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Abstract. Machine Learning (ML)-based Network Intrusion Detection
Systems (NIDSs) have proven to become a reliable intelligence tool to
protect networks against cyberattacks. Network data features has a great
impact on the performances of ML-based NIDSs. However, evaluating
ML models often are not reliable, as each ML-enabled NIDS is trained
and validated using different data features that may do not contain se-
curity events. Therefore, a common ground feature set from multiple
datasets is required to evaluate an ML model’s detection accuracy and
its ability to generalise across datasets. This paper presents NetFlow
features from four benchmark NIDS datasets known as UNSW-NB15,
BoT-IoT, ToN-IoT, and CSE-CIC-IDS2018 using their publicly avail-
able packet capture files. In a real-world scenario, NetFlow features are
relatively easier to extract from network traffic compared to the complex
features used in the original datasets, as they are usually extracted from
packet headers. The generated Netflow datasets have been labelled for
solving binary- and multiclass-based learning challenges. Preliminary re-
sults indicate that NetFlow features lead to similar binary-class results
and lower multi-class classification results amongst the four datasets
compared to their respective original features datasets. The NetFlow
datasets are named NF-UNSW-NB15, NF-BoT-IoT, NF-ToN-IoT, NF-
CSE-CIC-IDS2018 and NF-UQ-NIDS are published at [1] for research
purposes.

Keywords: Network Intrusion Detection System · NetFlow · machine
learning · network datasets

1 Introduction

Anomaly-based Network Intrusion Detection Systems (NIDSs) aim to learn and
extract complex network data behaviours to classify incoming traffic into an at-
tack or a benign class [5]. Network attack vectors can be obtained from various
features transmitted through network traffic, such as packet counts/sizes, pro-
tocols, services and flags. Each network attack’s type has a different identifying
pattern, known as a set of events that may compromise the security principles
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of networks if undetected [13]. These patterns are learned from network traf-
fic data, hence the importance of data collection for Machine Learning (ML)
training and evaluation stages. Real network data is challenging to obtain due
to security and privacy issues. Also, production networks do not generate la-
belled flows, which is necessary for following a supervised ML learning method.
Therefore, researchers have created synthetic datasets through virtual test-beds
that are publicly available for research purposes [15]. The NIDS datasets contain
labelled network flows that are made up of certain features extracted from net-
work traffic. These features are pre-determined by the datasets’ authors based
on their domain knowledge and tools used during their extraction.

Over the past few years, researchers have utilised the datasets using their
original set of features. However, as these feature sets are unique and often com-
pletely different than each other, researchers have been unable to evaluate their
proposed learning models on multiple datasets using a specific set of features.
Moreover, due to their complex techniques of extraction, these network feature
sets might not be feasible for collection or storage in some high-traffic live net-
works. Therefore, we have converted four well-known modern NIDS datasets into
NetFlow format. NetFlow is a widely deployed protocol of network traffic collec-
tion [4]. Obtaining NetFlow features from existing different datasets will enable
researchers in evaluating ML models across various datasets using the same set
of features. Moreover, it will also determine the performance of NetFlow features
in detecting various attack types present in the datasets. Section 2 illustrates the
limitations faced by existing datasets and how they can be overcome. Section 3
explains the importance and methodology of creating NetFlow datasets as well
as describing the distribution of the newly created datasets. Finally, we evaluate
the new datasets in Section 4, by comparing their binary-class and multi-class
classification performance to the original features of their respective datasets.
The contribution of this paper is providing the research community with five
NetFlow datasets using four existing benchmark datasets along with an initial
set of results collected while evaluating the new datasets using binary-class and
multi-class classification experiments.

2 Limitations of Existing Datasets

Due to the complexity in obtaining real-world labelled benign and attack network
flows, researchers have generated benchmark NIDS datasets. They are made pub-
licly available to be used in the training and testing stages of the proposed ML
detection model. There are more than 15 available NIDS datasets in the field
[12], each containing labelled network data flows. These datasets reflect real net-
work benign behaviour combined with synthetic attack scenarios. Each dataset
contains certain attack categories conducted over a test-bed network. The corre-
sponding packets are captured in their native format packet capture (pcap) and
certain network features are extracted. A key stage of designing an ML-based
NIDS is the selection of features used in the classification stages. These features
must be feasible in count and extraction’s complexity for efficient storage and
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collection. In addition, they should represent sufficient and valuable information
to enable the ML model for effective classification performance. Until the time
of this paper’s writing, there is no benchmarked or standard set of features to
be used in generated NIDS datasets. Therefore, datasets’ authors have utilised
their domain knowledge to extract pre-identified key network features that they
believe would aid in the classification process. As a result, each available dataset
was created with their own unique set of network features.

The variance of information represented in each dataset has caused limita-
tions in the field that keeps aggravating with the new releases and production of
NIDS datasets. The two main issues of having different feature sets in benchmark
datasets are; 1. dimensional overload due to collection and storage of various fea-
tures, some of which are irrelevant and 2. inability of evaluating an ML model’s
performance generalisation across multiple NIDS datasets using a targeted or a
proposed feature set. We believe this may have caused a gap between the ex-
tensive academic research conducted and the actual deployments of ML-based
NIDS models into the real world. Identifying the ideal set of network features
to be used in NIDS datasets has been an ongoing research topic over the last
decade. However, due to the subjection to the datasets used in the experiments,
the identified feature sets have been custom to each dataset. These sets are also
subjected to the feature selection techniques and ML models used to identify
and evaluate them respectively. Moreover, due to the differences in datasets’,
the selected or identified features can not be evaluated using other datasets,
simply due to their absence. The rest of this section discusses four of the most
recent and common publicly available NIDS datasets. These datasets have been
released within the last five years so they represent modern behavioural network
attacks.

– UNSW-NB15- The Cyber Range Lab of the Australian Centre for Cyber
Security (ACCS) released the widely used, UNSW-NB15, dataset in 2015.
The IXIA PerfectStorm tool was utilised to generate a hybrid of real benign
network activities as well as synthetic attack scenarios. Tcpdump tool was
implemented to capture a total of 100 GB of pcap files. Argus and Bro-IDS
now called Zeek, and twelve additional algorithms were used to extract the
dataset’s original 49 features [10]. The dataset contains 2,218,761 (87.35%)
benign flows and 321,283 (12.65%) attack ones, that is, 2,540,044 flows in
total.

– BoT-IoT- The Cyber Range Lab of the Australian Centre for Cyber Security
(ACCS) designed a realistic network environment that consists of normal and
botnet traffic [7]. The Ostinato and Node-red tools were utilised to generate
the non-IoT and IoT traffic respectively. A total of 69.3GB of pcap files
were captured and Argus tool was used to extract the dataset’s original
42 features. The dataset contains 477 (0.01%) benign flows and 3,668,045
(99.99%) attack ones, that is, 3,668,522 flows in total.

– ToN-IoT- A recent heterogeneous dataset released in 2020 [9] that includes
telemetry data of Internet of Things (IoT) services, network traffic of IoT
networks and operating system logs. In this paper, we utilise the portion
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containing network traffic flows. The dataset is made up of a large number
of attack scenarios conducted in a realistic representation of a medium-scale
network at the Cyber Range Lab by ACCS. Bro-IDS, now called Zeek, was
used to extract the dataset’s original 44 features. The dataset is made up of
796,380 (3.56%) benign flows and 21,542,641 (96.44%) attack samples, that
is, 22,339,021 flows in total.

– CSE-CIC-IDS2018- A dataset released by a collaborative project between
the Communications Security Establishment (CSE) & Canadian Institute
for Cybersecurity (CIC) in 2018 [14]. The victim network was designed in
a realistic manner of five different organisational departments and an addi-
tional server room. The benign packets were generated by realistic network
events using the abstract behaviour of human users. The attack scenarios
were executed by one or more machines outside the target network. The
CICFlowMeter-V3 tool was used to extract the original dataset’s 75 fea-
tures. The full dataset has 13,484,708 (83.07%) benign flows and 2,748,235
(16.93%) attack flows, that is, 16,232,943 flows in total.

The extracted features of the datasets are unique in their design, Figure 1
shows the datasets’ shared features which are only a few, making it challenging
for researchers to measure the performance of their proposed models using the
same set of features across the four datasets. Other differences include, UNSW-
NB15 and CSE-CIC-IDS2018 datasets have more benign than attack samples
whereas the ToN-IoT and BoT-IoT datasets has a significantly larger number
of attack than benign ones. UNSW-NB15 and ToN-IoT have approximately the
same numbers of original features but CSE-CIC-IDS2018 has almost doubled
their figures and BoT-IoT having slightly lower numbers. UNSW-NB15, BoT-IoT
and CSE-CIC-IDS2018 original feature sets contain handcrafted features that are
not present in network traffic but are statistically measured from other features,
such as the average or sum of the number of bytes transferred over the last
100 seconds. All these differences lead to the necessity of generating a common
ground feature set to be shared amongst the datasets. This will enable researchers
to evaluate their proposed ML-based NIDS model’s performance across various
network designs and attack scenarios.

3 NetFlow Datasets

3.1 NetFlow

Collecting and recording network traffic is necessary to monitor and analyse
networks. There are two main trends for this process, capturing the complete
network traffic, i.e. traffic packets, and capturing a summary of network packets
in the form of flows. While packet capturing provides full access to traffic history
for the network and security analysis, it is not scalable to large and medium-size
networks. Indeed, even for small networks, it might necessitate large-capacity
data storage to record short period of network traffic. The large volume of such
dataset not only makes it difficult for the analysis, but it also faces privacy and
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Fig. 1. Venn diagram illustrating the overlap and differences of the features of four
NIDS datasets discussed in this paper

security concerns. The alternative method is capturing network traffic summary
as flows, which is more common in the networking industry due to its scala-
bility. A network flow identifies a sequence of packets between two endpoints
with some common attributes. The packets flow can be unidirectional or bidi-
rectional. These common attributes include; source/destination IP address and
L4 (transport layer) ports, and the L4 protocol. These shared attributed are
often referred to as the five-tuple. The information provided by network flows
are not only essential to analyse network traffic for network security, but they
are also a necessity for an appropriate network planning [8].

The network flows can be represented in various formats where the NetFlow
is the de-facto industry standard developed and proposed by Darren and Barry
Bruins from Cisco in 1996 [6]. NetFlow is utilised in network traffic collection
and analysis. Other network hardware manufacturers have also implemented
and adopted their protocols such as NetStream by Huawei, Jflow by Juniper,
Cflow by Alcatel-Lucent, Rflow by Ericsson and s-flow that is supported by
3Com/HP, Dell, and Netgear. In response to the need for a universal standard
of flow information, the Internet Engineering Task Force (IETF) has developed a
new protocol, named Internet Protocol Flow Information Export (IPFIX) which
is based on Cisco NetFlow. Similar to the NetFlow, IPFIX considers a flow to
be any number of packets observed in a specific time slot and sharing some
properties such as the five-tuple. While NetFlow v5 (version 5) is unidirectional
(ingress), the later versions of NetFlow such as version 9 are bidirectional and
include much more fields [8]. The actual number of fields that is possible to export
using NetFlow v9 is much larger including source and destination Autonomous
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System (AS) numbers, Border Gateway Protocol (BGP) next-hop address, IPv6
fields, Multiprotocol Label Switching (MPLS) fields, etc. [3].

Some probe makers such as ntop [11] have made it possible to even include
the application layer (L7) protocols in the exported flow information. NetFlow
makes it possible to convert any available dataset into a common ground feature
set. Accomplishing that, researchers would be able to compare datasets efficiently
and most importantly evaluate their proposed ML-based NIDS models using the
same set of features across various datasets and attack types. Most of the real
world’s network devices such as routers and switches are capable of extracting
NetFlow records hence the motivation of evaluating the performance of NetFlow
features in terms of attack detection. NetFlow defines a flow as a unidirectional
transmission of packets sharing the five-tuple. Therefore, the number of samples
in NetFlow datasets are less compared to the original datasets. There are mul-
tiple versions of NetFlow, version 9 is one of the most commonly used as it is
compatible with most of the recent network devices and include additional fea-
tures. Figure 2 illustrates the procedure of converting and labelling the original
datasets’ pcaps into NetFlow-based format.

3.2 Conversion

Fig. 2. NetFlow datasets’ extraction and labelling

We utilised the publicly available pcap files of each dataset to generate the
NetFlow datasets, nProbe tool by Ntop [11] was utilised to convert the pcaps into
NetFlow version 9 format and selecting 12 features to be extracted. Table 1 lists
the extracted NetFlow features along with their brief description. Using nProbe
we create a text file listing the pcaps path of the original datasets, we specify
NetFlow version 9 due to its popularity. The dump format is chosen as text flows
each feature separated by a comma (,) to be utilised as CSV files. The maximum
number of flows in a file is 100m dumped in a maximum of 100m seconds, and
nProbe is set not to modify the original pcaps timestamps. Finally, we create
two label features by matching the five flow identifiers; source/destination IPs
and ports and protocol to the ground truth attack events published with the
original datasets. If a flow is located in the attack events it would be labelled as
an attack, class 1, in the binary label and its respective attack’s type would be
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recorded in the attack label, otherwise, the record is labelled as a benign flow,
class 0. Table 7 compares the properties of the datasets, in both their original
and NetFlow format, in terms of Feature Extraction (FE) tool, the number of
features, files size and benign to attack samples ratio. The full nProbe command
used to extract the NetFlow features is;

nprobe /c --pcap-file-list ’Source pcaps list’ -V 9 -n none -T

%OUT_BYTES%OUT_PKTS%L4_DST_PORT%IPV4_DST_ADDR%IPV4_SRC_ADDR

%PROTOCOL%L4_SRC_PORT%IN_BYTES%IN_PKTS%L7_PROTO%TCP_FLAGS

%FLOW_DURATION_MILLISECONDS --dump-path ’Destination’ --dump-format

t --csv-separator , --max-log-lines 100000000

--dont-reforge-timestamps --dump-frequency 100000000

Table 1. Extracted NetFlow features

Feature Description

IPV4 SRC ADDR IPv4 source address

IPV4 DST ADDR IPv4 destination address

L4 SRC PORT IPv4 source port number

L4 DST PORT IPv4 destination port number

PROTOCOL IP protocol identifier byte

TCP FLAGS Cumulative of all TCP flags

L7 PROTO Layer 7 protocol (numeric)

IN BYTES Incoming number of bytes

OUT BYTES Outgoing number of bytes

IN PKTS Incoming number of packets

OUT PKTS Outgoing number of packets

FLOW DURATION MILLISECONDS Flow duration in milliseconds

– NF-UNSW-NB15- The NetFlow-based format of the UNSW-NB15 dataset,
named NF-UNSW-NB15, has been developed and labelled with its respec-
tive attack categories. The total number of data flows are 1,623,118 out
of which 72,406 (4.46%) are attack samples and 1,550,712 (95.54%) are be-
nign. The attack samples are further classified into nine subcategories, Table
2 represents the NF-UNSW-NB15 dataset’s distribution of all flows.

– NF-BoT-IoT- An IoT NetFlow-based dataset generated using the BoT-IoT
dataset, named NF-BoT-IoT. The features were extracted from the publicly
available pcap files and the flows were labelled with their respective attack
categories. The total number of data flows are 600,100 out of which 586,241
(97.69%) are attack samples and 13,859 (2.31%) are benign. There are four
attack categories in the dataset, Table 3 represents the NF-BoT-IoT distri-
bution of all flows.

– NF-ToN-IoT- We utilised the publicly available pcaps of the ToN-IoT dataset
to generate its NetFlow records, leading to a NetFlow-based IoT network
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Table 2. NF-UNSW-NB15 distribution

Class Count Description

Benign 1550712 Normal unmalicious flows

Fuzzers 19463
An attack in which the attacker sends large amounts of random data which cause a system
to crash and also aim to discover security vulnerabilities in a system.

Analysis 1995
A group that presents a variety of threats that target web applications through ports,
emails and scripts.

Backdoor 1782
A technique that aims to bypass security mechanisms by replying to specific constructed
client applications.

DoS 5051
Denial of Service is an attempt to overload a computer system’s resources with the aim
of preventing access to or availability of its data.

Exploits 24736
Are sequences of commands controlling the behaviour of a host through a known
vulnerability.

Generic 5570 A method that targets cryptography and causes a collision with each block-cipher.

Reconnaissance 12291 A technique for gathering information about a network host and is also known as a probe.

Shellcode 1365 A malware that penetrates a code to control a victim’s host.

Worms 153 Attacks that replicate themselves and spread to other computers.

Table 3. NF-BoT-IoT distribution

Class Count Description

Benign 13859 Normal unmalicious flows

Reconnaissance 470655 A technique for gathering information about a network host and is also known as a probe.

DDoS 56844
Distributed Denial of Service is an attempt similar to DoS but has multiple
different distributed sources.

DoS 56833
An attempt to overload a computer system’s resources with the aim of preventing access
to or availability of its data.

Theft 1909 A group of attacks that aims to obtain sensitive data such as data theft and keylogging

dataset called NF-ToN-IoT. The total number of data flows are 1,379,274
out of which 1,108,995 (80.4%) are attack samples and 270,279 (19.6%) are
benign ones, Table 4 lists and defines the distribution of the NF-ToN-IoT
dataset.

– NF-CSE-CIC-IDS2018- We utilised the original pcap files of the CSE-CIC-
IDS2018 dataset to generate a NetFlow-based dataset called NF-CSE-CIC-
IDS2018. The total number of flows are 8,392,401 out of which 1,019,203
(12.14%) are attack samples and 7,373,198 (87.86%) are benign ones, Table
5 represents the dataset’s distribution.

– NF-UQ-NIDS- A comprehensive dataset, merging all the aforementioned
datasets. The newly published dataset represents the benefits of shared
dataset feature sets, where the merging of multiple smaller ones is possible.
This will eventually lead to a bigger and more universal NIDS datasets con-
taining flows from multiple network setups and different attack settings. An
additional label feature identifying the original dataset of each flow. This can
be used to compare the same attack scenarios conducted over two or more
different test-bed networks. The attack categories have been modified to com-
bine all parent categories. Attacks named DoS attacks-Hulk, DoS attacks-
SlowHTTPTest, DoS attacks-GoldenEye and DoS attacks-Slowloris have
been renamed to the parent DoS category. Attacks named DDOS attack-
LOIC-UDP, DDOS attack-HOIC and DDoS attacks-LOIC-HTTP have been
renamed to DDoS. Attacks named FTP-BruteForce, SSH-Bruteforce, Brute
Force -Web and Brute Force -XSS have been combined as a brute-force cat-
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Table 4. NF-ToN-IoT distribution

Class Count Description

Benign 270279 Normal unmalicious flows

Backdoor 17247
A technique that aims to attack remote-access computers by replying to specific constructed
client applications

DoS 17717
An attempt to overload a computer system’s resources with the aim of preventing access to or
availability of its data.

DDoS 326345
An attempt similar to DoS but has multiple
different distributed sources.

Injection 468539
A variety of attacks that supply untrusted inputs that aim to alter the course of
execution, with SQL and Code injections two of the main ones.

MITM 1295
Man In The Middle is a method that places an attacker between a victim and host with which
the victim is trying to communicate, with the aim of intercepting traffic and communications.

Password 156299 covers a variety of attacks aimed at retrieving passwords by either brute force or sniffing.

Ransomware 142
An attack that encrypts the files stored on a host and asks for compensation in exchange for
the decryption technique/key.

Scanning 21467
A group that consists of a variety of techniques that aim to discover information about networks
and hosts, and is also known as probing.

XSS 99944
Cross-site Scripting is a type of injection in which an attacker uses web applications to send
malicious scripts to end-users.

Table 5. NF-CSE-CIC-IDS2018 distribution

Class Count Description

Benign 7373198 Normal unmalicious flows

BruteForce 287597
A technique that aims to obtain usernames and password credentials by accessing a list of
predefined possibilities

Bot 15683
An attack that enables an attacker to remotely control several hijacked computers to perform
malicious activities.

DoS 269361
An attempt to overload a computer system’s resources with the aim of preventing access to or
availability of its data.

DDoS 380096 An attempt similar to DoS but has multiple different distributed sources.

Infiltration 62072
An inside attack that sends a malicious file via an email to exploit an application and is
followed by a backdoor that scans the network for other vulnerabilities

Web Attacks 4394 A group that includes SQL injections, command injections and unrestricted file uploads

egory. Finally, SQL Injection attacks have been included in the injection at-
tacks category. The NF-UQ-NIDS dataset has a total of 11,994,893 records,
out of which 9,208,048 (76.77%) are benign flows and 2,786,845 (23.23%) are
attacks. Table 6 lists the distribution of the final attack categories.

4 Evaluation

The detection performance of an ML classifier is evaluated using the newly pub-
lished NetFlow datasets as a use case and compared to the original datasets.
We drop the flow identifiers such as IDs, source/destination IP and ports, times-
tamps and start/end time to avoid bias towards attacking or victim nodes. For
UNSW-NB15, we additionally drop Time To Live (TTL) based features i.e., sttl,
dttl and ct state ttl, due to their extreme correlation with the labels. Further-
more, we utilise the min-max normalisation technique to scale all datasets’ values
between 0 to 1. Finally, we apply an Extra Trees ensemble classifier, made up
of 50 randomised decision trees estimators. The chosen classifier belongs to the
’trees’ family and has proven to achieve reliable performances on NIDS datasets.
Due to the extreme imbalance in all datasets’ binary-class and multi-class labels,
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Table 6. NF-UQ-NIDS distrubution

Class Count
Benign 9208048
DDoS 763285
Reconnaissance 482946
Injection 468575
DoS 348962
Brute Force 291955
Password 156299
XSS 99944
Infilteration 62072
Exploits 24736
Scanning 21467
Fuzzers 19463
Backdoor 19029
Bot 15683
Generic 5570
Analysis 1995
Theft 1909
Shellcode 1365
MITM 1295
Worms 153
Ransomware 142

Table 7. Datasets’ comparison

Dataset
Release
year

Feature extraction tool
Number

of features
CSV size
(GB)

Benign to attack
samples ratio

UNSW-NB15 2015 Argus, Bro-IDS and MS SQL 49 0.55 8.7 to 1.3
NF-UNSW-NB15 2020 nProbe 12 0.11 9.6 to 0.4

BoT-IoT 2018 Argus 42 0.95 0 to 10
NF-BoT-IoT 2020 nProbe 12 0.05 0.2 to 9.8

ToN-IoT 2020 Bro-IDS 44 3.02 0.4 to 9.6
NF-ToN-IoT 2020 nProbe 12 0.09 2.0 to 8.0

CSE-CIC-IDS2018 2018 CICFlowMeter-V3 75 6.41 8.3 to 1.7
NF-CSE-CIC-IDS2018 2020 nProbe 12 0.58 8.8 to 1.2

NF-UQ-NIDS 2020 nProbe 12 1.0 7.7 to 2.3

we set a custom class weight parameter, using Equation 1. To reliably evaluate
the datasets, we conduct five cross-validation splits and collect the average met-
rics such as accuracy, Area Under the Curve (AUC), F1 Score, Detection Rate
(DR), False Alarm Rate (FAR) and time required in microseconds (µs) to predict
a single test sample.

Weightclass =
TotalSamplesCount

NumberOfClasses× ClassSamplesCount
(1)

4.1 Binary-class Classification

In this experiment, we evaluate the attack detection performance of the NetFlow
datasets compared to the original datasets. Table 8 lists the accuracy, AUC,
F1 score, DR, FAR and prediction time results. The NF-UNSW-NB15 dataset
achieved slightly lower performance than the UNSW-NB15 dataset, with almost
the same DR but higher FAR, however, it used less time to predict the samples.
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The overall accuracy achieved by the NF-UNSW-NB15 dataset is 98.62% com-
pared to 99.25% when using the UNSW-NB15 dataset. The NF-BoT-IoT dataset
has achieved slightly lower classification performance, i.e. 93.70% DR and 0.97
F1 Score, compared to its parent BoT-IoT dataset which achieved a 100% DR
and 1.00 F1 Score. The almost perfect results achieved bu the BoT-IoT has been
deemed unreliable in a recent study [2], due to its extreme class imbalance of
attack and benign samples which is unrealistic in a real-world network. The NF-
ToN-IoT dataset’s performance was superior to its original ToN-IoT dataset,
achieving a 99.67% DR and 0.37% FAR, it also consumed less prediction time.
The accuracy achieved is 99.66% proving its significance compared to the ToN-
IoT dataset, 97.86%. The NF-CSE-CIC-IDS2018 dataset performance was less
efficient than the CSE-CIC-IDS2018 dataset achieving a similar DR of 94.71%
but a higher FAR of 4.59%, however significantly less time was consumed in
prediction. The overall accuracy achieved is 95.33%, significantly lowering the
98.31% accuracy of the CSE-CIC-IDS2018 dataset. The merged NF-UQ-NIDS
dataset achieved an accuracy of 97.25%, a DR of 95.66% and a FAR of 2.27%,
achieving a reliable classification performance of 20 different attack categories.

Table 8. Binary-class classification results

Dataset Accuracy AUC F1 Score DR FAR Prediction Time (µs)
UNSW-NB15 99.25% 0.9545 0.92 91.25% 0.35% 10.05
NF-UNSW-NB15 98.62% 0.9485 0.85 90.70% 1.01% 7.79
BoT-IoT 100.00% 0.9948 1.00 100.00% 1.05% 7.62
NF-BoT-IoT 93.82% 0.9628 0.97 93.70% 1.13% 5.37
ToN-IoT 97.86% 0.9788 0.99 97.86% 2.10% 8.93
NF-ToN-IoT 99.66% 0.9965 1.00 99.67% 0.37% 6.05
CSE-CIC-IDS2018 98.31% 0.9684 0.94 94.75% 1.07% 23.01
NF-CSE-CIC-IDS2018 95.33% 0.9506 0.83 94.71% 4.59% 17.04
NF-UQ-NIDS 97.25% 0.9669 0.94 95.66% 2.27% 14.35

Figure 3 displays the AUC achieved using the Extra Trees classifier on the
four newly published NetFlow-based datasets. This comparison is conducted by
using the same set of features across all datasets. This fair comparison demon-
strates the benefit of the newly published datasets, which was not possible
to achieve due to each dataset’s unique set of features. Overall, the NetFlow
datasets containing only eight features used in the classification experiments
achieved a very similar attack detection performance compared to the origi-
nal 36 features of the BoT-IoT, 38 features of the UNSW-NB15 and ToN-IoT
datasets and the 77 features of the CSE-CIC-IDS2018 dataset. We noticed a
consistent prediction time decrease in using all the NetFlow datasets. Therefore,
in terms of feasibility and practicality in real-world networks, using NetFlow
features might lead to an overall superior performance if additional metrics are
measured such as storage and computation power required to extract and store
the utilised features.



12 Sarhan et al.

Fig. 3. Binary-class classification’s AUC

4.2 Multi-class Classification

In this experiment, we measure the DR and F1 score of each attack’s type present
in each dataset. Tables 9, 10 11, 12 and 13 list each attack’s type DR and F1 score
of the NF-UNSW-NB15, NF-BoT-IoT, NF-ToN-IoT, NF-CSE-CIC-IDS2018 and
NF-UQ-NIDS datasets respectively. The average accuracy and prediction time
are calculated and the results are compared to their respective original datasets.
In Table 9, we can conclude that by using the NF-UNSW-NB15 dataset, we can
increase the DR of analysis, backdoor, DoS, fuzzers, shellcode and worms attacks,
however, it was inefficient against generic attacks. The overall accuracy achieved
which is 97.62% is slightly lower than the UNSW-NB15 dataset, 98.19%, due
to the number of miss-correctly classified samples, however, the prediction time
consumed was slightly lower.

Table 9. NF-UNSW-NB15 multi-class classification results

UNSW-NB15 NF-UNSW-NB15
Class Name DR F1 Score DR F1 Score

Benign 99.72% 1.00 99.02% 0.99
Analysis 4.39% 0.03 28.28% 0.15
Backdoor 13.96% 0.08 39.17% 0.17
DoS 13.63% 0.18 31.84% 0.41
Exploits 83.25% 0.80 81.04% 0.82
Fuzzers 50.50% 0.57 62.63% 0.55
Generic 86.08% 0.91 57.13% 0.66
Reconnaissance 75.90% 0.80 76.89% 0.82
Shellcode 53.61% 0.59 87.91% 0.75
Worms 5.26% 0.09 52.91% 0.55
Weighted Average 98.19% 0.98 97.62% 0.98
Prediction Time (µs) 9.94 9.35

Table 10 shows that the BoT-IoT dataset is achieving almost perfect multi-
classification performances of a 100% accuracy and 1 F1 Score. Again, these
results might be unreliable due to the extreme imbalance mentioned in [2]. In
addition, there might be certain ’hidden label’ features, such as the TTL-based
features in the UNSW-NB15 dataset, that are extremely correlated to the attack
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types present in the dataset. The NF-BoT-IoT dataset was unreliable in the
detection of the DDoS and DoS attacks. However, it achieved a 90% DR against
reconnaissance and theft attacks. Although it achieved a lower DR of 73.58%
and F1 Score of 0.77, the NetFlow dataset maintained the lower prediction time
compared to the BoT-IoT dataset.

Table 10. NF-BoT-IoT multi-class classification results

BoT-IoT NF-BoT-IoT
Class Name DR F1 Score DR F1 Score

Benign 99.58% 0.99 98.65% 0.43
DDoS 100.00% 1.00 30.37% 0.28
DoS 100.00% 1.00 36.33% 0.31
Reconnaissance 100.00% 1.00 89.95% 0.90
Theft 91.16% 95.37 88.06% 0.18
Weighted Average 100.00% 1.00 73.58% 0.77
Prediction Time (µs) 12.63 9.19

In Table 11, the NF-ToN-IoT dataset increased the DR of DoS attacks but
lowered the DDoS, injection, MITM, password, scanning and XSS attacks com-
pared to the ToN-IoT dataset. Further analysis is required to identify which fea-
tures of the original dataset were critical in the detection of the missed attacks
and to be added to the NetFlow dataset. Overall, in multi-class classification,
the NF-ToN-IoT dataset was not as effective in terms of overall accuracy and
prediction time compared to the ToN-IoT dataset. It achieved a low prediction
accuracy of 56.34% and a high prediction time of 21.21 µs. However, a binary-
class classification deemed it was very efficient, therefore, it seems like the ML
classifier is detecting the overall pattern of attacks present in the dataset, but
not the pattern of individual attacks. We suspect that specific features present
in the original dataset contain payload information that was enabling the ML
classifier to detect certain attack types. Further analysis is required to inves-
tigate which features from the ToN-IoT dataset are necessary to identify each
attack’s type.

Table 11. NF-ToN-IoT multi-class classification results

ToN-IoT NF-ToN-IoT
Class Name DR F1 Score DR F1 Score
Benign 89.97% 0.94 98.97% 0.99
Backdoor 98.05% 0.31 99.22% 0.98
DDoS 96.90% 0.98 63.22% 0.72
DoS 53.89% 0.57 95.91% 0.48
Injection 96.67% 0.96 41.47% 0.51
MITM 66.25% 0.16 52.81% 0.38
Password 86.99% 0.92 27.36% 0.24
Ransomware 89.87% 0.11 87.33% 0.83
Scanning 75.05% 0.85 31.30% 0.08
XSS 98.83% 0.99 24.49% 0.19
Weighted Average 84.61% 0.87 56.34% 0.60
Prediction Time (µs) 12.02 21.21
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In Table 12, the performance of the NF-CSE-CIC-IDS2018 dataset can prove
that attacks such as FTP-bruteforce and infiltration were better detected using
the NetFlow features compared to the CSE-CIC-IDS2018 features. However,
Brute Force -Web, Brute Force -XSS, DDOS attack-HOIC and SQL injection
attack samples were mostly undetected by using the NetFlow features. The DoS
attacks-SlowHTTPTest attack samples were fully undetected by the ML clas-
sifier. Similar to the NF-ToN-IoT dataset, the ML classifier was unable to ef-
ficiently detect the pattern of certain attack types. Overall, the accuracy and
prediction time achieved while using the NF-CSE-CIC-IDS2018 dataset being
71.92% and 17.29 µs respectively were lower compared to the CSE-CIC-IDS2018
dataset.

Table 12. NF-CSE-CIC-IDS2018 multi-class classification results

CSE-CIC-IDS2018 NF-CSE-CIC-IDS2018
Class Name DR F1 Score DR F1 Score
Benign 89.50% 0.94 69.83% 0.82
Bot 99.92% 0.99 100.00% 1.00
Brute Force -Web 71.36% 0.01 50.21% 0.52
Brute Force -XSS 72.17% 0.72 49.16% 0.39
DDOS attack-HOIC 100.00% 1.00 45.66% 0.39
DDOS attack-LOIC-UDP 83.59% 0.82 80.98% 0.82
DDoS attacks-LOIC-HTTP 99.93% 1.00 99.93% 0.71
DoS attacks-GoldenEye 99.97% 1.00 99.32% 0.98
DoS attacks-Hulk 100.00% 1.00 99.65% 0.99
DoS attacks-SlowHTTPTest 69.80% 0.60 0.00% 0.00
DoS attacks-Slowloris 99.44% 0.62 99.95% 1.00
FTP-BruteForce 68.76% 0.75 100.00% 0.79
Infilteration 36.15% 0.08 62.66% 0.04
SQL Injection 49.34% 0.30 25.00% 0.22
SSH-Bruteforce 99.99% 1.00 99.93% 1.00
Weighted Average 90.28% 0.94 71.92% 0.80
Prediction Time (µs) 24.17 17.29

Table 13 displays the full attack identification results of the merged dataset
named NF-UQ-NIDS. The chosen ML classifier was efficient in the detection
of certain attack’s types such as backdoor, bot, bruteforce, exploits, shellcode,
DDoS and ransomware. However, attacks such as analysis, DoS, fuzzers, generic,
infiltration, worms, injection, MITM, password, scanning and XSS were not re-
liably detected. Further analysis is required to identify the features that are
critical in identifying these attacks and to add them to the NetFlow features.
The overall accuracy of 70.81% and prediction time 14.74 (µs) were achieved.

5 Conclusion

This paper provides the research community with four new NIDS datasets using
NetFlow features. These datasets are to be used in ML-based NIDS training and
evaluation stages. The datasets are showing positive results by achieving similar
binary-class detection performance compared to the complete set of their re-
spective original datasets. However, the NF-ToN-IoT and NF-CSE-CIC-IDS2018
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Table 13. NF-UQ-NIDS multi-class classification results

NF-UQ-NIDS
Class Name Detection Rate F1 Score

Analysis 69.63% 0.21
Backdoor 90.95% 0.92
Benign 71.70% 0.83
Bot 100.00% 1.00
Brute Force 99.94% 0.85
DoS 55.54% 0.62
Exploits 80.65% 0.81
Fuzzers 63.24% 0.54
Generic 58.90% 0.61
Infilteration 60.57% 0.03
Reconnaissance 88.96% 0.88
Shellcode 83.89% 0.15
Theft 87.22% 0.15
Worms 52.97% 0.46
DDoS 77.08% 0.69
Injection 40.58% 0.50
MITM 57.99% 0.10
Password 30.79% 0.27
Ransomware 90.85% 0.85
Scanning 39.67% 0.08
XSS 30.80% 0.21
Weighted Average 70.81% 0.79
Prediction Time (µs) 14.74

datasets were inefficient when conducting multi-class detection experiments. Fur-
ther feature analysis is required to identify the strength of each NetFlow feature,
and how these datasets can be improved by adding key features from the original
datasets to aid in the detection of missed attack types. While further experiments
are required, the published NetFlow datasets offer a promising performance. The
datasets serve two advantages; 1. the level of complexity and resources required
to collect and store NetFlow features are lower and 2. proposed ML models can
be evaluated using the same set of features across various datasets’ attack types.
Overall, the practicality and initial performance of NetFlow features’ collection
and attack detection, requires increased attention and interest by researchers
in applying them into the real-world for ML-based NIDS. Future works include
enhancing the current datasets with additional NetFlow features which can po-
tentially improve both the binary and multi-class classification performances.
Finally, key features from the original datasets required to detect certain attack
types must be identified to be included in NetFlow features.
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