Economy and Competitiveness (project ECO2017-88883-R), and by the Andalusian Regional Ministry of Economy, Knowledge, Business and University (PAI group SEJ-532 and UMA18-FEDERJA-024). Sandra González-Gallardo is recipient of a technical research contract within “Sistema Nacional de Garantia Juvenil y del Programa Operativo de Empleo Juvenil 2014–2020 - Fondos FEDER”. Rubén Saborido is recipient of a Juan de la Cierva grant (reference FJC2018-038537-I), funded by the Spanish State Research Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra González-Gallardo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

González-Gallardo, S., Saborido, R., Ruiz, A.B., Luque, M. (2021). Desirable Objective Ranges in Preference-Based Evolutionary Multiobjective Optimization. In: Castillo, P.A., Jiménez Laredo, J.L. (eds) Applications of Evolutionary Computation. EvoApplications 2021. Lecture Notes in Computer Science(), vol 12694. Springer, Cham. https://doi.org/10.1007/978-3-030-72699-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72699-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72698-0

  • Online ISBN: 978-3-030-72699-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics