Skip to main content

Symmetry Breaking for Voting Mechanisms

  • Conference paper
  • First Online:
Book cover Evolutionary Computation in Combinatorial Optimization (EvoCOP 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12692))

Abstract

Recently, Rowe and Aishwaryaprajna [FOGA 2019] introduced a simple majority vote technique that efficiently solves Jump with large gaps, OneMax with large noise, and any monotone function with a polynomial-size image. In this paper, we identify a pathological condition for this algorithm: the presence of spin-flip symmetry. Spin-flip symmetry is the invariance of a pseudo-Boolean function to complementation. Many important combinatorial optimization problems admit objective functions that exhibit this pathology, such as graph problems, Ising models, and variants of propositional satisfiability. We prove that no population size exists that allows the majority vote technique to solve spin-flip symmetric functions with reasonable probability. To remedy this, we introduce a symmetry-breaking technique that allows the majority vote algorithm to overcome this issue for many landscapes. We prove a sufficient condition for a spin-flip symmetric function to possess in order for the symmetry-breaking voting algorithm to succeed, and prove its efficiency on generalized TwoMax and families of constructed 3-NAE-SAT and 2-XOR-SAT formulas. We also prove that it fails on the one-dimensional Ising model, and suggest different techniques for overcoming this. Finally, we present empirical results that explore the tightness of the runtime bounds and the performance of the technique on randomized satisfiability variants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The tie-breaking rule, when m is even, depends on the setting.

  2. 2.

    We implicitly use the convention that \(\left( {\begin{array}{c}a\\ b\end{array}}\right) = 0\) for \(a<b\).

References

  1. Briest, P., et al.: The Ising model: simple evolutionary algorithms as adaptation schemes. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 31–40. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30217-9_4

    Chapter  Google Scholar 

  2. Crawford, J.M., Ginsberg, M.L., Luks, E.M., Roy, A.: Symmetry-breaking predicates for search problems. Proc. KR 96(1996), 148–159 (1996)

    Google Scholar 

  3. Culberson, J.: Genetic invariance: a new paradigm for genetic algorithm design. Technical Report TR92-02, University of Alberta, June 1992

    Google Scholar 

  4. Eiben, A.E., Raué, P.-E., Ruttkay, Z.: Genetic algorithms with multi-parent recombination. In: Davidor, Y., Schwefel, H.-P., Männer, R. (eds.) PPSN 1994. LNCS, vol. 866, pp. 78–87. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58484-6_252

    Chapter  Google Scholar 

  5. Fischer, S.: A polynomial upper bound for a mutation-based algorithm on the two-dimensional ising model. In: Deb, K. (ed.) GECCO 2004. LNCS, vol. 3102, pp. 1100–1112. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24854-5_108

    Chapter  Google Scholar 

  6. Fischer, S., Wegener, I.: The one-dimensional Ising model: mutation versus recombination. Theor. Comput. Sci. 344(2–3), 208–225 (2005)

    Article  MathSciNet  Google Scholar 

  7. Friedrich, T., Kötzing, T., Krejca, M.S., Nallaperuma, S., Neumann, F., Schirneck, M.: Fast building block assembly by majority vote crossover. In: Proceeding of GECCO 2016 (2016)

    Google Scholar 

  8. Hoyweghen, C.V., Goldberg, D.E., Naudts, B.: From TwoMax to the Ising model: easy and hard symmetrical problems. In: Proceeding of GECCO (2002)

    Google Scholar 

  9. Hoyweghen, C.V., Naudts, B., Goldberg, D.E.: Spin-flip symmetry and synchronization. Evol. Comput. 10(4), 317–344 (2002)

    Article  Google Scholar 

  10. Ising, E.: Beitrag zur Theorie des Ferromagnetismus. Zeitschrift für Physik 31(1), 253–258 (1925)

    Article  Google Scholar 

  11. Moore, C., Mertens, S.: The Nature of Computation. Oxford University Press, Oxford (2011)

    Book  Google Scholar 

  12. Naudts, B., Naudts, J.: The effect of spin-flip symmetry on the performance of the simple GA. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 67–76. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0056850

    Chapter  Google Scholar 

  13. Naudts, B., Verschoren, A.: SGA search dynamics on second order functions. In: Hao, J.-K., Lutton, E., Ronald, E., Schoenauer, M., Snyers, D. (eds.) AE 1997. LNCS, vol. 1363, pp. 207–221. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0026602

    Chapter  Google Scholar 

  14. Pelikan, M., Goldberg, D.E.: Genetic algorithms, clustering, and the breaking of symmetry. In: Schoenauer, M., et al. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 385–394. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45356-3_38

    Chapter  Google Scholar 

  15. Prestwich, S., Roli, A.: Symmetry breaking and local search spaces. In: Barták, R., Milano, M. (eds.) CPAIOR 2005. LNCS, vol. 3524, pp. 273–287. Springer, Heidelberg (2005). https://doi.org/10.1007/11493853_21

    Chapter  MATH  Google Scholar 

  16. Puget, J.: Symmetry breaking revisited. Constraints 10(1), 23–46 (2005)

    Article  MathSciNet  Google Scholar 

  17. Rowe, J.E.: Aishwaryaprajna: the benefits and limitations of voting mechanisms in evolutionary optimisation. In: Proceeding of FOGA (2019)

    Google Scholar 

  18. Shlyakhter, I.: Generating effective symmetry-breaking predicates for search problems. Discrete Appl. Math. 155(12), 1539–1548 (2007)

    Article  MathSciNet  Google Scholar 

  19. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic problems. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 244–257. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02777-2_24

    Chapter  Google Scholar 

  20. Sudholt, D.: Crossover is provably essential for the Ising model on trees. In: Proceeding of GECCO (2005)

    Google Scholar 

  21. Sutton, A.M.: Superpolynomial lower bounds for the (1+1) EA on some easy combinatorial problems. Algorithmica 75(3), 507–528 (2016)

    Article  MathSciNet  Google Scholar 

  22. Whitley, D., Varadarajan, S., Hirsch, R., Mukhopadhyay, A.: Exploration and exploitation without mutation: solving the Jump function in \(\varTheta (n)\) time. In: Auger, A., Fonseca, C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.) PPSN 2018. LNCS, vol. 11102, pp. 55–66. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99259-4_5

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Preethi Sankineni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sankineni, P., Sutton, A.M. (2021). Symmetry Breaking for Voting Mechanisms. In: Zarges, C., Verel, S. (eds) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2021. Lecture Notes in Computer Science(), vol 12692. Springer, Cham. https://doi.org/10.1007/978-3-030-72904-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72904-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72903-5

  • Online ISBN: 978-3-030-72904-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics