Skip to main content

Efficiently Discovering Regions of Interest with User-Defined Score Function

  • Conference paper
  • First Online:
  • 2661 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12681))

Abstract

Region of Interest (ROI) queries are of great importance in many location based services. However, the previous studies on ROI queries usually adopt either a simple spatial data model or a non-flexible enough query geometry, e.g., fixed-size rectangle. In this paper, to fix these drawbacks, we propose a new ROI search operator called Radius Bounded ROI (RBR) query. An RBR query retrieves a subset of spatial objects satisfying co-location constraints and maximizing a user-configurable score function at the same time. We formally prove that answering an RBR query is 3SUM-hard, which implies that it is unlikely to find a sub-quadratic solution. To answer the RBR queries efficiently, we propose three algorithms, PairEnum, BaseRotation and OptRotation based on novel geometric findings. In addition, the query processing technique we proposed can be easily extended to other related problems like top-k ROI search. To demonstrate both efficiency and effectiveness of our proposed algorithms, we conduct extensive experimental studies on both real-world datasets and synthetic benchmarks, and the results show that OptRotation, our most efficient algorithm, achieves more than \(10^3\times \) efficiency improvement on both real and synthetic datasets compared with the baseline algorithm.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    All angles are in the range \([0,2\pi ]\) to make the representation unique.

  2. 2.

    The time complexity analysis is similar to that of distribution sorting [12].

References

  1. Places Google Map (2019). https://cloud.google.com/maps-platform/

  2. Yelp Dataset (2019). https://www.yelp.com/dataset

  3. Yelp Fusion (2019). https://www.yelp.com/developers/documentation/v3/

  4. Amagata, D., Hara, T.: Monitoring MaxRS in spatial data streams. In: EDBT, pp. 317–328. OpenProceedings.org (2016)

    Google Scholar 

  5. Amagata, D., Hara, T.: A general framework for MaxRS and MaxCRS monitoring in spatial data streams. ACM TSAS 3(1), 1:1–1:34 (2017)

    Google Scholar 

  6. Cao, X., Cong, G., Guo, T., Jensen, C.S., Ooi, B.C.: Efficient processing of spatial group keyword queries. ACM Trans. Database Syst. 40(2), 13:1–13:48 (2015)

    Article  MathSciNet  Google Scholar 

  7. Cao, X., Cong, G., Jensen, C.S., Ooi, B.C.: Collective spatial keyword querying. In: SIGMOD Conference, pp. 373–384. ACM (2011)

    Google Scholar 

  8. Cao, X., Cong, G., Jensen, C.S., Yiu, M.L.: Retrieving regions of interest for user exploration. PVLDB 7(9), 733–744 (2014)

    Google Scholar 

  9. Chen, Z., Liu, Y., Wong, R.C., Xiong, J., Cheng, X., Chen, P.: Rotating MaxRS queries. Inf. Sci. 305, 110–129 (2015)

    Article  Google Scholar 

  10. Choi, D., Chung, C., Tao, Y.: A scalable algorithm for maximizing range sum in spatial databases. PVLDB 5(11), 1088–1099 (2012)

    Google Scholar 

  11. Choi, D., Chung, C., Tao, Y.: Maximizing range sum in external memory. ACM Trans. Database Syst. 39(3), 21:1–21:44 (2014)

    Article  MathSciNet  Google Scholar 

  12. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT Press, United States (2009)

    MATH  Google Scholar 

  13. Cormode, G., Garofalakis, M.N., Haas, P.J., Jermaine, C.: Synopses for massive data: samples, histograms, wavelets, sketches. Found. Trends Databases 4(1–3), 1–294 (2012)

    MATH  Google Scholar 

  14. Feng, K., Cong, G., Bhowmick, S.S., Peng, W., Miao, C.: Towards best region search for data exploration. In: SIGMOD Conference, pp. 1055–1070. ACM (2016)

    Google Scholar 

  15. Feng, K., Guo, T., Cong, G., Bhowmick, S.S., Ma, S.: SURGE: continuous detection of bursty regions over a stream of spatial objects. In: ICDE, pp. 1292–1295. IEEE Computer Society (2018)

    Google Scholar 

  16. Gajentaan, A., Overmars, M.H.: On a class of o(n\({}^{\text{2 }}\)) problems in computational geometry. Comput. Geom. 45(4), 140–152 (2012)

    Article  MathSciNet  Google Scholar 

  17. Gao, Y., Zhao, J., Zheng, B., Chen, G.: Efficient collective spatial keyword query processing on road networks. IEEE Trans. Intell. Transp. Syst. 17(2), 469–480 (2016)

    Article  Google Scholar 

  18. Long, C., Wong, R.C., Wang, K., Fu, A.W.: Collective spatial keyword queries: a distance owner-driven approach. In: SIGMOD Conference, pp. 689–700. ACM (2013)

    Google Scholar 

  19. Megiddo, N.: Linear-time algorithms for linear programming in r\(\hat{\,}\)3 and related problems. In: FOCS, pp. 329–338. IEEE Computer Society (1982)

    Google Scholar 

  20. Tao, Y., Hu, X., Choi, D., Chung, C.: Approximate MaxRS in spatial databases. In: PVLDB, vol. 6, no. 13, pp. 1546–1557 (2013)

    Google Scholar 

  21. Tao, Y., Papadias, D., Zhang, J.: Aggregate processing of planar points. In: Jensen, C.S., et al. (eds.) EDBT 2002. LNCS, vol. 2287, pp. 682–700. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45876-X_42

    Chapter  Google Scholar 

  22. Wang, K., Cao, X., Lin, X., Zhang, W., Qin, L.: Efficient computing of radius-bounded k-cores. In: ICDE, pp. 233–244. IEEE Computer Society (2018)

    Google Scholar 

  23. Wu, D., Jensen, C.S.: A density-based approach to the retrieval of top-k spatial textual clusters. In: CIKM, pp. 2095–2100. ACM (2016)

    Google Scholar 

  24. Zobel, J., Moffat, A.: Inverted files for text search engines. ACM Comput. Surv. 38(2), 6 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

This work is partially supported by the Hong Kong RGC GRF Project 16207617, CRF Project C6030-18G, C1031-18G, C5026-18G, AOE Project AoE/E-603/18, China NSFC No. 61729201, Guangdong Basic and Applied Basic Research Foundation 2019B151530001, Hong Kong ITC ITF grants ITS/044/18FX and ITS/470/18FX, Microsoft Research Asia Collaborative Research Grant, Didi-HKUST joint research lab project, and Wechat and Webank Research Grants. Xiang Lian was supported by NSF OAC (No. 1739491) and Lian Startup (No. 220981) from Kent State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Libin Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Q., Zheng, L., Lian, X., Chen, L. (2021). Efficiently Discovering Regions of Interest with User-Defined Score Function. In: Jensen, C.S., et al. Database Systems for Advanced Applications. DASFAA 2021. Lecture Notes in Computer Science(), vol 12681. Springer, Cham. https://doi.org/10.1007/978-3-030-73194-6_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73194-6_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73193-9

  • Online ISBN: 978-3-030-73194-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics