Skip to main content

Visualizing Road Condition Information by Applying the AutoEncoder to Wheelchair Sensing Data for Road Barrier Assessment

  • Conference paper
  • First Online:
Advances in Artificial Intelligence (JSAI 2020)

Abstract

Providing accessibility information about sidewalks for people with difficulties with moving is an important social issue. Visualizing road surface conditions to show the accessibilities of the road is effective for this issue. However, conventional methods of collecting huge area accessibility information are based on manpower and have the problem of the large costs of time and money. To solve this problem, we have been proposing and implementing a system for estimating road surface conditions by machine learning with measured values of an acceleration sensor attached to wheelchairs. This paper examined the appropriateness of reconstruction errors which are calculated by Convolutional Variational AutoEncoder to assess the degree of road burden suitable for each user. The evaluation was conducted by calculating reconstruction errors from the traveling data of 14 wheelchair users and creating a map that reflects the information of the calculated errors. The evaluation results suggest that reconstruction errors can reflect the degree of the burden on each wheelchair user during traveling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Laakso, M., Sarjakoski, T., Sarjakoski, L.T.: Improving accessibility information in pedestrian maps and databases. Cartographica Int. J. Geogr. Inf. Geovisualization 46(2), 101–108 (2011). https://doi.org/10.3138/carto.46.2.101

    Article  Google Scholar 

  2. Matthews, H., Beale, L., Picton, P., Briggs, D.: Modelling access with GIS in urban systems (MAGUS): capturing the experiences of wheelchair users. Area 35(1), 34–45 (2003). https://doi.org/10.1111/1475-4762.00108

    Article  Google Scholar 

  3. Karimi, H.A., Zhang, L., Benner, J.G.: Personalized accessibility map (PAM): a novel assisted wayfinding approach for people with disabilities. Ann. GIS 20(2), 99–108 (2014). https://doi.org/10.1080/19475683.2014.904438

    Article  Google Scholar 

  4. Ponsard, C., Snoeck, V.: Objective accessibility assessment of public infrastructures. In: Miesenberger, K., Klaus, J., Zagler, W.L., Karshmer, A.I. (eds.) ICCHP 2006. LNCS, vol. 4061, pp. 314–321. Springer, Heidelberg (2006). https://doi.org/10.1007/11788713_47

    Chapter  Google Scholar 

  5. Hara, K.: Scalable methods to collect and visualize sidewalk accessibility data for people with mobility impairments. In: Proceedings of the Adjunct Publication of the 27th Annual ACM Symposium on User Interface Software and Technology, Honolulu, HI, USA, pp. 1–4 (2014). https://doi.org/10.1145/2658779.2661163

  6. Cardonha, C., Gallo, D., Avegliano, P., Herrmann, R., Koch, F., Borger, S.: A crowdsourcing platform for the construction of accessibility maps. In: Proceedings of the 10th International Cross-Disciplinary Conference on Web Accessibility, Rio de Janeiro, Brazil, p. 26 (2013). https://doi.org/10.1145/2461121.2461129

  7. Swan, M.: The quantified self: fundamental disruption in big data science and biological discovery. Big Data 1(2), 85–99 (2013). https://doi.org/10.1089/big.2012.0002

    Article  Google Scholar 

  8. Nagamine, K., Iwasawa, Y., Matsuo, Y., Yairi, I.E.: An estimation of wheelchair user’s muscle fatigue by accelerometers on smart devices. In: Adjunct Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2015 ACM International Symposium on Wearable Computers, UbiComp/ISWC 2015 Adjunct, pp. 57–60. ACM, New York (2015). https://doi.org/10.1145/2800835.2800864

  9. Iwasawa, Y., Yairi, I.E.: Life-logging of wheelchair driving on web maps for visualizing potential accidents and incidents. In: Anthony, P., Ishizuka, M., Lukose, D. (eds.) PRICAI 2012. LNCS (LNAI), vol. 7458, pp. 157–169. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32695-0_16

    Chapter  Google Scholar 

  10. Iwasawa, Y., Nagamine, K., Matsuo, Y., Eguchi Yairi, I.: Road sensing: personal sensing and machine learning for development of large scale accessibility map. In: Proceedings of the 17th International ACM SIGACCESS Conference on Computers & Accessibility, pp. 335–336. ACM (2015). https://doi.org/10.1145/2700648.2811366

  11. Iwasawa, Y., Yairi, I.E., Matsuo, Y.: Combining, human action sensing of wheelchair users and machine learning for autonomous accessibility data collection. IEICE Trans. Inf. Syst. E99-D(4), 115–124 (2016). https://doi.org/10.1587/transinf.2015EDP7278

  12. Yairi, I., et al.: Estimating spatiotemporal information from behavioral sensing data of wheelchair users by machine learning technologies. Information 10(3), 114 (2019). https://doi.org/10.3390/info10030114

    Article  Google Scholar 

  13. Watanabe, T., et al.: Weakly supervised learning for evaluating road surface condition from wheelchair driving data. Information 11(1), 2 (2019). https://doi.org/10.3390/info11010002

    Article  Google Scholar 

  14. Demir, I., et al.: Deepglobe 2018: a challenge to parse the earth through satellite images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, Salt Lake City, UT, USA, 18–22 June, pp. 172–181 (2018). https://doi.org/10.1109/CVPRW.2018.00031

  15. Kuo, T.S., Tseng, K.S., Yan, J.W., Liu, Y.C., Frank Wang, Y.C.: Deep aggregation net for land cover classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, Salt Lake City, UT, USA, 18–22 June, pp. 252–256 (2018). https://doi.org/10.1109/CVPRW.2018.00046

  16. Rakhlin, A., Davydow, A., Nikolenko, S.: Land cover classification from satellite imagery with U-Net and Lovász-Softmax loss. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, Salt Lake City, UT, USA, 18–22 June, pp. 262–266 (2018). https://doi.org/10.1109/CVPRW.2018.00048

  17. Eriksson, J., Girod, L., Hull, B., Newton, R., Madden, S., Balakrishnan, H.: The pothole patrol: Using a mobile sensor network for road surface monitoring. In: Proceedings of the 6th International Conference on Mobile Systems, Applications, and Services, Breckenridge, CO, USA, 17–20 June 2008, pp. 29–39. ACM, New York (2008). https://doi.org/10.1145/1378600.1378605

  18. Allouch, A., Koubâa, A., Abbes, T., Ammar, A.: Roadsense: smartphone application to estimate road conditions using accelerometer and gyroscope. IEEE Sens. J. 17, 4231–4238 (2017). https://doi.org/10.1109/JSEN.2017.2702739

    Article  Google Scholar 

  19. Mohan, P., Padmanabhan, V.N., Ramjee, R.: Nericell: rich monitoring of road and traffic conditions using mobile smartphones. In: Proceedings of the 6th ACM International Conference on Embedded Networked Sensor Systems, Raleigh, NC, USA, 5–7 November 2008, pp. 323–336. ACM, New York (2008). https://doi.org/10.1145/1460412.1460444

  20. Yu, J., et al.: Senspeed: sensing driving conditions to estimate vehicle speed in urban environments. IEEE Trans. Mob. Comput. 15, 202–216 (2016). https://doi.org/10.1109/TMC.2015.2411270

    Article  Google Scholar 

  21. Chong, Y.S., Tay, Y.H.: Abnormal event detection in videos using spatiotemporal autoencoder. In: Cong, F., Leung, A., Wei, Q. (eds.) ISNN 2017. LNCS, vol. 10262, pp. 189–196. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59081-3_23

    Chapter  Google Scholar 

  22. Xu, J., et al.: Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images. IEEE Trans. Med. Imaging 35(1), 119–130 (2015). https://doi.org/10.1109/TMI.2015.2458702

    Article  Google Scholar 

  23. Almaslukh, B., AlMuhtadi, J., Artolim, A.: An effective deep autoencoder approach for online smartphone-based human activity recognition. Int. J. Comput. Sci. Netw. Secur 17(4), 160–165 (2017)

    Google Scholar 

  24. Wang, A., Chen, G., Shang, C., Zhang, M., Liu, L.: Human activity recognition in a smart home environment with stacked denoising autoencoders. In: Song, S., Tong, Y. (eds.) WAIM 2016. LNCS, vol. 9998, pp. 29–40. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47121-1_3

    Chapter  Google Scholar 

  25. Ducoffe, M., et al.: Anomaly detection on time series with wasserstein GAN applied to PHM. PHM Applications of Deep Learning and Emerging Analytics. Int. J. Prognostics Health Manag. Rev. (Special Issue) (2019).

    Google Scholar 

  26. Li, D., Chen, D., Jin, B., Shi, L., Goh, J., Ng, S.-K.: MAD-GAN: multivariate anomaly detection for time series data with generative adversarial networks. In: Tetko, I.V., Kůrková, V., Karpov, P., Theis, F. (eds.) ICANN 2019. LNCS, vol. 11730, pp. 703–716. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30490-4_56

    Chapter  Google Scholar 

  27. Du, B., Zhang, L.: A discriminative metric learning based anomaly detection method. IEEE Trans. Geosci. Remote Sens. 52(11), 6844–6857 (2014). https://doi.org/10.1109/TGRS.2014.2303895

    Article  Google Scholar 

  28. Akbari, A., Jafari, R.: An autoencoder-based approach for recognizing null class in activities of daily living in-the-wild via wearable motion sensors. In: ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE (2019). https://doi.org/10.1109/ICASSP.2019.8682161

  29. Mora, N., et al.: Detection and analysis of heartbeats in seismocardiogram signals. Sensors 20(6) (2020). https://doi.org/10.3390/s20061670

  30. Park, D., Hoshi, Y., Kemp, C.C.: A multimodal anomaly detector for robot-assisted feeding using an lstm-based variational autoencoder. IEEE Robot. Autom. Lett. 3(3), 1544–1551 (2018). https://doi.org/10.1109/LRA.2018.2801475

    Article  Google Scholar 

  31. Kingma, D.P., et al.: Semi-supervised learning with deep generative models. In: Advances in Neural Information Processing Systems (2014). https://doi.org/10.5555/2969033.2969226

Download references

Acknowledgments

We would like to thank all participants who helped to collect the sensing data. This study was supported by Tateishi Science and Technology Foundation in FY 2011–2012, the research grant by Chiyoda-ku (CHIYODAGAKU) in FY 2014–2016, and JSPS KAKENHI Grant-in-Aid for Scientific Research (B) Number 17H01946 and 20H04476.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Goh Sato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sato, G., Watanabe, T., Takahashi, H., Yano, Y., Iwasawa, Y., Yairi, I.E. (2021). Visualizing Road Condition Information by Applying the AutoEncoder to Wheelchair Sensing Data for Road Barrier Assessment. In: Yada, K., et al. Advances in Artificial Intelligence. JSAI 2020. Advances in Intelligent Systems and Computing, vol 1357. Springer, Cham. https://doi.org/10.1007/978-3-030-73113-7_2

Download citation

Publish with us

Policies and ethics