Skip to main content

Evofficient: Reproducing a Cartesian Genetic Programming Method

  • Conference paper
  • First Online:
Genetic Programming (EuroGP 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12691))

Included in the following conference series:

Abstract

Designing Neural Network Architectures requires expert knowledge and extensive parameter searches. Neural Architecture Search (NAS) aims to change that by automating the design process. It is important that these approaches are reproducible so they can be used in real-life scenarios. In our work, we reproduce a genetic programming approach to designing convolutional neural networks called CGP-CNN. We show that this is difficult and requires many changes to the training scheme, reducing real-life applicability. We achieve a final accuracy of \(90.6\% \pm 0.005\), substantially lower than the reported \(93.7\% \pm 0.005\). This negates some of the benefits of using CGP-CNN for NAS. We establish a random search as a consensus baseline and show that it produces similar results to the evolutionary method of CGP-CNN. To assess the adaptability and generality of the presented algorithm, it is applied to CIFAR-100 and SVHN with a final accuracy of 63.1% and 95.6%, respectively. We extend the investigated NAS by two methods for predicting candidate fitnesses from partial learning curves. This improves CGP-CNN runtime efficiency by a factor of 1.69.

This work has been partially funded by the “Bavarian Ministry of Economic Affairs, Regional Development and Energy” under the grant ’CrossAI’ (IUK593/002).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    CIFAR-10 and CIFAR-100 [16] are image classification datasets of 32 \(\times \) 32 color images.

  2. 2.

    Code and experimental setup: https://zenodo.org/record/2611575.

  3. 3.

    Street View House Numbers (SVHN) [22] is an image classification task, “seen as similar in flavor to MNIST”, containing images of digits from house numbers.

References

  1. Abadi, M., et al.: Tensorflow: a system for large-scale machine learning. OSDI 16, 265–283 (2016)

    Google Scholar 

  2. Angeline, P.J., Saunders, G.M., Pollack, J.B.: An evolutionary algorithm that constructs recurrent neural networks. IEEE Trans. Neural Netw. 5(1), 54–65 (1994)

    Article  Google Scholar 

  3. Baker, B., Gupta, O., Naik, N., Raskar, R.: Designing neural network architectures using reinforcement learning. arXiv preprint arXiv:1611.02167 (2016)

  4. Baker, B., Gupta, O., Raskar, R., Naik, N.: Accelerating neural architecture search using performance prediction. arXiv preprint arXiv:1705.10823 (2017)

  5. Bergstra, J., Yamins, D., Cox, D.D.: Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures (2013)

    Google Scholar 

  6. Beyer, H.G., Schwefel, H.P.: Evolution strategies-a comprehensive introduction. Nat. Comput. 1(1), 3–52 (2002)

    Article  MathSciNet  Google Scholar 

  7. Cubuk, E.D., Zoph, B., Mane, D., Vasudevan, V., Le, Q.V.: Autoaugment: learning augmentation strategies from data. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 113–123 (2019)

    Google Scholar 

  8. Domhan, T., Springenberg, J.T., Hutter, F.: Speeding up automatic hyperparameter optimization of deep neural networks by extrapolation of learning curves. In: Twenty-Fourth International Joint Conference on Artificial Intelligence (2015)

    Google Scholar 

  9. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 12, 2121–2159 (2011)

    MathSciNet  MATH  Google Scholar 

  10. Elsken, T., Metzen, J.H., Hutter, F.: Neural architecture search: a survey. arXiv preprint arXiv:1808.05377 (2018)

  11. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1026–1034 (2015)

    Google Scholar 

  12. Hinton, G., Srivastava, N., Swersky, K.: Neural networks for machine learning lecture 6a overview of mini-batch gradient descent. Cited on p. 14 (2012)

    Google Scholar 

  13. Huang, Y., et al.: GPipe: efficient training of giant neural networks using pipeline parallelism. In: Advances in Neural Information Processing Systems, pp. 103–112 (2019)

    Google Scholar 

  14. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  15. Klein, A., Falkner, S., Springenberg, J.T., Hutter, F.: Learning curve prediction with bayesian neural networks (2016)

    Google Scholar 

  16. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  17. Lee Rodgers, J., Nicewander, W.A.: Thirteen ways to look at the correlation coefficient. Am. Stat. 42(1), 59–66 (1988)

    Article  Google Scholar 

  18. Lin, M., Chen, Q., Yan, S.: Network in network. arXiv preprint arXiv:1312.4400 (2013)

  19. Lindauer, M., Hutter, F.: Best practices for scientific research on neural architecture search. arXiv preprint arXiv:1909.02453 (2019)

  20. Mendoza, H., Klein, A., Feurer, M., Springenberg, J.T., Hutter, F.: Towards automatically-tuned neural networks. In: Workshop on Automatic Machine Learning, pp. 58–65 (2016)

    Google Scholar 

  21. Miller, G.F., Todd, P.M., Hegde, S.U.: Designing neural networks using genetic algorithms. ICGA 89, 379–384 (1989)

    Google Scholar 

  22. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits in natural images with unsupervised feature learning. In: NIPS Workshop on Deep Learning and Unsupervised Feature Learning, vol. 2011, p. 5 (2011)

    Google Scholar 

  23. Rawlings, J.O., Pantula, S.G., Dickey, D.A.: Applied Regression Analysis: A Research Tool. Springer, New York (2001). https://doi.org/10.1007/b98890

  24. Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Regularized evolution for image classifier architecture search. arXiv preprint arXiv:1802.01548 (2018)

  25. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies. Evol. Comput. 10(2), 99–127 (2002)

    Article  Google Scholar 

  26. Suganuma, M., Shirakawa, S., Nagao, T.: A genetic programming approach to designing convolutional neural network architectures. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 497–504. ACM (2017)

    Google Scholar 

  27. Zeiler, M.D.: ADADELTA: an adaptive learning rate method. arXiv preprint arXiv:1212.5701 (2012)

  28. Zhong, Z., Yan, J., Wu, W., Shao, J., Liu, C.L.: Practical block-wise neural network architecture generation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2423–2432 (2018)

    Google Scholar 

  29. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. arXiv preprint arXiv:1611.01578 (2016)

  30. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures for scalable image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8697–8710 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenz Wendlinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wendlinger, L., Stier, J., Granitzer, M. (2021). Evofficient: Reproducing a Cartesian Genetic Programming Method. In: Hu, T., Lourenço, N., Medvet, E. (eds) Genetic Programming. EuroGP 2021. Lecture Notes in Computer Science(), vol 12691. Springer, Cham. https://doi.org/10.1007/978-3-030-72812-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72812-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72811-3

  • Online ISBN: 978-3-030-72812-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics