
Creating a Digital Mirror of Creative Practice

Colin G. Johnson[0000−0002−9236−6581]

School of Computer Science
University of Nottingham

Nottingham, UK
Colin.Johnson@nottingham.ac.uk

Abstract. This paper describes an ongoing project to create a “digital
mirror” to my practice as a composer of contemporary classical music;
that is, a system that takes descriptions (in code) of aspects of that
practice, and reflects them back as computer-generated realisations. The
paper describes the design process of this system, explains how it is im-
plemented, and gives some examples of the material that it generates.
The paper further discusses some broader issues about the technologi-
cal approach to building creative systems, in particular the advantages
and disadvantages of building bespoke algorithms for generating creative
content vs. the use of optimisation or learning from examples.

Keywords: music composition; computational creativity; optimisation;
creative practice; computer composition; reflective practice; autoethnog-
raphy; research by design

1 Introduction

The aim of this paper is to discuss work-in-progress in creating a computer sys-
tem that imitates aspects of my artistic practice as a composer of contemporary
notated music for (primarily) acoustic instruments. Call this system a digital
mirror, as it attempts to “mirror” an understanding of artistic practice back to
me. A related concept is the digital twin [10] in engineering—a computer system
that replicates a physical system in detail. Working on this system has encour-
aged me to reflect on different means of creating artistic generative systems, and
the various advantages of these and how they can be combined together.

What are the purposes of this digital mirror? The first is to act as a concrete
way of reflecting on practice and techniques. Articulating and discussing aspects
of practice in words is a powerful way of understanding and developing that
practice. Trying to build an implementation of that technique requires yet more
rigour, because code is an unforgiving medium, requiring each assumption to
be spelled out clearly and unambiguously. When writing or speaking about an
aspect of a practice, it is possible to rely on the reader/listener to fill in gaps
and assumptions from their knowledge—or to engage in dialogue to resolve those
ambiguities and gaps. By contrast, building a description of aspects of a practice
in terms of code cannot rely on any interpretive skill or contextual knowledge
from the computer.



2 Colin G. Johnson

The second is to act as a source of inspiration. By having a machine mirror
back an interpretation of a creative practice, the creator can understand how
clear that articulation is. These realisations, particularly when they produce un-
expected results, can help to refine the creator’s understanding of their practice.
If a machine attempts to realise an articulated aspect of a practice, and pro-
duces unexpected content, then that can expose aspects that were not clearly
articulated. Furthermore, these outputs—particularly ones that are somewhat
unexpected—can act as sources of inspiration for the creator, and push their
practice in new directions that might not have arisen from traditional reflection.

This paper begins (Section 2) with a discussion of the process of articulating a
practice, together with a specific set of examples. It then moves on in Section 3
to discuss methods for creating a digital mirror, including a discussion of the
advantages and disadvantages of four approaches: writing algorithms to create
content, deriving content from statistical distributions, using optimisation to
generate content, and generating content by imitating examples. Section 4 then
describes the design and implementation of such a system and gives a number of
examples of its outputs. Finally, section 5 concludes the paper with a summary,
and directions for ongoing work.

2 Articulating aspects of a Practice

A common way in which to develop a creative practice is to describe the ideas
that underlie that practice. This can involve articulating the the techniques and
processes used, sources of inspiration and material, and the meaning or emotion
that the practice is designed to invoke in an audience. In this paper, I am focusing
on the first of these, the articulation of process and technique.

A positive way to think about such processes and techniques is that they are
the way in which a particular creative individual realises their distinctive voice
as practitioner. It is common to say that a particular practitioner (or a “school”)
has a particular voice or style. One way in which this cashes out is in the use
of specific techniques to shape, process and arrange material. This can be at
a number of scales. For musical composition, such techniques can range from
methods of the large scale organisation of musical material in specific forms,
down to the detailed organisation of musical notes. This is not the only way in
which ideas of voice and style cash out. For example, the subject of an artform,
what it is about, can be an important aspect. In more abstract artforms, such as
the “music alone” [13] of purely instrumental music, the importance of techniques
and processes become more prominent.

There are also negative aspects to such patterns. Overuse of a technique, or
use of a technique with little reflection on the wider aesthetics of the piece, can
become clichéd. Of course, reflection on and articulation of practice can be used
to avoid, develop, or move on from techniques that have become stale.

This articulation is also part of a wider turn in creative practice towards
seeing the creative process as a research process. that is, not just that creative
practice “might on occasion depend on research” [8], but that it is a research



Creating a Digital Mirror of Creative Practice 3

process in its own right [21]. Whether creative practice can be characterised
in this way is controversial. Croft [8] argues that creative practice in musical
composition lacks answerable research questions, clear research hypotheses, and
a sense of generalisation from specific examples, and is therefore different to a
research practice. Reeves [22] argues that insisting on a formulation of research
that is focused on such a hypothetico-deductive method is too narrow a view of
research, and that creative practice as research affords an opportunity to expand
our view of research beyond a science-based paradigm. Similarly, Frayling [9] has
emphasised that research in art and design areas can include research “through”
creative practice, as well as “into” and “for” practice. An important part of any
research process is making the objects of that research clearer through careful
definitions and descriptions. This paper focuses on articulating these in the form
of computer code.

2.1 Articulating my Practice

In my own practice as a composer of contemporary classical music for (primar-
ily) acoustic instruments, I have developed a number of techniques. Often, such
techniques have arisen out of abstractions from improvisatory practice or brico-
lage, particularly in the case of the practices that are concerned with detailed
sequences of notes. These are then abstracted into techniques that are used and
developed consciously. Larger scale structural elements arise less from such im-
provisatory processes, and more from reflection on the structure of composition,
including what has been successful in my past work, and exemplars from else-
where.

These techniques exist at various levels of granularity, from the details of note
choice and the creation of textures through to large scale structural features. Here
are a few prominent examples, with notated excerpts given in Figures 1 and 2.

Slapdash serialism of intervals. Musical lines created by successive notes,
where over the course of the line, a large number of different intervals are
found between successive notes (example in Figure 1a).

Layered and mutated melodies. Melodic lines, i.e. sequences of notes with
small intervals (usually tones/semitones) between successive notes, often
with a regular rhythmic pattern. These are layered on a number of in-
struments/voices, with the melodic pattern repeating but with mutations—
changes of pitch, notes missed out, short gestures repeated. The layerings
are uneven, with entries coming in at a variety of times relative to the other
instruments (example in Figure 1b). Often, the melodies are locally tonal,
but overall don’t have a strong key centre.

Repeated chordal material. Repeated chordal material, sometimes antiphonal
(bouncing back-and-forth) between two voices, to provide a static back-
ground against other material that is happening at the same time, or to
provide a period of stasis in between two more active sections of music (ex-
ample in Figure 1c).



4 Colin G. Johnson

Contrasted held material against shorter/moving material. Some instru-
ments/ voices will hold a chord, single note, or a melodic or textural material.
Typically, this will be static material, but sometimes a complex texture is
used instead—if the texture is sufficiently complex, it becomes a single, uni-
fied sound. At the same time, there are short gestures—individual notes,
chords, flurries of notes, or spoken text. An example is given in Figure 1d.
Often there is a large difference in dynamics between very soft static material
and very loud gestural material.

Trills and tremolo. Passage of trills (rapidly repeating pairs of notes), tremolo
(rapid repetition of a single note), approximate trills, rapid repeated short
scale passages, sometimes not accurately repeated (example in Figure 2a,
which also illustrates passing use of slapdash serialism of intervals and re-
peated chordal material).

Large-scale approximate repetition. Large blocks of material return later
in a composition; sometimes these are exact repetitions, sometimes they are
distorted by changes of instrumentation, dynamics, or harmony; sometimes
these repetitions are short extracts from earlier material, typically from the
middle of a block of material from earlier in the piece.

Silent blocks and cutouts. One large-scale structural element is the use of
long silences in the middle of otherwise coherent musical material, rather
than to mark divisions between different sections of contrasting material (ex-
ample in Figure 2b). This takes inspiration from ideas from Elliott Carter [3],
particularly as realised in his First String Quartet. Relatedly, the repetition
of material, but with blocks of notes cut out, perhaps just in some instru-
mental parts.

It should be noted that these articulations of practice are not necessarily
accurate ones. In the midst of a complex process such as composition, it is
easy to diverge from a specific practice that you have committed to; it is also
notable that these are attempts to abstract from a complicated practice where
material is not only influenced (consciously or not) by these practices, but also by
reflective, listening processes and the qualia of listening. Furthermore, a single
sonic event—say, a note—can be playing multiple roles at the same time: as
part of a contrapuntal passage where different lines of music interact, as part
of a harmonic structure, and as part of a larger scale structural block. Each of
these different roles will impose constraints on groups of notes, meaning that
they cannot fulfil their roles in these various techniques in a perfect way (not
that that is always desired anyway; the techniques are a means to a musical
end, not the end in itself). Indeed, this is one of the reasons for building a
digital mirror—to see how the computer resolves these different constraints, and
perhaps suggests new ways to combine them.

3 Methods of Creating a Digital Mirror

In creating a digital mirror of a creative practice, what techniques could be used?
One approach is to train an AI system in an end-to-end way from a corpus of



Creating a Digital Mirror of Creative Practice 5

(a) Bars 10–11 of “Her Fingernails Struck Carillons” (2001) for small ensemble, cello
part.

(b) Bars 1–3 of Juxtapositions (2020) for string quartet, violin II and viola parts.

(c) Bars 29–32 of In Medias Res (2014) for solo pianist and ensemble, piano part.

(d) Bars 51–53 of Ballyhoo (2017) for brass ensemble and organ, brass parts.

Fig. 1: Examples of Compositional Practice (1)



6 Colin G. Johnson

(a) Bars 76–77 of “Her Fingernails Struck Carillons” (2001) for ensemble, percussion,
violin and cello parts.

(b) Bars 5–9 of Five Glimpses into Alternative Universes (2020) for trombone and
piano.

Fig. 2: Examples of Compositional Practice (2)

examples—i.e. a corpus of whole pieces, not examples of the specific practices.
In this approach, the various aspects mentioned above would not be represented
explicitly in the code of the mirror, but would (perhaps!) be learned by the
system from the corpus of examples. This is the approach taken by researchers
such as Cope [7] in building systems that pastiche historical music.

This is not the approach taken here. Instead, the approach will be to create
a number of computational systems that generate material that is aligned with
the description of the kind of material that is generated in the practice. This
distillation can be seen as akin to an expert system, but an important difference
is that an expert system usually distills the knowledge of a number of experts,
whereas in this system there is a single “expert” on the compositional practice.
It is a mirror not to the practice as seen externally in the material provided to
performance and/or to audience, but a mirror to the practice as articulated from
within. A related piece of work is the painting robot AARON [5, 16], where the
artist Harold Cohen worked over many years on a piece of painting software,
modifying the software by reflecting on the successes, failures and serendipities
of each version of the software.

There is a resonance here with the use of blackboard systems for poetry gen-
eration by Misztal-Radecka and Indurkhya [18]. In that system, various agents
that encode expertise in different aspects of poetry (rhyme, metre, metaphor,
etc.) take fragments of poetry from a common blackboard, modify that fragment,



Creating a Digital Mirror of Creative Practice 7

then return it to the blackboard. In that work, the agents have a rather generic
idea of the kind of work that they are trying to create; by contrast, in this paper
the focus is on experts that articulate specific aspects of my own practice.

3.1 Algorithmic Methods for Generating Material

An important consideration in building systems of this kind is to consider the
advantages and disadvantages of different kinds of processes. For the purposes
of this paper, we will group generative processes into four categories:

Algorithmic Generation. In this kind of generative process, code is written
that directly generates the material. This could be a deterministic process
where the outcomes of the process are easy to predict, a process involving
random choices at the micro-level, or an emergent process (whether deter-
ministic or stochastic) where the results are harder to predict (i.e. generative
art in the sense of Galanter [11]).

Distributional Generation. In this kind of generative process, material is
generated from a statistical distribution. The origins of this are in the ob-
servation by Xenakis [29] that for a formal generative system of sufficient
complexity, a similar psychoacoustic effect can be generated by sampling
from a statistical distribution. As a naive example, consider serialist pitch
organisation. As Xenakis [28] has noted, complex compositional frameworks
are self-destroying: “what one hears in reality is nothing but a mass of notes
in various registers” [28] (translation in [29]). This can be distinguished from
the use of randomness in the Algorithm Generation process in that here the
probability distributions are used at a macro level to describe large sections
of material, whereas in the former randomness is used at a micro-scale to
generate individual notes or gestures.

Optimisation. In this approach, the desired outcome is specified in a declar-
ative way—the creator specifies what outcome is wanted, but not how to
generate it. This could, for example, be by specifying a fitness function.
The actual material is then generated by optimisation guided by that fit-
ness function. These approaches can use statistical distributions, but via a
generate-and-optimise process. For example, rather than sampling from a
distribution,a measure is constructed of how accurately a particular exam-
ple matches a distribution, and that measure is used as a fitness function in
an optimisation algorithm such as a GA.

Corpus Imitation. In this approach, a number of examples of the use of the
technique are collected, and this corpus is then used to train a machine
learning algorithm to imitate and generalise from it.In Ritchie’s [23] termi-
nology, this is an “inspiring set”. However, this inspiring set would not be of
whole artworks, but instead of particular exemplars of the use of a specific
technique. The idea would be to use machine learning to build models that
act as experts on that specific aspect of practice. This is distinguished from
the Distributional Generation in that in this approach, the distribution (or
other model) is learned from a corpus of examples; whereas in the former,
the distribution is crafted directly.



8 Colin G. Johnson

3.2 Example: Slapdash Serialism of Intervals

Consider the example of slapdash serialism of intervals, which was one of the
techniques that I articulated above. In short, this means generating musical
material where, over a decent period of time, the intervallic leaps between suc-
cessive notes in an instrumental part are, roughly, equally distributed; there are
the same number of minor thirds as there are perfect fifths as there are major
sixths, etc. How would this material be generated in each of the four algorithmic
methods described above? The focus here is on generating a single line of music.

Algorithmic Generation. Notes would be generated one-by-one in sequence,
initially at random within a wide range. After each note is generated, the
interval between it and the previous note would be stored, and a list of the
intervals used built up as the musical line is developed. As the musical line
develops, the probability of generating each note would vary depending on
its interval from the previous note: if an interval had been heavily used up to
that point in the line, the probability of choosing that note would be small;
if the interval had been hardly used, the probability would be very high. As
a result of this process, over a long musical line, the expected distribution
of the intervals would be equal.

Distributional Generation. A uniform distribution of intervals would be cre-
ated, the length of the musical line to be created decided, and a sample of
that length generated at random from the distribution. This would then be
used to generate a sequence of notes by starting from a random note, and
moving through that list of intervals and using it to generate each note in
turn. Note the similarities between this and the previous approach. The con-
trast between the two approaches is more pronounced when the stochastic,
distributional approach is used to generate similar material to a determin-
istic algorithmic generative approach, as in the Xenakis examples, where
sampling from a distribution of pitches, dynamics, note-lengths etc. is used
to produce a similar musical effect as deterministic total serialism. There is
another important difference. With the distributional approach, it is pos-
sible to combine two distributions in a fairly straightforward way (e.g. by
forming a joint or conditional distribution). By contrast, in the algorithmic
approach, it is not always clear how to combine two algorithms.

Optimisation. A population of random musiscal lines is generated by sampling
uniformly from a chromatic scale of notes in a wide interval. This is the
starting population in a genetic algorithm. The fitness function takes the
sequence of notes, calculates the successive intervals between notes, counts
each time a note has been used, and compares that to a uniform distribution
of intervals using a root-mean-square error measure. This is then iterated
until a musical line is discovered that has a low value for that error measure.

Corpus Imitation. A number of examples would be provided of musical lines
that use this kind of interval distribution, which could then be used as the
transition matrix in a generative Markov chain. Alternatively, a machine
learning system such as an autoencoder [27] would be used, which takes the
corpus of examples and learns to imitate their features.



Creating a Digital Mirror of Creative Practice 9

3.3 Advantages and Disadvantages

All four of the above approaches can, broadly speaking, be used to generate
similar material. This section discusses the advantages and disadvantages of
each. Is not necessary to choose a single method for the development of a system.
Particularly if the system architecture is designed as a collection of agents that
generate, evaluate, and transform the material, each aspect could be generated
using an appropriate approach.

In particular, this is one of the advantages of optimisation over algorithmic
generation. In algorithmic generation, code is written to generate material that
uses a particular technique or process. If we subsequently wanted to generate
material that uses two processes at once, we would have to rewrite the code to
generate material that aligned with both of those processes.

For example, consider trying to combine the layered and mutated melodies
discussed above with the trills and tremolos. To create this in an algorithmic
generative way, we would need to write a new piece of code that generated
material that had that melodic aspect, whilst simultaneously including appro-
priate amounts of the trills, tremolos and repeated scale passages. This is not
impractical, but it requires a lot of additional work and thought. By contrast,
in the optimisation approach, what would be needed would be some way of
bringing together a measure of “melodicity” and a measure of “trilliness” using
multi-criterion optimisation. Then, an optimisation algorithm could search the
space of possible note-sequences that included both of those aspects, without
having to have written much new code other than a specification of how that
multi-criterion optimisation would be done. Relatedly, a distributional genera-
tive approach can often combine different desirable properties by combining the
underlying probability distributions.

A related advantage of the optimisation approach over the other approaches
is that it is possible to use multi-criterion optimisation to create material that
satisfies desirable criteria at different timescales. For example, one problem with
the commonly used Markov models for algorithmic generation of musical or
textual material is that, whilst the material can have desirable local structure,
it lacks global coherence. Trying to achieve these two aims in a generative way
is difficult, but again a multi-criterion optimisation approach has the potential
to combine desirable properties on different time scales.

One disadvantage of an optimisation approach is that it is is difficult to
discover material that requires a very precise placement of items. E.g., it would
be time-consuming for an optimisation process to converge precisely onto a long
trill between two notes, or to create a period of silence in the middle an otherwise
busy texture. To create an approximate repetition of a whole passage of music
later in a piece by optimisation of sequences of notes is even more challenging.
These problems are multiplied if the optimisation algorithm is also optimising
on other criteria. Generating such material is, by contrast, very easy using the
algorithmic generation approach. A design pattern that has a lot of promise is
to use algorithmic generation to generate this kind of material in the first place,



10 Colin G. Johnson

and then to use a fitness function to ensure that aspects of it are retained whilst
other processes are acting on the material.

Another advantage of the optimisation approach is that different aspects of
composition can be specified by different kinds of functions. As long as a function
can return a fitness value, it can be incorporated into the system. By contrast,
in the algorithmic generation approach, we have to choose up-front a “theory”
of how our system is going to work. E.g., our theory might be that notes are
generated successively, with each note value depending on a moving window of
previous notes. This makes generation of certain kinds of material fairly straight-
forward (e.g. the slapdash serialism is easy to generate using this theory), but the
large scale repetition of material isn’t. The distributional generation is limited
too—in that case we have already chosen what “theory” is going to be used, i.e.
that of sampling from a distribution. If the desired process or technique can be
realised as sampling from a probability distribution, then it is straightforward;
otherwise, near impossible.

The choice of the word “theory” in the above discussion is designed to res-
onate with its use in the philosophy of concepts. Early theories of concepts rely
on a single “theory” for all concepts [19]. For example, the prototype theory of
concepts [24] is built on the theory that each concept is centred around a small
number of prototypical examples of the concept, and that we assess whether an
object is an example of that concept by closeness of that example to the proto-
type(s). By contrast, the more recent theory-theory of concepts [26] argues that
each concept is associated with its own “theory”. This fits amenably with the
idea of fitness functions—each concept that we want to include in the genera-
tion has its own theory, realised in code. Multi-criterion optimisation does not
require the same kind of theory to define each concept, only that it cashes out in
the form of a scalar fitness measure. It would be interesting to try to drop even
that requirement, and to see the process of multi-criterion optimisation to take
the form of a “negotiation” between different desirable outcomes (e.g. based on
computational argumentation [4]).

The final approach is learning from a corpus. One advantage that this has
is that it can pick up on tacit features of the examples given. The other ap-
proaches are limited to those features that the system creator has articulated
explicitly in the code, e.g. the generative code or the fitness function. By using
machine learning from examples, aspects of those examples that are not obvious
to the creator might be extracted; if the machine learning method used is an
interpretable one, it may be clear what these features are.

4 Design, Implementation and Examples

Aspects of the above system have been implemented in a Python program, with
the Mido package [17] being used for the generation of MIDI signals for playback
via Ableton Live [1], and MusicXML [20] export being used to create notation
which is realised in the Sibelius [25] notation system. A copy of the code can be
downloaded from http://www.colinjohnson.me.uk/researchSoftware.php.



Creating a Digital Mirror of Creative Practice 11

4.1 Structure of the System

The two main components of the system are generators and drivers. Genera-
tors are functions that create sequences of notes of a given length, and they (or
expressions built from them) are used to create the initial population. A descrip-
tion of the generators available in the system are given in Table 1. Details of the
implementations are given in the code mentioned above.

Table 1: Descriptions of Generators.
Generator Description

Create Sequence Creates a sequence of random notes in a given pitch-range (by
default, midi notes 60-76), of random durations from 1–4 beats
(quaver to minim).

Create Even-rhythm
Sequence

Creates a sequence of random notes in a given pitch range (by
default, midi notes 60-76), all quavers.

Create Trill Chooses a random note from a given pitch range (by default,
midi notes 60-76 and a second note a semitone or tone higher,
and then creates a sequence of quavers alternating between those
two notes.

Insert Gaps Chooses a number (a user-specified parameter; 2 in the example
below) of points in the sequence and adds a silence of between
20–25 quavers length.

Drivers are functions that take a sequence and return a number in the range
[0.0, 1.0], which measure some aspect of that sequence. These are designed so that
fitness functions can be created either by using a single driver, or by combining
drivers. A description of the drivers available in the system are given in Table 2.

Table 2: Descriptions of Drivers.
Driver Description

Melodicity A measure of how closely the distribution of intervals between
successive notes in the sequence is concentrated around smaller
intervals, in particular whole tones (a similar measure is explored
in [2])

Slapdash Serialism A measure of how closely the distribution of intervals between
successive notes in the sequence is to a uniform distribution.

Trillicity A measure of how closely the sequence matches with a trill pas-
sage.

Gappiness A measure of how much the sequence contains large silent gaps.

The main evolutionary system works as follows. The user chooses a generator,
and a fitness function which is either one of the drivers or an expression made up
from the drivers. Each member of the population consists of a sequence of notes,



12 Colin G. Johnson

with the initial population being generated by the specified generator. A genetic
algorithm is run, using tournament selection, elitism and a mutation operator
only (no crossover). The mutation operator takes each note in the sequence and:

– If it is a note, with probability 0.1 changes the note value to a new value
from a Gaussian distribution centred on the current note value and with s.d.
4 semitones, capped above and below by the MIDI notes 76 and 60.

– If it is a note and has not been changed by the above, with probability 0.1
changes it to a rest (if the “mutation to silence” parameter is true)

– If it is a rest, replaces it with a note with MIDI value drawn randomly in
the range [60, 76].

The parameters are summarised in Table 3. The parameter values vary between
examples, as determined by empirical experimentation. These can be seen as
“curated” examples, in that they are designed to show specific features that are
of help in understanding the outputs of the system. Systems with a high “cura-
tion coefficient” [6] such as these, where the user has to explore a large number
of runs or parameter settings, have been identified with systems that have low
levels of autonomous computational creativity. For an application such as this,
where the point of the system is to facilitate autoethnographic reflective prac-
tice, such concerns are less. The point of such a system is not to autonomously
generate imitations and pastiches of the human creator’s work as such; instead,
this exploration of parameter space is part of that reflective process.

Table 3: Genetic Algorithm Parameters.
Example Sequence

Length
Population
Size

Max
Genera-
tions

Tournament
Size

Elitism Mutation
to Silence?

Example 1 50 1000 100 7 no no
Example 2 50 1000 100 7 no no
Example 3 50 50 300 7 yes yes
Example 4 50 50 1000 7 yes yes

The system can be used to start from random sequences of notes, and to
evolve towards a desired combination of features by specifying a fitness func-
tion that combines appropriate drivers. Alternatively, it can be used to create
a transition between two kinds of material; as discussed by Magnus [15], one
interesting way to use genetic algorithms (or other AI techniques) is to play out
the evolutionary process as a performance; what Johnson [12] has called a “seeds
and targets” approach.

4.2 Examples

This section of the paper gives a number of examples from the digital mirror.
These are a mixture of examples to demonstrate particular points, and a final
example that shows how multiple fitness functions can be brought together.



Creating a Digital Mirror of Creative Practice 13

Example 1. This example tests the idea discussed earlier of whether it is dif-
ficult to use evolution to evolve an exact trill. The generator used in this
experiment is evenSequence, which generates random notes in a certain in-
terval, and the driver is analyseTrillicity, which measures how close the se-
quence is to a trill. For simplicity, we turn off the mutation that makes a note
into a rest for this example. Samples from the 20th and 100th generations
are shown in Figure 3. There is some aspect of trill, but it has not evolved
a perfect trill.

Example 2. This uses the generator generateTrill so that the initial population
consists of trills on a randomly chosen note. The driver is analyseMelodicity+
analyseTrillicity , that is, we are trying to keep the core trill behaviour, whilst
adding melodic aspects to it. As we can see in Figure 4a, even after 10 gener-
ations we can see a good combination of short melodic phrases whilst retain-
ing the trill behaviour; after 100 generations a different example, but with
largely similar characteristics (trill passages then some melodic variation)
has emerged.

Example 3. The generator used here is evenSequence combined with insert-
Gaps which inserts silences. The fitness function moves this random note dis-
tribution towards a more “melodic” distribution, whilst also retaining those
gaps. After 100 generations (Figure 5, the larger gaps have been retained,
but the note patterns have a more melodic feel than the initial random note
choices.

Example 4. This shows a more complex situation, where the generator used
in is again evenSequence combined with insertGaps. However, the fitness
function combines retaining gaps, creating trills, and creating a “melodic”
distribution—all of which are retained/created in the example (Figure 6).

5 Conclusions and Ongoing Work

This paper has presented ongoing work on an attempt to make a “digital mirror”
to reflect my articulations of compositional practice. Creating this has forced
me to clearly articulate some of my processes, because code is an unforgiving
medium where it is necessary to formally state assumptions. The aim of this is
not focused on generating whole pieces of music, but to facilitate reflection.

This is an ongoing project, and there are a number of future developments.
One would be to expand the optimisation techniques used, in particular us-
ing crossover and multi-criterion optimisation. In terms of musical development,
there is much to be developed in terms of dynamics and rhythm, which are very
limited in the current version. Another limitation is that the current version is
that there is a single line; it would be interesting to explore both multi-line no-
tated music, and multiple interacting musical agents (as explored by Lewis [14]).

One key place where the digital mirror falls down is that it—obviously—
doesn’t replicate the conscious qualia of listening. Musical techniques almost
always admit some choice, whether of note-level details, or high-level parame-
ter choice. In a digital mirror, these choices are typically made randomly, with



14 Colin G. Johnson

(a) Trying to evolve a trill: after 20 generations.

(b) Trying to evolve a trill: after 100 generations.

Fig. 3: Trying to evolve a trill (trill fragments bracketed).

(a) Making a trill more melodic: after 10 generations.

(b) Making a trill more melodic: after 100 generations.

Fig. 4: Making a trill more melodic.

Fig. 5: Evolving from a random sequence of notes to a more “melodic” sequence,
whilst retaining gaps: after 100 generations (gaps bracketed).



Creating a Digital Mirror of Creative Practice 15

Fig. 6: Evolving with a more complex fitness function: after 800 generations
(notable features bracketed).

some filtering out by the fitness function. But, this doesn’t replicate the reflec-
tive process of listening to a line of music, and getting a musical understanding.
As Croft [8] puts it, there are plenty of ways of “solving problems” about cre-
ative practice, but in the end what is being sought are “striking or idiosyncratic
musical solutions to problems of musical material that arise only during the pro-
cess of composition”. A merely formal solution to the question is not sufficient.
Perhaps some kind of interactive evolution could afford some progress.

As a personal reflective process, I have overall found this useful. Formalising
processes I thought I was using caused me to revise my understanding; e.g. I
realised that what I was remembering as primarily trills and tremolos were more
commonly rather rougher repetitions of short scale-fragments. In terms of the
material that the mirror “reflected back”, one example that surprised me was
how short the material could be in between silent blocks. A couple of times the
machine generated a passage consisting of just a beat or two of sound between
long silences, and I found this musically effective. This is not something that I
would have thought of without this. Perhaps there is future work to be done in
this broad idea of using code as part of reflective practice and autoethnography.

Aside from the design and development of system, the paper has also con-
sidered the kinds of methods used; this is likely to be of interest to a wider
constituency of people working on creative systems. In particular, the contrast
between four methods of generating material in such a system has been discussed.

References

1. Ableton Live, https://www.ableton.com/en/live/, visited Nov. 2020
2. Calderon Alvarado, F.H., Lee, W.H., Huang, Y.H., Chen, Y.S.: Melody similarity

and tempo diversity as evolutionary factors for music variations by genetic algo-
rithms. In: Cardoso, F.A., Machado, P., Veale, T., Cunha, J.M. (eds.) Proceedings
of the 11th International Conference on Computational Creativity. pp. 251–254.
Association for Computational Creativity (202o)

3. Carter, E.: The time dimension in music. In: Bernard, J. (ed.) Elliott Carter:
Collected Essays and Lectures 1937–1995. pp. 224–228. University of Rochester
Press (1997)



16 Colin G. Johnson

4. Cocarascu, O., Toni, F.: Argumentation for machine learning: A survey. In: Baroni,
P., et al. (eds.) Computational Models of Argument: Proceedings of COMMA 2016.
pp. 219–230. IOS Press (2016)

5. Cohen, H.: The further exploits of AARON, painter. Stanford Humanities Review
4(2), 141–158 (1995)

6. Colton, S., Wiggins, G.: Computational creativity: The final frontier? In: de Raedt,
L., Bessiere, C., Dubois, D., Doherty, P. (eds.) Proceedings of the 20th European
Conference on Artificial Intelligence. pp. 21–26. Amsterdam (2012)

7. Cope, D.: Computers and Musical Style. Oxford University Press (1991)
8. Croft, J.: Composition is not research. Tempo 69(272), 6––11 (2015).

https://doi.org/10.1017/S0040298214000989
9. Frayling, C.: Research in art and design. Royal College of Art Research Papers

1(1) (1993–94)
10. Fuller, A., Fan, Z., Day, C., Barlow, C.: Digital twin: Enabling technolo-

gies, challenges and open research. IEEE Access 8, 108952–108971 (2020).
https://doi.org/10.1109/ACCESS.2020.2998358

11. Galanter, P.: What is generative art? complexity theory as a context for art theory.
In: Proceedings of the Sixth International Conference on Generative Art (2003),
https://www.generativeart.com/on/cic/papersGA2003/a22.pdf

12. Johnson, C.G.: Fitness in evolutionary art and music: a taxonomy and future
prospects. International Journal of Arts and Technology 9(1), 4–25 (2016)

13. Kivy, P.: Music Alone: Philosophical Reflections on the Purely Musical Experience.
Cornell University Press (1991)

14. Lewis, G.: Too many notes: Computers, complexity and culture in Voyager.
Leonardo Music Journal 10, 33–39 (2000)

15. Magnus, C.: Evolutionary musique concrète. In: Rothlauf, F., et al. (eds.) Applica-
tions of Evolutionary Computing. Lecture Notes in Computer Science, vol. 3907,
pp. 688–695. Springer Berlin / Heidelberg (2006)

16. McCorduck, P.: AARON’s Code : Meta-art, Artificial Intelligence, and the work
of Harold Cohen. W.H. Freeman (1991)

17. Mido: MIDI objects for Python, https://mido.readthedocs.io, visited Nov. 2020
18. Misztal-Radecka, J., Indurkhya, B.: A blackboard system for generating poetry.

Computer Science 17(2), 265–294 (2016)
19. Murphy, G.L.: The Big Book of Concepts. MIT Press (2004)
20. MusicXML, https://www.musicxml.com, visited Nov. 2020
21. Pace, I.: Composition and performance can be, and often have been, research.

Tempo 70(275), 60––70 (2016)
22. Reeves, C.: Composition, research and pseudo-science: a response to John Croft.

Tempo 70(275), 50––59 (2016)
23. Ritchie, G.: Assessing creativity. In: Proceedings of the AISB Symposium on Arti-

ficial Intelligence and Creativity in Arts and Science. pp. 3––11. AISB Press (2001)
24. Rosch, E.H.: Natural categories. Cognitive Psychology 4, 328–350 (1973)
25. Sibelius, https://www.avid.com/sibelius, visited Nov. 2020
26. Weiskopf, D.A.: The plurality of concepts. Synthese 169, 145–173 (2009)
27. Welling, M., Kingma, D.P.: An introduction to variational autoencoders. Founda-

tions and Trends in Machine Learning 12(4), 307––392 (2019)
28. Xenakis, I.: La crise de la musique sérielle. Gravesaner Blätter 1, 2–4 (1955)
29. Xenakis, I.: Formalized Music: Thought and Mathematics in Composition. Indiana

University Press (1971)


