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Abstract. Morphological regeneration is an important feature that highlights the environ-
mental adaptive capacity of biological systems. Lack of this regenerative capacity significantly
limits the resilience of machines and the environments they can operate in. To aid in ad-
dressing this gap, we develop an approach for simulated soft robots to regrow parts of their
morphology when being damaged. Although numerical simulations using soft robots have
played an important role in their design, evolving soft robots with regenerative capabilities
have so far received comparable little attention. Here we propose a model for soft robots
that regenerate through a neural cellular automata. Importantly, this approach only relies
on local cell information to regrow damaged components, opening interesting possibilities
for physical regenerable soft robots in the future. Our approach allows simulated soft robots
that are damaged to partially regenerate their original morphology through local cell inter-
actions alone and regain some of their ability to locomote. These results take a step towards
equipping artificial systems with regenerative capacities and could potentially allow for more
robust operations in a variety of situations and environments. The code for the experiments
in this paper is available at: github.com/KazuyaHoribe/RegeneratingSoftRobots.
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1 Introduction

Many organisms have regenerative capabilities, allowing them to repair and reconfigure their mor-
phology in response to damage or changes in components [3]. For example, the primitive organisms
Hydra and Planaria are particularly capable of regeneration and can thus achieve complete repair,
no matter what location of the body part is cut off [49,29]. Furthermore, salamanders are capable
of regenerating an amputated leg [48]. Many biological systems achieve regeneration by retaining
information on the damaged parts [2].

While biological systems are surprisingly robust, current robotic systems are fragile and of-
ten not able to recover from even minor damage. Furthermore, the majority of damage recov-
ery approaches in robotics has focused on damage compensation through behavioral changes
alone [6,8,20,41,26]; damage recovery through the regrowth of morphology has received compa-
rable little attention.

In this present study, we develop a neural cellular automata approach for soft robot locomotion
and morphological regeneration. Cellular automata (CA) were first proposed by Neumann and
Ulam in the 1940s and consist of a regular grid of cells where each cell can be in any one of a finite
set of states [35]. Each cell determines its next state based on local information (i.e. the states
of its neighboring cells) according to pre-defined rules. In a neural cellular automata, instead
of having hand-designed rules, a neural network learns the update rules [5,32,36]. In a recent
impressive demonstration of a neural CA, Mordvintsev et al. trained a neural CA to grow complex
two-dimensional images starting from a few initial cells [33]. In addition, the authors successfully
trained the system to recover the pattern, when parts of it were removed (i.e. it was able to regrow
the target pattern). The neural network in their work is a convolutional network, which lends itself
to represent neural CAs [13]. Earlier work by Miller showed that automatically recovery of simpler
damaged target patterns is also possible with genetic programming [32].

In this study, we extend the neural CA approach to simulated soft robots, which develop from a
single cell, and are able to evolve the ability to locomote and regenerate. The results show that when
the simulated soft robots are partially damaged, they are capable to move again by regrowing a

ar
X

iv
:2

10
2.

02
57

9v
2 

 [
cs

.N
E

] 
 7

 F
eb

 2
02

1

github.com/KazuyaHoribe/RegeneratingSoftRobots


2 K. Horibe et al.

morphology close to their original one. Our approach opens up interesting future research directions
for more resilient soft robots that could ultimately be transferred to the real world.

2 Related work

2.1 Evolved virtual creatures

The evolution of virtual creatures first began with Karl Sim’s seminal work nearly three decades
ago [44], with creatures composed of blocks interacting with their environment and other individuals
in a virtual physical space, evolving their own body plans. Since then many researchers have
explored the use of artificial evolution to train virtual creatures and even transferred some of these
designs to the real world [9,10,14,18,30,40,42]. It should be noted, however, that in each of the
above examples, the morphology of the evolved robot is fixed; it does not develop over its lifetime.

More recently, this research field has embraced approaches based on compositional pattern
producing networks (CPPN) [45,7,4], which are a special kind of neural network. Furthermore, using
CPPN-based approaches, researchers have been able to explore evo-devo virtual creatures, where
development continues during interaction with the environment, further increasing the complexity
of the final body plans [22,23]. However, the lifetime development of these creature tends to be
limited to material properties, rather than growth of complete body parts.

Kriegman et al. also proposed a modular soft robot automated design and construction frame-
work [24]. The framework’s ability to transfer robot designs from simulation to reality could be
a good match for our neural CA method in the future, which increases morphological complexity
during development.

2.2 Cellular automata

Instead of a CPPN-based approach, which relies on having access to a global coordinate system, we
employ a neural cellular automata to grow virtual soft robots solely based on the local interaction
of cells. As previously discussed, cellular automata (CA) were first studied by Neumann and Ulam
[35] in the 1940s, taking inspiration from observations of living organisms. When correctly designed,
CAs have been able to reproduce some of the patterns of growth, self-replication, and self-repair
of natural organisms, only through local cell interactions.

Wolfram exhaustively examined the rules of one-dimensional CAs and classified them according
to their behaviors [50]. Later, Langton discovered that behavior of CAs could be determined with
a single parameter [27]. Similar dominant parameters and behaviors have been searched for in
two-dimensional CAs using tools from information theory and dynamical systems theory [38].

More recently, optimization methods (e.g. evolutionary algorithms, gradient descent) have been
employed to train neural networks that in turn dictate the behaviour (i.e. growth rules) of a CA.
Such a CA is called a neural cellular automata [33,37,36]. Neural CAs are able to learn complex
rules, which enable growth to difficult 2D target patterns [32,37], and can also regrow patterns
when they are partially removed [33]. In this paper, we extend the work on neural CAs to soft
robots, which can move and regrow once their morphologies are damaged.

2.3 Shape changing robots and damage recovery

Krigeman et al. evolved robots that were capable of adapting their resting volume of each voxel
in response to environmental stress [25]. In recent years, not only the locomotion performance of
organisms, but also their environmental adaptability through shape change has attracted attention.
For a recent review of approaches that allow robots to transform in order to cope with different
shapes and tasks, see Shah et al. [43].

In terms of damage recovery, traditionally approaches have focused on the robot’s control system
to combat loss of performance. Building on ideas from morphological computation and embodiment,
more recently morphological change has been investigated as a mechanism for damage recovery.
Such work includes that by Kriegman et al.[25], where silicone based physical voxel robots were
able to recover from voxel removal. Furthermore, Xenobots, synthetic creatures designed from
biological tissue [24], have shown to be capable of reattachment (i.e. healing after insult).
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Our model uses only local information (i.e. each cell only communicates with its neighbors)
and could be applied as a design method for regenerating soft robots composed of biological tissue
using techniques which control gene expression and bioelectric signaling [1,47]. We believe that by
using only local information, our method is particularly biologically plausible and therefore might
work on real robots in the future, with the help of various biological tissues editing technologies.
In particular, an exciting direction is to combine the approach with biological robots such as the
Xenobots [24].

3 Growing Soft Robots with Neural Cellular Automata

The neural CA representation for our soft robot is shown in Fig. 1. For each cell, the same network
maps the neighborhood cell’s input to a new cell state. The cell states are discrete values from
a finite set, which we map to a continuous value before passing it to the neural network. The
dimension of the input layer corresponds to the number of cell neighbors (e.g. Neumann and Moor
neighborhood). The neural network has one output for each possible cell state and is assigned the
state that corresponds to the largest activated output.

Fig. 1: Neural CA representation. The center cell and its neighboring cells are shown. Each cell
state is an input to the neural network (bottom). The center cell transitions to the state with the
highest network output.

We use a three-layer networks with tanh activation functions. We experiment with both feed
forward (the hidden layer is a linear layer) and recurrent networks (the hidden layer is an LSTM
unit [16]), which means that each cell has its own memory. The dimension of the hidden layer in this
paper is set to 64 unless otherwise noted. The recurrent setup is inspired by recent experimental
reports that organisms store information about the original morphology in a distributed manner
in the bioelectrical signaling networks [28,31].

Following Mordvintsev et al. [33], the network has an additional alpha channel output (α) that
determines the maturity of a cell. If α is greater than 0.1, the cell is tagged as “living”. A cell with
0 < α < 0.1 is tagged as “growing”. When the neural network is calculating the next state of a
cell, the inputs from empty or growing cells are set to 0.0. This way, it is possible to gradually
expand the area of mature cells from a few initial cells. Mature cells can also die and become
empty; to guarantee that robots do not have any isolated and unconnected cells, isolated cells are
removed before the robot is evaluated following the procedure below. First, we remove cells that
are connected diagonally but not horizontally to eliminate physical simulation error in VoxCad.
Second, we remove independent cells which do not have any neighboring cells. Both of these two
steps are applied to each cell sequentially in the order of their indexes.
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3.1 Soft Robot Simulator

All soft robot experiments are performed in the open-source physical simulator Voxelyze [15]. We
consider a locomotion task for soft robots composed of a 7×7 and 9×9×9 grid of voxels in 2D and
3D, respectively. We adopt the Dirichlet boundary condition, and the cell state of the outer frame
is always empty. Thus, the actual maximum size of the soft robots is 5 × 5 (Fig. 2a) and 7 × 7 × 7
(Fig. 3a). At any given time, a robot is completely specified by an array of resting volumes, one for
each of its 7 × 7 = 49 and 9 × 9 × 9 = 729 voxels. Each voxel is volumetrically actuated according
to a global signal that varies sinusoidally in volume over time. The actuation is a linear expansion
and contraction from their resting volume.

Following Cheney et al. [7], there are four types of voxels, denoted by their color: Red colored
voxels can be thought of as muscle; they actively contract and expand sinusoidally at a constant
frequency. Green colored voxels can also be though of as muscle, with their activation in counter-
phase to red voxels. Dark blue colored voxels can be considered as bone; they are unable to expand
and contract like the “muscle” voxels. Furthermore, they have a high stiffness value. The final type
of voxel used in this experiment are colored light blue voxels. These are also passive but have a
lower stiffness than dark blue bone voxels. The physical and environmental Voxelyze parameters
also follow the settings in Cheney et al. [7].

Soft robots are evaluated for their ability to locomote for 0.25 seconds, or 10 actuation cycles in
2D (Fig. 2c) and for 0.5 seconds, or 20 actuation cycles in 3D (Fig. 3c, 3d). The evaluation times
try to strike a balance between reducing computational costs while still giving sufficient time to
observe interesting locomotion behaviours. Fitness is determined as the distance the robot’s center
of mass moves in 0.25 or 0.5 seconds. The distance is measured in units that correspond to the
length of a voxel with volume one. Creatures with zero voxels after their growth are automatically
assigned a fitness of 0.0.

3.2 Genetic algorithm

To evolve a neural CA, we use a simple genetic algorithm [17,11] that can train deep neural net-
works [46]. The implemented GA variant performs truncation selection with the top T individuals
becoming the parents of the next generation. The following procedure is repeated at each gen-
eration: First, parents are selected uniformly at random. They are mutated by adding Gaussian
noise to the weight vector of the neural network (its genotype): θ′ = θ+σε, where ε is drawn from
N(0, I) and σ is set to 0.03. Following a technique called elitism, top N th individuals are passed
on to the next generation without mutation.

4 Results

4.1 Evolving 2D soft robots

To confirm the promise of neural CAs for growing soft robots, we first apply them to simpler 2D
robot variants. Here, robots have a maximum size of 7 × 7 voxels. Since the neural CA used a
Moor neighborhood, the input dimension of the neural network was 9 × 2 = 10, which includes
neighboring cell types and alpha values. The output layer has a size of 6, 5 for the different states
of the cell (empty=0, light blue=1, dark blue=2, red=3, green=4) plus one alpha channel. The first
single soft & passive cell is placed at position (3, 3) and 10 steps of development are performed. As
result, 11 morphologies are obtained. (Fig. 2a). Afterwards, the final grown robot is tested in the
physical simulator and allowed to attempt locomotion for 0.25 seconds (10 actuation cycles). The
fitness of each robot is taken to be distance travelled by the robot from its starting point. These
2D experiments use a population size of 300, running for 500 generations. One evolutionary run
on 8 CPUs took around 12 hours.

Results are shown in Fig. 2, which were obtained from ten independent evolutionary runs,
using both recurrent and feed forward networks. The training mean together with bootstrapped
95% confidence intervals is shown in Fig. 2b.

Evolution produced a variety of soft robots (Fig. 2c). A “Hook” type is distinguished by its
hook-like form and locomotion, which shakes the two sides of the hook and proceed to hook the
remaining one side to the floor. The “S” shaped-robot is distinguished by its sharp and peristaltic
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(a) 2D robot development

(b) Training (c) 2D robot locomotion

Fig. 2: Evolution of 2D soft robots (a) Development of 2D soft robots through a neural cellular
automata. (b) Training fitness for the recurrent/feed forward setup. (c) Time series of soft robot
behaviors as they move from left to right. From top to bottom, we refer to them as Hook type,
S-type, Biped, L-type, and Zigzag.

motion with amplitude in the same direction as the direction of travel. The “Biped” has two legs
and its locomotion resembles that of a frog, with the two legs pushing the robot forward. The “L”
type displays a sharp and winged movement. Finally, the “Zig-zag” shows a spring-like movement
by stretching and retracting the zigzag structure. Enabling the cells to keep a memory of recent
developmental states through a recurrent network improved performance, although only slightly
(Fig. 2b). Investigating what information the evolved LSTM-based network is keeping track of
during development is an interesting future research direction.

4.2 Evolving 3D soft robots

In this section we now extend our methodology to grow 3D robots. For these 3D robots the
maximum size of the morphologies is 9×9×9. Since the neural CA uses a Moor neighborhood, the
input dimension of the neural network is 3× 9× 2 = 54. The hidden layer is set to 64. The output
layer is set to 5 + 1 = 6 dimensions with the number of states of the cell and the value of its own
next step alpha value. The first single soft & passive cell is placed at position (4, 4, 4) and 10 steps
of growth are performed (Fig. 3a). The final soft robot grown after 10 steps is tested in the physical
simulated and, as with the 2D robots, the distance of the robot’s center of gravity from its starting
point was used as part of the fitness function. Additionally we include a voxel cost in the fitness
calculation: Fitness = (Distance) − (V oxelsCost). We added a “voxel” cost because preliminary
results indicated that without this additional metric all the soft robots simply acquired a box-like
morphology. Including the voxel cost metric increased diversity in the population. Note that voxel
cost is the number of voxels that are neither empty nor dead.

For our 3D experiments the evaluation time is increased to 0.5s for 20 actuation cycles to adjust
for the increased complexity of the robots. Each generation has a population size of 100 and the
next generation is selected from the top 20%. The number of generations is set to 300. Note that
both the generation number and population size are reduced from those values used in the 2D
experiments as simulated the larger 3D robots has a higher computational cost. One evolutionary
run on 1 CPU took around 80–90 hours.

Results are based on 24 independent evolutionary runs for both the recurrent and feed forward
treatment (Fig. 3b). Interestingly, the feed forward setup for the 3D robots has a higher fitness
than the recurrent one, in contrast to the 2D soft robot results (Fig. 2b). We hypothesize that
with the increased numbers of neighbors in 3D and more complex patterns, it might be harder
to evolve an LSTM-based network that can use its memory component effectively. Because the
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(a) 3D soft robot development

(b) Training

(c) 2D Group (d) 3D Group

Fig. 3: Evolution of soft robots (a) A robots shown at different timesteps during its development.
(b) Fitness over generations for the recurrent/feed forward setup. (c) Time series of common 2D
soft robot behaviors as they move from left to right. From top to bottom, we refer to them as
Jumper, Roller, Pull-Push, Slider, and Jitter. (d) Common grown 3D robots: Pull-Push, L-Walker,
Jumper, Crawler, and Slider.

dynamics of LSTM-based networks are inherently difficult to analyse, more experiments are needed
to investigate this discrepancy further.

Similarly to CPPN-encoded soft robots [7], 3D robots grown by an evolved neural CA (Figure 3)
can be classified into two groups: the first group is the two-dimensional group of organisms (Fig. 3c),
where planar morphology was acquired by evolution. Exemplary classes of locomotion in this group
include the jumper, which is often composed of a single type of muscle voxel. Once a soft robot sinks
down, it use this recoil to bounce up into the air and move forward. The morphology determines
the angle of bounce and fall. The Roller is similar to a square; it moves in one direction by rotating
and jumping around the corners of the square. The Push-Pull is a widely seen locomotion style.
A soft robot pushes itself forward with its hind legs. During this push, it pulls itself forward,
usually by hooking its front legs on the ground. The Slider has a front foot and a hind foot, and by
opening and closing the two feet, it slides forward across the floor. The two legs are usually made
of a single material. The Jitter moves by bouncing up and down from its hind legs to back. It has
an elongated form and is often composed of a single type of muscle voxel. The second group is the
three-dimensional group of organisms, as shown in Fig. 3d. The L-Walker resembles an L-shaped
form; it moves by opening and closing the front and rear legs connected to its pivot point at the
bend of the L. The Crawler has multiple short legs and its legs move forward in concert.
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4.3 Regenerating soft robots

Here we investigate the ability of the soft robots to regenerate their body parts to recover from
morphological damage. We chose three morphologies from the previous experiments, which are
able to locomote well and as diverse as possible: the Biped (feed forward), Tripod (feed forward),
and Multiped (recurrent). The morphologies of each of these three robots are shown in Fig. 4a and
the locomotion patterns in Fig. 3d.

In these experiments, we damaged the morphologies such that one side of the robot was com-
pletely removed (Fig. 4a). In the left side of these damaged morphologies, the cell states were set
to empty and the maturation alpha values were set to zero. For the recurrent network, the memory
of LSTM units in each cell were also reset to zero.

We initially attempted regeneration using the original neural CAs of these three robots but
regeneration failed and locomotion was not recovered. Therefore, we evolved another neural CA,
which sole purpose it is to regrow a damaged morphology. In other words, one neural CA grows
the initial morphology and the other CA is activated once the robot is damaged. Fitness for this
second CA is determined by the voxel similarity between the original morphology and the recovered
morphology (values in the range of [0; 729]). The maximum fitness of 9 × 9 × 9 = 729 indicates
that the regrown morphology is identical to the original morphology. We evolved these soft robots,
which were allowed to grow for 10 steps, for 1, 000 generations with a population size of 1, 000.
The next generation was selected from the top 20%.

Locomotion

Morphology (Net-
work)

Similarity Original Damaged Regrown

Biped (feed forward) 98% (718/729) 40.4 27.2(67%) 35.1(86%)
Tripod (feed forward) 99% (728/729) 44.5 1.63(3.6%) 20.3(45%)
Multiped (recurrent) 91% (667/729) 42.7 5.36(12%) 9.6(22%)

Table 1: Morphology similarity and locomotion recovery rate.

For all three morphologies we trained both feed forward and recurrent neural CAs. The best
performing network types for damage recovery were consistent with the original network type for
locomotion in all morphologies (biped = feed forward, tripod = feedforward, multiped = recurrent
). The results with the highest performing network type are summarised in Table 1 and damaged
morphologies for each of the robots are shown in Fig. 4a. The results indicate that the Multiped
was the hardest to reproduce, followed by the Biped and then the Tripod. The Tripod had a
higher similarity than the other morphologies and the neural CA almost completely reproduced
the original morphology with the exception of one cell. We hypothesise that regeneration for the
Tripod is easier because it only requires the regrowth of one leg, a simple rod-like shape with only
a few cells.

For comparison, we then measured the locomotion of the original, damaged, and regrown mor-
phology with an evaluation time of 0.5s for 10 cycles in VoxCad. The ratio of regrowth and travel
distance to the original morphology are shown in Table 1 and its locomotion in Fig. 5. The damaged
Biped maintained 67% of its original locomotion ability; it replicated a similar locomotion pattern
to the one observed in the L-Walker. As the Tripod lost one of its three legs, it was incapable of
successful locomotion. Furthermore, the Multiped lost all locomotion – the robot simply collapsed
at the starting position.

These results suggest that the location of the damage is important in determining how much
the robot loses in terms of locomotion performance. For instance, in the case of the Biped, the
left hand side and right hand side are symmetrical. This means that when the left hand side was
removed, the right hand side was able to locomote in the same, almost unaffected way. Therefore,
despite having the lowest similarity value between the initial and regrown morphologies, there is
little loss in performance. In contrast the Tripod regained less than half the locomotion of the
original morphology, despite regaining its original morphology almost completely. It would appear
that the one voxel it is unable to regenerate is necessary to prevent the robot from spinning,
allowing it to move forward. The damage recovery results show potential for soft robots capable of
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regrowth, but regrowth mechanisms that are not dependant of damage location are an important
future research direction.

(a) Original, damaged and regrown
(b) Biped regereration

(c) Tripod regereration (d) Multiped regereration

(e) Fitness function of each morphology

Fig. 4: Regenerating soft robots (a) Original, damaged, and regrown morphology. (b)-(d) Soft
robot development after damage shown at different timesteps. (e) Training performance for recur-
rent/feed forward setup.

5 Discussion and Future Work

The ability to control pattern formation is critical for the both the embryonic development of
complex structures as well as for the regeneration/repair of damaged or missing tissues and organs.
Inspired by this adaptive capacity of biological systems, in this paper we presented an approach
for morphological regeneration applied to soft robots.

We developed a new method for robot damage recovery based on neural cellular automata.
While full regeneration is not always possible, the method shows promise in restoring the robot’s
locomotion ability after damage. The results indicate that the growth process can enhance the
evolutionary potential of soft robots, and the regeneration of the soft robot’s morphology and
locomotion can provide some resilience to damage.
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Fig. 5: Recovery of locomotion. The regrown morphologies are shown semi-translucent. From
left to right: Biped, Tripod, and Multipod.

The fitness landscape of the developmental evolving soft robot is likely very complex, and the
simple evolutionary algorithm employed in this paper is therefore getting stuck in some of these
local optima. This limitation could explain why we needed two neural CA, one for growing the initial
morphology and one for regeneration, and why it was sometimes difficult for evolution to find a
network that could completely replicate the original morphology for damage recovery. We anticipate
that the variety of quality diversity approaches that reward more exploration during evolutionary
search [39], such as MAP-Elites [34], could allow for an even wider range of morphologies and
escape some of these local optima.

Additionally, the locomotion and regeneration task in this paper is relatively simple. Exciting
future work will explore more complex tasks (e.g. recovery form more types of damage) that
could benefit from morphological growth/regeneration, such as object manipulation, adaptation to
environmental changes, task-based transformation, and self-replication.

Recently, soft robots designed using computer simulations have recently been recreated in real
robot using a variety of materials [19]. With the development of material science, a variety of
soft robots that can change their shape have been born [12]. Currently, the technology of tissue
culture has been developed, and hybrid robots with dynamic plasticity are being developed [21].
In the future, it may be possible to create a hybrid robot that can grow spontaneously and recover
its function from damage by creating a soft robot designed using the proposed model with living
tissue. Because the approach presented in this paper only relies on the local communication of
cells, it could be a promising approach for the next generation of these hybrid robots.
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