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Abstract. Landscape analysis is of fundamental interest for improv-
ing our understanding on the behavior of evolutionary search, and for
developing general-purpose automated solvers based on techniques from
statistics and machine learning. In this paper, we push a step towards the
development of a landscape-aware approach by proposing a set of land-
scape features for multi-objective combinatorial optimization, by decom-
posing the original multi-objective problem into a set of single-objective
sub-problems. Based on a comprehensive set of bi-objective ρmnk-land-
scapes and three variants of the state-of-the-art Moea/d algorithm, we
study the association between the proposed features, the global proper-
ties of the considered landscapes, and algorithm performance. We also
show that decomposition-based features can be integrated into an auto-
mated approach for predicting algorithm performance and selecting the
most accurate one on blind instances. In particular, our study reveals
that such a landscape-aware approach is substantially better than the
single best solver computed over the three considered Moea/d variants.

1 Introduction

Context. Evolutionary algorithms have been proven extremely effective for
solving a broad range of optimization problems. In the last decades, the com-
munity has gained a deep understanding on the key components underlying the
design of a successful evolutionary approach for a given problem. However, one
of the main challenge remains to automate the process of choosing the most
suitable algorithm or configuration for the instance under consideration. In fact,
it is well known that the structural properties of an optimization problem highly
impact the dynamics and performance of search algorithms, leading to the re-
quirement of adopting a landscape-aware algorithm selection and configuration
methodology for the success of evolutionary problem solving. On the one hand,
landscape analysis [15] provides a principled approach for studying and analyz-
ing the relation between the underlying search space structure and algorithm
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behavior. On the other hand, machine learning techniques can be leveraged to
perform sophisticated tasks, such as predicting algorithm performance, identi-
fying the best algorithm configuration, or selecting the best algorithm [7]. As a
byproduct, and since the pioneer work of Rice [14], landscape-aware algorithm
configuration has emerged as an appealing approach for increasing the effective-
ness and efficiency of evolutionary algorithms. In this paper, we contribute to the
development of such an approach when specifically dealing with multi-objective
and combinatorial optimization problems.

Related Work. Independently of whether the target problems and algorithms
aim at optimizing a single or multiple objectives, and of whether they have a
combinatorial or continuous nature, every landscape-aware methodology needs
to address the following two research challenges: (i) the design of a set of infor-
mative and high-level landscape features, and (ii) the development of automated
recommendation systems integrating the so-designed features on the basis of
statistical or machine learning prediction models. Looking at the specialized lit-
erature, a large amount of work has been conducted for single-objective opti-
mization since pioneering works in the field [4]. For instance, in single-objective
continuous optimization, the exploratory landscape analysis (ELA) constitutes
one major achievement made by the community to collect and combine existing
features under a common tool and methodology [7]. Similarly, a number of fea-
tures for single-objective combinatorial optimization have been developed over
the years, and recent studies integrate them into sophisticated automated ap-
proaches for algorithm selection and configuration [1,9]. Those single-objective
features are either based on problem-specific characteristics such as the max-
imum cost between two cities in the traveling salesperson problem [13], or on
general descriptors from the underlying landscape. In the latter case, this is
achieved by relying on a neighborhood relation over the search space in order to
define a (combinatorial) landscape, and by studying its properties and charac-
teristics in terms of multimodality, ruggedness, or neutrality [15].

Despite the significant progress made in the last decades, the existing litera-
ture on the development of a unified landscape-aware approach targeting multi-
objective optimization problems is more scarce [6,8]. Although landscape features
can in principle be applied to the multi-objective case, the statistical and machine
learning models considered in the single-objective case are still to be studied and
validated when turning into a multi-objective setting. For multi-objective com-
binatorial optimization, one can refer to the recent study in [8], providing a
comprehensive analysis of problem-independent multi-objective landscape fea-
tures, and showing their effectiveness in predicting algorithm performance and
in selecting from an algorithm portfolio. The features described there are mostly
based on dominance and (hypervolume) indicator. In fact, they were designed
to grasp the landscape characteristics, but also to capture the search behavior of
dominance-based multi-objective algorithms. In a subsequent study [10], those
previous features were shown to provide useful information about the perfor-
mance of different classes of multi-objective evolutionary algorithms (MOEAs).
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However, their correlation with the performance of decomposition-based MOEAs
reveal to be less significant [10]. Getting inspiration from the fact that successful
MOEAs may rely on different search paradigms, our work considers applying
other mechanisms, such as decomposition, to design new multi-objective land-
scape features, hence pushing one step further the development of a landscape-
aware automated evolutionary approach.

Methodology and Contribution. We rely on the concept of decomposi-
tion [16] to develop a new set of general-purpose multi-objective landscape fea-
tures and to study their effectiveness when integrated into an automated algo-
rithm selection task. Our interest in the concept of decomposition stems from the
fact that it provides a state-of-the-art framework, represented by the Moea/d
algorithm [18], by simply decomposing the multi-objective problem into a num-
ber of single-objective sub-problems. We view the decomposition paradigm as
an opportunity to leverage existing single-objective features for multi-objective
landscape analysis. Our contributions can be summarized as follows.

(i) We propose a new set of high-level multi-objective landscape features based
on decomposition. Intuitively, we attempt to capture the multi-objective
landscape by aggregating the characteristics from the single-objective sub-
problem landscapes obtained by decomposition. As such, the proposed fea-
tures are obtained by first defining single-objective features for each sub-
problem, and then aggregating them by means of descriptive statistics.

(ii) We consider the task of predicting performances of three variants of the state-
of-the-art Moea/d algorithm using a tree-based regression model to study
the effectiveness of a decomposition-based landscape-aware methodology for
automatically selecting the best performing algorithm for a given instance.

(iii) Throughout an extensive set of experiments using ρmnk-landscapes with two
objectives as a case study, we conduct a systematic analysis on the asso-
ciation between the designed features and the benchmarked landscapes, as
well as the association between features and algorithm performance. Our
findings reveal that the designed features are able to capture the benchmark
parameters (ρ and k), and to substantially improve the so-called single best
solver when integrated into a landscape-aware algorithm selection approach.

Outline. In Section 2, we describe the proposed multi-objective landscape fea-
tures. In Section 3, we study the association of features with benchmark param-
eters. In Section 4, we investigate the integration of the proposed features into
an automated landscape-aware approach. In Section 5, we conclude the paper.

2 From Single- to Multi-objective Features based on
Decomposition

2.1 Multi-objective Optimization

A multi-objective combinatorial optimization problem can be defined by a set
of m objective functions f = (f1, f2, . . . , fm), and a discrete set X of feasible
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solutions in the decision space. Let Z = f(X) ⊆ IRm be the set of feasible
outcome vectors in the objective space. To each solution x ∈ X is assigned
an objective vector z ∈ Z, on the basis of the vector function f : X → Z. In
a maximization context, an objective vector z ∈ Z is dominated by a vector
z′ ∈ Z iff ∀m ∈ {1, . . . , m}, zm 6 z′m and ∃m ∈ {1, . . . , m} s.t. zm < z′m. A
solution x ∈ X is dominated by a solution x′ ∈ X iff f(x) is dominated by f(x′).
A solution x? ∈ X is Pareto optimal if there does not exist any other solution
x ∈ X such that x? is dominated by x. The set of all Pareto optimal solutions
is the Pareto set. Its mapping in the objective space is the Pareto front. Our
goal is to identify a good Pareto set approximation, for which multi-objective
evolutionary algorithms (MOEAs) constitute a popular effective option [3].

2.2 Rationale, Methodology and Features Overview

In this work, we get inspiration from the so-called MOEAs based on decom-
position [16] in order to design new high-level multi-objective features. This
algorithm class is based on searching for good-performing solutions in multiple
regions of the Pareto front by decomposing the original multi-objective prob-
lem into a number of scalarized single-objective sub-problems. Each sub-problem
is obtained by a different parameterization of the same underlying scalarizing
function. This is typically what the state-of-the-art Moea/d algorithm [18] per-
forms, while introducing a cooperation among sub-problem solving. In particular,
this offers much flexibility for integrating existing single-objective search oper-
ators and solvers, which is actually one of the main reasons for the success of
decomposition-based MOEAs. Let us however recall that our main goal is not to
design a new multi-objective algorithm, but to design new multi-objective fea-
tures that can feed the design of a general-purpose landscape-aware approach.

Therefore, we propose to rely on the simple observation that each of the
so-defined sub-problems also implies a single-objective landscape that we can
attempt to analyze and characterize. In other words, by studying the single-
objective landscape implied by the sub-problems, we should be able to extract
some knowledge about the original multi-objective problem. More precisely, the
methodology that we adopt in the reminder of this paper consists in: (i) defin-
ing a number of single-objective landscapes using decomposition, (ii) extracting
single-objective features for each sub-problem landscape, and (iii) aggregating
those single-objective features into new multi-objective features. These steps are
detailed below.

Sub-problem Landscape Definition. Firstly, we define µ scalarized single-
objective sub-problems, where both the scalarizing function and the µ value are
user-defined parameters. Among the different scalarizing functions that may be
used, the Chebyshev function is one of the most effective since it can be shown
that any Pareto optimal solution can be achieved by solving a well-parameterized
Chebyshev sub-problem. In the rest of this paper, we should hence use the Cheby-
shev scalarizing function: g(x|ω) = maxi∈{1,...,m} ωi ·

∣∣z?i −fi(x)
∣∣, such that x ∈ X,
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ω = (ω1, . . . , ωm) is a positive weight vector, and z? = (z?1 , . . . , z
?
m ) is a reference

point such that z?i > fi(x) ∀x ∈ X, i ∈ {1, . . . , m}. It should be clear that µ
different sub-problems can be obtained by choosing µ different weight vectors,
denoted by ωj , j ∈ {1, . . . , µ}.

It is worth noticing that we do not make any assumption about the original
(black-box) multi-objective problem, so that we have no information about what
region every sub-problem is actually mapping to. Hence, the value of µ as well
as the procedure to generate the weight vector can be a critical issue. This is
studied in more details later when reporting our empirical results.

Single-objective Landscape Features. Next, we define a landscape for every
single-objective sub-problem j ∈ {1, . . . , µ}, for which we compute a number of
underlying high-level single-objective features. Following the standard literature
on single-objective landscape analysis [15], the landscape of sub-problem j can
be defined as a triplet (X,N , g(·|ωj)), such that N : X −→ 2X is a neighborhood
relation defined among solutions for the considered problem; e.g., 1-bit-flips for
binary strings, or swaps for permutations.

The considered sub-problem features are based on sampling the so-defined
landscape to compute some statistics. Following the standard literature [15,5], we
consider two simple sampling strategies, namely random walks (rws) and adap-
tive walks (aws). Generally speaking, a walk is an ordered sequence of solutions
(x0, x1, . . . , x`) such that x0 ∈ X, and xt ∈ N (xt−1) ∀t ∈ {1, . . . , `}. In a random
walk, xt being the current solution, the next solution xt+1 is simply a random
neighbor under N . The length of a random walk is a user-defined parameter. In
an adaptive walk, the next solution xt+1 is selected to be an improving neighbor
with respect to the single-objective scalarizing function g(·|ωj). Consequently,
the length of an adaptive walk is the number of steps performed until no further
improvement is possible, x` is then a local optimum. Notice that the reference
point z∗ required for computing the scalar fitness values is updated on the basis
of the best objective values seen so far during the walk.

Given a sub-problem j ∈ {1, . . . , µ} and a walk (x0, x1, . . . , x`), we consider
the following four classes of single-objective features, as summarized in Table 1:

– Fitness value (fv *). In the first class, we compute some statistics inform-
ing about the distribution of fitness values observed along the walk. More
precisely, we consider the mean (avg) and standard deviation (sd) of the fit-
ness values of collected solutions. We also consider three additional statistics,
namely the first auto-correlation coefficient (r1), the kurtosis (kr), and the
skewness (sk) of fitness values. The kurtosis and the skewness are standard
measures in statistical analysis, while the first auto-correlation coefficient
is mostly used in the landscape analysis literature. Denoting by ḡ(·|ωj) the
average fitness value of solutions in the walk, the first auto-correlation coef-
ficient is defined as follows [5]:

r1 =

∑`−1
t=0

(
g(xt|ωj)− ḡ(·|ωj)

)
·
(
g(xt+1|ωj)− ḡ(·|ωj)

)(∑`−1
t=0 g(xt|ωj)− ḡ(·|ωj)

)2
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Table 1. A summary of the proposed landscape features.

sub-problem features
MO features

description random walk adaptive walk

Fitness values
fv rws s fv aws s fv rws s r ; fv aws s r
s ∈ {avg, sd, r1, kr, sk} r ∈ {avg, sd, c1, c2}

Fitness differences
fd rws s fd aws s fd rws s r ; fd aws s r
s ∈ {avg, sd,min,max} r ∈ {avg, sd, c1, c2}

Improving neighbors
in rws s in aws s in rws s r ; in aws s r
s ∈ {avg, sd,min,max} r ∈ {avg, sd, c1, c2}

Walk length — law
law r

r ∈ {avg, sd, c1, c2}

– Fitness difference (fd *). In the second class, we compute the average
fitness difference with the neighboring solutions for every xi, i ∈ {1, . . . , `}:

1
|N (xi)|

∑
x∈N (xi)

(
g(xi|ωj)− g(x|ωj)

)
. Similarly, we consider the mean (avg),

standard deviation (sd), minimum (min) and maximum (max) fitness differ-
ence over solutions from the walk.

– Improving neighbors (in *). In the third class, we compute the propor-
tional number of improving neighbors for each solution xi, i ∈ {0, . . . , `}.
Then, we consider the mean, standard deviation, minimum, and maximum
of this measure. It is worth noticing that the second and third classes of
features require to evaluate the fitness value of neighbors from all solutions
from the walk.

– Length of the adaptive walk (law *). The fourth class only contains
features extracted from the adaptive walk. In particular, we consider the
length of the adaptive walk as a feature to characterize the sub-problem
landscape. This length was shown to provide an estimation of the number
of local optima in single-objective landscape analysis [5].

Aggregated Multi-objective Features. The features described above are
computed for each sub-problem j ∈ {1, . . . , µ}, and then have a dimension µ.
For µ > 1, we need to aggregate these µ-dimensional single-objective features
into 1-dimensional multi-objective features. To do so, we use two standard statis-
tics, namely the mean (avg) and the standard deviation (sd). In addition, we use
a polynomial regression in order to fit each single-objective feature as a function
of the weight vector ωj of sub-problem j. The coefficient of the polynomial model
are then used as additional aggregated features. In this study, since we experi-
ment bi-objective optimization problems, we consider a second order polynomial
regression and propose to use the first (c1) and the second (c2) coefficients as
additional multi-objective features. As summarized in Table 1, we end up with
4 aggregation statistics over respectively 5, 4, and 4 fv, fd, and in features, in
addition to 4 aggregated features on the length of adaptive walk. This amounts
to a total of 108 decomposition-based multi-objective features.
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3 A Preliminary Exploratory Analysis

As a first step, we analyze the relevance of the proposed features in capturing
the characteristics of multi-objective optimization problems regardless of any
particular evolutionary search algorithm. Therefore, we conduct a preliminary
exploratory analysis in order to highlight the association between the designed
features and the properties of well-established benchmark landscapes.

3.1 Experimental Setup

Following previous work [8], we consider ρmnk-landscapes [17] as a problem-
independent model used for constructing multi-objective multimodal landscapes
with objective correlation. Candidate solutions are binary strings of size n. The
objective function vector f = (f1, . . . , fi, . . . , fm) is defined as f : {0, 1}n 7→ [0, 1]m

such that each objective fi is to be maximized. The objective value fi(x) of a
solution x = (x1, . . . , xj , . . . , xn) is an average value of the individual contribu-
tions associated with each variable xj . Given objective fi, and each variable xj ,
a component function fij : {0, 1}k+1 7→ [0, 1] assigns a real-valued contribution
for every combination of xj and its k epistatic interactions {xj1 , . . . , xjk}. These
fij-values are uniformly distributed in [0, 1]. The objective functions to be max-
imized can written as: fi(x) = 1

n

∑n
j=1 fij(xj , xj1 , . . . , xjk), ∀i ∈ {1, . . . , m}. In

this work, the k epistatic interactions are set uniformly at random among the
(n − 1) variables other than xj . By increasing the value of k from 0 to (n − 1),
problem instances can be gradually tuned from smooth to rugged. The fij-values
additionally follow a multivariate uniform distribution of dimension m, defined
by an m× m positive-definite symmetric covariance matrix (cpq) s.t. cpp = 1 and
cpq = ρ for all p 6= q where ρ > −1

m−1 defines the correlation among the objectives.
In our work, we focus on bi-objective landscapes, i.e., m = 2. We use a

latin hypercube sampling to generate a set of 1 000 balanced instances spanning
parameters ranges: n ∈ {50, 51, . . . , 200}, k ∈ {0, 1, 2, . . . , 8} and ρ ∈]−1, 1]. The
random walk length is set to ` = 1 000 across all problem sizes. A unique random
walk is performed for all sub-problems, whereas one adaptive walk is performed
for each sub-problem. The number of sub-problems is set to µ = 20 and weight
vectors are distributed uniformly; i.e., ωj = ((j−1)/(µ−1), 1− (j−1)/(µ−1)).
The neighborhood relation is the standard 1-bit-flip.

For our analysis, we first conduct an exploratory analysis to better visu-
alize and understand the proposed features. Next, we construct a regression
model to study the accuracy of features in grasping the global properties of
ρmnk-landscapes, and we analyze the correlation among features.

3.2 Visual Analysis of Single-objective Features

In Fig. 1, we report the values of single-objective features as a function of sub-
problems. Due to space restriction, we report a single representative feature for
each of the four classes. The blue curves correspond to ρmnk-landscapes with
k = 0, the green ones to k = 2 and the red ones to k = 4. The color scales from
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Fig. 1. Feature values of ρmnk-landscapes decomposed into 20 sub-problems (n = 25,
each color correspond to a particular configuration of ρ and k).

red to orange, green to cyan, and blue to purple, respectively, and correspond
to the objective correlation parameter ρ varying from 1 to −1; i.e., from highly
correlated to highly conflicting objectives. For example, the standard deviation
of fitness values from a random walk (fv rws sd, bottom left), the average fitness
difference from a random walk (fd rws avg, second line, second column) and the
standard deviation of improving neighbors (in rdw sd, second line, third column)
gives a clear differentiation between landscapes with different k-values. The lower
the benchmark parameter k, the lower the standard deviation of fitness values
and the average fitness difference. Similarly, the standard deviation of fitness
values from an adaptive walk (vf aws sd, top left) and the length of an adaptive
walk (law aws avg, top right) seems to be clearly associated with parameter ρ.
The flatter the curve rendering the evolution of these two features as a function
of weight vectors, the higher the objective correlation ρ.

From our visual inspection, we can conclude that the landscape features are
representative of the different global benchmark parameters, which are unknown
in a black-box optimization scenario. However, this first analysis considers the
single-objective features and not the aggregated 1-dimensional multi-objective
features, which are discussed next.

3.3 Correlation Analysis of Features and Landscape Parameters

Investigating the accuracy of the designed multi-objective features, we consider a
typical machine learning task consisting in predicting the value of the (unknown)
global benchmark parameters k and ρ. We respectively construct a random forest
classification model and a random forest regression model [2], using the whole set
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Fig. 2. Relative importance of features to predict ρ (left) and k (right).

of multi-objective features computed over all considered ρmnk-landscapes. Ran-
dom forest has the nice property of providing a measure of feature importance
for model fitting. In Fig. 2, we report the relative importance of each feature
extracted from the random forest models, using the Gini impurity as a measure
of quality. Values are averaged over 10 independent repetitions of model fitting.

The first notable observation is that feature importance is different depend-
ing on whether we aim at predicting benchmark parameter ρ or k. The objective
correlation ρ appears mostly related to a single feature: the standard deviation
of the number of improving neighbors (in rws sd). By contrast, deciding on pa-
rameter k is related to multiple different features, that mostly correspond to the
fitness difference computed from adaptive walks, in particular the maximum fit-
ness difference (fd aws max). To push the analysis further, we show in Fig. 3 the
Spearman correlation matrix among a subset of features as well as benchmark
parameters ρ and k. It is worth noticing that we do not show all 108 features,
but only a subset of 60 features with representative correlation values due to
space restriction. Interestingly, we can distinguish four clusters, denoted C1, C2,
C3 and C4 in the figure. The largest cluster C1 contains more than 30 features.
There is a positive correlation between the first auto-correlation coefficient of
fitness values vf r1 and k, of at least 0.25. This cluster also contains a small
subset of 2 features related to the number of improving neighbors in *, with a
particularly high correlation value (> 0.8) (the 3 × 3 red points at the center
of the figure). In the second cluster C2, we observe a large subset of features
being negatively correlated with k (the dark blue columns/lines intersecting in a
completely red square in the middle-right of the figure). For both clusters related
to k (C1 and C2), features are not extracted from a unique class. This means
that features from different classes can be used to characterize k.

The remaining 2 clusters (C3 and C4) are associated with the second bench-
mark parameter ρ. In particular, besides the average number of improving neigh-
bors (in rws avg), cluster C3 also contains the standard deviation (in rws sd),
both computed from a random walk. This latter feature, that was found to be
the most important to predict ρ in Fig. 2, has a nearly perfect negative corre-
lation with ρ, equals to −1. The last cluster C4 contains features based on the
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Fig. 3. Pairwise correlation among a subset of features.

fitness values computed over adaptive walks (fv aws), which appear to be the
most positively correlated with ρ (3 × 3 red points at the bottom right of the
figure), with a correlation higher than 0.7.

To summarize, we find that all feature classes are useful to characterize the
(unknown) global benchmark parameter k, rendering the degree of non-linearity
of the problem. However, the fitness distribution (fv) and the number of improv-
ing neighbors (in) classes have more importance than the fitness difference (fd)
and the length of adaptive walks (law) for characterizing the (unknown) global
benchmark parameter ρ, relating to objective correlation.

4 Landscape-aware MOEA/D Selection

In this section, we conduct a second set of experiments in order to study the
accuracy of the designed features when integrated into an automated algorithm
selection approach. We consider the more sophisticated task of selecting the best
performing algorithm among an algorithm portfolio. More precisely, we consider
three variants of the well-established Moea/d algorithm [18,12] as a case study.
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In the following, we start by briefly describing the considered portfolio before
addressing our main target task.

4.1 Algorithm Portfolio

As mentioned earlier, the Moea/d algorithm is based on a flexible decomposition-
based framework that can be configured in different manners. In its baseline
variant [18], Moea/d first decomposes the problem into a number of scalarized
sub-problem, as discussed previously. Then, a solution is evolved for each sub-
problem in a cooperative way. The algorithm iterates over the sub-problems and,
at each iteration, an offspring is generated by means of crossover and mutation
on the basis of parent solutions selected from the so-called T -neighborhood; i.e.,
the sub-problems corresponding to the T closest weights in the objective space.
The new offspring can then replace any of the sub-problem solutions in the T -
neighborhood of the current sub-problem. This corresponds to a standard evolu-
tionary process, where selection and replacement are performed iteratively over
sub-problems. In [12], it is shown that the selection and replacement underlying
the standard Moea/d framework are key algorithm components that highly im-
pact performance. Several generational variants are proposed therein, allowing
to tune the selection and replacement underlying the Moea/d framework from
fully cooperative (i.e., among all sub-problems) to fully selfish (i.e., indepen-
dently of any other sub-problem).

Interestingly, it was found that no variant outperforms the other indepen-
dently of the global benchmark parameter values ρ and k for the considered
ρmnk-landscapes. Since such parameters are unknown in a black-box optimiza-
tion scenario, the study presented in [12] leaves open the challenging question of
which variant to choose in an automated manner. In addition, this constitutes
a perfect and typical setting for the main automated algorithm selection task
addressed in this paper. We consider, in the following, three representative vari-
ants of the Moea/d framework, exposing different degrees of cooperation among
sub-problem solving. For reproducibility, and in order to be consistent with the
notations from [12], these variants are denoted as follows: (i) Moea/d, referring
to the standard variant [18], (ii) Moea/d-sc, a generational variant where selec-
tion is performed in a selfish manner for every sub-problem whereas replacement
is performed in a cooperative manner, and (iii) Moea/d-ss, a (selfish) gener-
ational variant exposing the lower degree of cooperation among sub-problems.
Besides population size, the three variants have the same set of parameters:
δ = 1, nr = 2, pmut = 1

n and pcr = 1. Due to space restriction, we refer to [12]
for a full description of these Moea/d variants.

In order to highlight the relevance of this portfolio in studying the accuracy
of our features when integrated into a landscape-aware algorithm selection ap-
proach, we briefly report their relative performance using exactly the same set
of ρmnk-landscapes as in the previous section. Every algorithm is executed 20
times on each instance, using a population size equals to n, and a budget of 106

evaluations. The performance of an algorithm is computed as its hypervolume
relative deviation w.r.t. the best-found approximation set for each instance. The
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Table 2. Performance matrix of the three Moea/d variants. The diagonal reports
the number of times where the corresponding algorithm is statistically outperformed by
another one (the lower the better). The other cells report how many instances (out of
1000) the algorithm in the corresponding line is statistically better than the algorithm
in the corresponding column (the higher the better).

Moea/d-sc Moea/d Moea/d-ss

Moea/d-sc 205 18 310

Moea/d 85 137 312

Moea/d-ss 120 119 622

hypervolume measures the area covered by an approximation set and enclosed by
a reference point [19]. For a given instance, the reference point is set to the best
value seen across all runs for each objective. We then count the number of times
an algorithm is statistically outperformed using a two-sided Mann-Whitney test
with a p-value of 0.05 and a Bonferroni correction. Results are reported in Ta-
ble 2.

We clearly see that each algorithm is outperformed by another one on a
subset of instances. The basic Moea/d variant seems to have a reasonably
good behavior, since it is less-often outperformed than the two other variants
overall (see diagonal). A more detailed analysis, omitted due to space restriction,
shows that there is a complex interaction between algorithm performance and
the benchmark parameters ρ and kwhich can be summarized as follows: (i) the
smaller k and ρ, the better Moea/d and Moea/d-sc against Moea/d-ss, (ii)
the larger ρ (highly correlated), the better Moea/d-ss, and (iii) the larger k and
the smaller ρ, the better Moea/d-sc. Of course, this general trend has some
exceptions, but it shows the impact of the unknown benchmark parameters on
the relative performance of algorithms.

4.2 Automated Algorithm Selection

Task and Experimental Methodology. We study the accuracy of the pro-
posed features by investigating the selection of the best performing Moea/d
variant. For this purpose, we adopt the following standard supervised-learning
approach. We first train three models in order to predict the performance of ev-
ery considered Moea/d variant. We use the average hypervolume deviation as
defined in the previous section as a measure of algorithm performance on a given
instance, which then corresponds to our output prediction variable. Considering
an unseen test instance, the landscape features are first computed, the perfor-
mance of each algorithm is then predicted on the basis of the trained models, and
the algorithm having the best prediction is selected as the recommended one. We
consider the same set of ρmnk-landscapes described in the previous section. We
adopt a standard validation methodology where an instance is selected for train-
ing with probability 0.9 and for testing with probability 0.1. We use a set of 100
random regression trees to learn and predict the expected relative hypervolume
deviation. Reported values are computed over 50 independent runs.
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We recall that the proposed multi-objective features rely on some weight
vectors µ. We consider a variable number of weight vectors in the range µ ∈
{1, 2, 3, 4, 5, 6, 10, 20}. Additionally, we consider two alternatives for generating
weight vectors, namely uniform or random. In a random setting, a weight vector
is generated uniformly at random. In a uniform setting, the weight vector are
evenly distributed in the objective space. In particular, for µ = 1, the weight vec-
tor selected in the uniform setting is (0.5, 0.5); i.e., the “middle” of the objective
space. In this case, the multi-objective features are simply the same than the cor-
responding single-objective features from the single scalarized sub-problem. For
µ = 2, our uniform setting corresponds to weight vector (1, 0) and (0, 1). This
means that our features are obtained by aggregating the single-objective fea-
tures computed independently for each objective of the original multi-objective
problem. The impact of this setting is carefully analyzed in our experiments.

Prediction Accuracy. In order to assess the prediction accuracy, we compute
three complementary measures. The first two directly relate to the prediction er-
ror: the percentage of times the selected algorithm does not have the best hyper-
volume deviation in average, and the percentage of times the selected algorithm
is statistically outperformed by at least one other algorithm. The third indicator,
which is a straightforward adaptation from [11], measures the gap between: (i)
the performance of the single best solver (SBS) having the best performance in
average over the training set (without model training), and (ii) the performance
of the virtual best solver (VBS), obtained by a model that would make perfect
predictions. More precisely, let Itrain and Itest be the set of training and testing
instances, respectively, and let rhf(A, i) be the average relative hypervolume de-
viation of a given algorithm A ∈ A = {Moea/d,Moea/d-ss,Moea/d-sc} on
instance i ∈ Itrain ∪ Itest. For every algorithm A ∈ A and instance subset J , let
rhf(A, J) = 1

|J|
∑

i∈J rhf(A, i). We define SBS as the algorithm having the best

rhf value on the training set Itrain, i.e., SBS = arg minA∈A
{
rhf(A, Itrain)

}
. We

define VBS as the virtual ’algorithm’ obtained by a perfect prediction model (an
oracle); i.e., the algorithm with the best rhf(·, i) value for each i ∈ Itest. Finally,
let Recommended Solver (RS) be the algorithm predicted by the actual trained
model. The merit indicator is:

M =
rhf(RS, Itest)− rhf(V BS, Itest)

rhf(SBS, Itest)− rhf(V BS, Itest)

It should be clear that: (i) A merit of 0 indicates that the model does not make
any error, (ii) A merit in the range [0, 1[ indicates that the model is more efficient
than the SBS but worse than the VBS, (iii) a merit greater than 1 indicates that
the model is worse than the SBS. Achieving a merit value of 0 is clearly a very
challenging task and one seeks for a merit value below 1 (better than the SBS)
and as close as possible to 0 (the VBS).

Experimental Results and Discussion. Our main results are summarized
in Fig. 4 showing the accuracy indicators as a function of the number of weight



14 R. Cosson et al.

Fig. 4. R2 (top left), merit (top right) and error rates (bottom) according to the number
of weights µ and their distribution.

vectors µ and their type (random or uniform). For completeness, we also show
the R2 coefficient obtained by the training models. Different observations can
be extracted from Fig. 4.

We first clearly see that the choice of the weight vector distribution is of
critical importance. In fact, a random choice does not obtain a good accuracy,
except when the number of weights µ is substantially large. By contrast, a uni-
form strategy appears to perform reasonably well, even when the number of
weights is low. Interestingly, for uniform weights, the worst accuracy is obtained
with µ = 2. Notice that such a setting is even substantially outperformed by a
random choice of weight vectors. This indicates that computing single-objective
features independently for each objective is not a recommended strategy. By con-
trast, computing features for decomposed sub-problems is effective even when
using a very low number of weights. This indicates that a decomposition-based
approach for multi-objective landscape analysis contains a valuable information
about algorithm performance. Surprisingly, we found that a uniform choice of
few weight vectors with µ ∈ {1, 3} performs reasonably well, although increasing
µ > 3 allows to obtain a better accuracy. The relatively good results achieved
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with µ = 1 are however to be interpreted very carefully, taking into account that
the shape of the Pareto front for ρmnk-landscapes, although having different mag-
nitude in the objective space, is convex, symmetric and centered in the middle
of the objective space, regardless of the values of ρ and k [17]. Although this is a
recurrent observation for many multi-objective combinatorial optimization prob-
lems, one might need to carefully choose µ when tackling problems with different
Pareto front shapes. Such considerations are left for future investigations.

At last, in order to further show the accuracy of the proposed multi-objective
landscape features, we experiment a baseline random forest model using the
(unknown) global benchmark parameters ρ and k as input variables to predict
algorithm performance. Contrary to a black-box scenario where the knowledge
about ρ and k is not available, the accuracy of such a ‘white-box’ model should
highlight the relevance and reliability of the proposed black-box features. We
found that such a model trained with ρ and k obtains an average merit of 0.41.
Comparatively, black-box features obtain an average merit of 0.31, 0.37 and 0.29
respectively, for µ ∈ {1, 3, 20} uniform weight vectors. This once again indicates
that the proposed approach is very effective, and that the designed high-level
black-box features seem to provide more accurate prediction models than the
global benchmark parameters, hence allowing to substantially improve over the
single best solver, and also to get closer to the ideal virtual best solver.

5 Conclusion and Open Issues

In this paper, we push a step towards the development of automated landscape-
aware selection and configuration approaches by proposing a set of multi-objective
landscape features and analyzing their effectiveness in grasping the global prop-
erties of black-box multi-objective combinatorial optimization problems, together
with their efficiency in selecting the best performing algorithm among three vari-
ants of the Moea/d state-of-the art algorithm. The proposed features are based
on the simple idea of aggregating the single-objective features extracted from
a number of sub-problems obtained by decomposition. Our empirical analysis
on a wide range of ρmnk-landscapes provides insights into the accuracy of the
proposed approach. However, it also raises some interesting research questions.

For instance, problems with more than two objectives, where the distribu-
tion of weight vector is expected to play an even more important role, as well
as other real-like problems, are to be studied. Moreover, we excluded the cost
of feature computation from our analysis, which can be an issue when the total
affordable budget for the optimization task is restricted. An interesting obser-
vation is that we only need to extract features from a relatively low number of
sub-problems, as considering a single sub-problem is already shown to provide a
reasonably good performance. Additionally, solely one random walk is required
to compute the considered single-objective features, so that one can eventu-
ally end up with negligible cost features. In this respect, a more fine-grained
analysis of the cost-vs-importance of features is to be conducted in our future
investigations. Finally, an interesting question is to conduct a systematic analy-
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sis of the proposed decomposition-based features w.r.t. existing dominance- and
indicator-based features, and to analyze their relative cost and accuracy. Given
that decomposition-based features were shown to be effective and does not need
any (costly) dominance- and indicator-based computations, it is our hope that
unifying the two classes of features would allow us to end up with efficient high-
level state-of-the-art features for landscape-aware multi-objective optimization.
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