
Secure and Efficient Certificateless Provable
Data Possession for Cloud-Based Data

Management Systems

Jing Zhang1, Jie Cui1, Hong Zhong1, Chengjie Gu2, and Lu Liu3

1 School of Computer Science and Technology, Anhui University, Hefei, China
root zj@163.com, cuijie@mail.ustc.edu.cn, zhongh@ahu.edu.cn

2 Security Research Institute, New H3C Group, Hefei, China gu.chengjie@h3c.com
3 School of Informatics, University of Leicester, UK l.liu@leicester.ac.uk

Abstract. Cloud computing provides important data storage, process-
ing and management functions for data owners who share their data
with data users through cloud servers. Although cloud computing brings
significant advantages to data owners, the data stored in the cloud also
faces many internal/external security attacks. Existing certificateless da-
ta provider schemes have the following two common shortcomings, i.e.,
most of which use plaintext to store data and use the complex bilinear
pairing operation. To address such shortcomings, this scheme propos-
es secure and efficient certificateless provable data possession for cloud-
based data management systems. In our solution, the data owners and
cloud servers need to register with the key generation center only once.
To ensure the integrity of encrypted data, we use the public key of the
cloud server to participate in signature calculation. Moreover, the third-
party verifier can audit the integrity of ciphertext without downloading
the whole encrypted data. Security analysis shows that our proposed
scheme is provably secure under the random oracle model. An evalua-
tion of performance shows that our proposed scheme is efficient in terms
of computation and communication overheads.

Keywords: Cloud Data Management · Provable Data Possession (PDP)
· Certificateless Cryptography · Security · Efficient.

1 Introduction

With the rapid development of cloud computing, more and more people out-
source their data to cloud servers[1, 13], which brings three main advantages.
Firstly, resource-constrained users no longer need to process and store a large
amount of data, so that a lot of computing and storage costs can be saved.
Secondly, users can access data anytime and anywhere without requiring high-
performance hardware. Thirdly, users can share data conveniently.

Although cloud services bring many benefits to people’s lives, many chal-
lenges[5, 3] need to be solved properly. Firstly, user loses the direct control of

2 J. Zhang et al.

their outsourced data, i.e., whether the data has been modified or deleted is un-
known. Secondly, the leakage of data may damage the privacies of users, such as
the time when users are not at home and the routes that users frequently travel.
In the worst cases, the property safety of users may be threaten. Therefore, how
to ensure the confidentiality and integrity of outsourced data has become a great
concern to users.

At present, some researchers have proposed provable data possession (PDP)
schemes for the integrity of outsourced data[2, 12, 22, 17, 9, 15, 18, 14, 20, 11, 6, 19,
5, 21, 4]. Although the existing schemes ensure the integrity of cloud storage da-
ta, they do not consider the confidentiality of data. Moreover, due to the usage
of complex bilinear pairing operation, these schemes also bring heavy computa-
tion and communication costs to the third-party verifier (TPV). Therefore, it is
urgent to design a secure and efficient provable data possession scheme for cloud
data management systems.

1.1 Related Work

To ensure the integrity of outsourced data, Ateniese et al.[2] first introduced the
concept of PDP in 2007, and further considered public validation. Many PDP
schemes[12, 22, 17, 9, 8] that follow Ateniese et al.’s work have been introduced
to protect the integrity of outsourced data. Unfortunately, these schemes have a
common drawback, i.e., most of which rely on trusted third parties to generate
certificates for users, so that users have serious certificate management problems
and heavy computing costs.

To solve the certificate management issues, Wang et al.[15] proposed an
identity-based PDP scheme and provided a corresponding security model. To
improve performance and security, some identity-based PDP schemes have also
been proposed[18, 14, 20]. However, these schemes have a common disadvantage,
that is, they need the secret key generation center to generate a series of private
keys for users, which brings the key escrow problem.

To overcome the key escrow problem, a series of certificateless provable da-
ta possession (CL-PDP) schemes have been proposed[11, 6, 19, 5, 21, 4]. Unfor-
tunately, there are still many security issues in these schemes. Zhang et al.[19]
pointed out that schemes[11, 6] cannot guarantee the privacy of data. He et al.[5]
discovered that scheme[19] had a malicious server attack and proposed an im-
proved scheme. Recently, Zhou et al.[21] discovered that scheme[5] is vulnerable
to tag forging and data loss hiding attacks. In addition, these schemes use com-
plex bilinear pairing operations, which bring deficiencies in terms of computation
and communication.

1.2 Contribution

To achieve the security of outsourced data and further reduce the waste of re-
sources, this paper proposes a secure and efficient certificateless provable data
possession scheme for cloud-based data management systems. There are three
main contributions of the proposed scheme.

Title Suppressed Due to Excessive Length 3

1. We propose to use a symmetric and asymmetric encryption algorithms si-
multaneously, which cannot only realize the security of data sharing, but
also further ensure the confidentiality of outsourced data.

2. The proposed scheme can resist the attack of Type I and Type II adversaries,
and can resist the tag forgery attack. The security analysis reveals that our
scheme is provably secure under the random oracle model.

3. The detailed comparisons with the existing related schemes in terms of com-
putational and communication overhead on the Tag Generation, Generate-
Proof and Verify-Proof Algorithms, demonstrates that our scheme provides
better performance.

The outline of the rest study is as follows: In section 2, we introduce the
background of this study. In section 3, we put forward the proposed scheme. The
security analysis is proved in section 4. The performance evaluation is outlined
in section 5. Lastly, we present the conclusion of this study in section 6.

2 Background

In this section, we introduce the preliminary knowledge and network model.

2.1 Elliptic Curve Cryptosystem (ECC)

Let Ep: y
2 = x3 + ax+ b(modp) be a non-singular elliptic curve over the finite

field Fp, where p > 3 is a large prime, a, b ∈ Fp, and 4a3 +27b2(modp) ̸= 0. Let
G be a cyclic group on Ep of prime order q.

Discrete Logarithm (DL) Problem: Given two random points P,Q ∈ G,
where Q = xP , x ∈ Z∗

q , and Z∗
q = {1, 2, ..., q − 1}, it is difficult to calculate x

from Q in a probabilistic polynomial time (PPT).

2.2 Network Model

The system architecture comprises a key generation center KGC, a cloud server
CS, a data owner DO and a third-party verifier TPV. As shown in Fig. 1, the
details of each component are described as follows:

– KGC: It is a trusted third party, which is in charge of generating and pub-
lishing system parameters. It also generates a partial key for each DO and
delivers these sensitive information to them via secure channels.

– CS: It is an honest but curious entity that is assumed to have sufficient
computing and storage capabilities.

– DO: It is a resource constrained data owner, who outsources their data to
CS and entrusts TPV to verify the integrity of cloud storage data.

– TPV: It verifies the integrity of cloud storage data when users need it, and
is responsible for the verification results.

4 J. Zhang et al.

Fig. 1. A network model of the CL-PDP protocol

3 Proposed Scheme

In this section, we describe the proposed CL-PDP scheme based on ECC to solve
the security problem and reduce the time cost.

3.1 Setup Algorithm

Given a security parameter λ, KGC generates a cyclic group G with prime or-
der q and generator P . Then, KGC randomly chooses s ∈ Z∗

q and computes
the system public key Ppub = s · P . KGC selects six one-way hash function
H0 : {0, 1}∗ → {0, 1}q, Hk : {0, 1}∗ → Z∗

q , k = 1, 2, 3, 4, 5. Finally, KGC pub-
lishes system parameters params = {q, Z∗

q , Ppub,H} and saves the master key s
secretly.

3.2 Key Generation Algorithm

Given the real identities IDi, CIDk ∈ Z∗
q of DOi and CSk, KGC performs as

follows:

– KGC randomly selects αk ∈ Z∗
q as CSk’s secret key skk = αk, and computes

PKk = αkP as CSk’s public key. Then, KGC sends the key {skk, PKk} to
CSk via a secure channel.

– KGC randomly picks αi ∈ Z∗
q and computes Ai = αiP , hi,1 = H1(IDi∥Ai)

and sk1 = αi + hi,1s(modq). Then, KGC sends the partial key {sk1, Ai} to
DOi via a secure channel.

– DO randomly chooses β ∈ Z∗
q as their secret value sk2 = β and computes

PKi = βP as their public key.

Title Suppressed Due to Excessive Length 5

3.3 Store Algorithm

Encrypt Data DO first divides their data M into n blocks: M = {Ml}nl=1. DO
then generates a corresponding signature for each block of data.

– DO randomly picks xM ∈ Z∗
q , δ ∈ {0, 1}q, computes XM = xMP , and saves

{xM , XM} as a one-time-use signing key and verification key, respectively.
– DO computes hi,2 = H2(EK(M1)∥...∥EK(Mn)∥S1∥...∥Sn∥δ∥XM), Z = hi,2PKk,

Y = δ +H0(hi,2P), hi,3 = H3(IDi∥Ai∥PKi), and SM = hi,2xM + hi,3sk2 +
sk1. Note that authorized users can utilize the secret key K to decrypt data
Ml = DK(EK(Ml)).

Tag Generation Through the execution of this algorithm, DO produces a Tag
for each block of data and stores the encrypted data into the cloud.

– DO randomly picks xl ∈ Z∗
q , computesXl = xlP , hl

i,4 = H4(IDi∥namel∥Xl∥PKi),

hl
i,5 = H5(namel∥Xl∥Ai), and Sl = EK(Ml)xl+hl

i,4sk2+hl
i,5sk1. Note that

namel denotes the unique name of data Ml.
– DO outputs Tl = {Xl, Sl, EK(Ml)} as Ml’s tag.
– Finally, DO sends {XM , SM , Z, Y, {Tl}nl=1} to CS.

Store After receiving the request from the DO, CS computes δ = Y +H0(Z
′
)

by decrypting Z
′
= hi,2P = Zsk−1

k .

– CS computes hi,1 = H1(IDi∥Ai), hi,3 = H3(IDi∥Ai∥PKi) and hi,2 =
H2(EK(M1)∥...∥EK(Mn)∥S1∥...∥Sn∥δ∥XM). CS then checks whether the
following condition is true.

SMP = hi,2XM + hi,3PKi +Ai + hi,1Ppub (1)

– If it is not true, CS immediately stops the session. Otherwise, CS computes
hl
i,4 = H4(IDi∥namel∥Xl∥PKi), h

l
i,5 = H5(namel∥Xl∥Ai) and verifies the

condition.

n∑
l=1

SlP =

n∑
l=1

[EK(Ml)Xl] +

n∑
l=1

hl
i,4PKi +

n∑
l=1

hl
i,5(Ai + hi,1Ppub) (2)

If the verification holds, CS stores the encrypted data; otherwise, CS rejects
the request.

3.4 Challenge Algorithm

Through the execution of this algorithm, a TPV produces a challenging message
to verify the data integrity of data.

1. TPV chooses a random subset I ∈ {1, 2, ..., n} and a small number vj for
each j ∈ I.

2. TPV outputs {j, vj}j∈I as a challenging message and returns it to CS.

6 J. Zhang et al.

3.5 Generate-Proof Algorithm

When CS receives the TPV’s auditing challenge {j, vj}j∈I , CS produces the
following steps to complete the proof.

1. CS calculates Scs =
∑

j∈I vjSjP and Ccs =
∑

j∈I [vjEK(Mj)Xj].
2. CS outputs the proof {Scs, Ccs} and returns it to TPV.

3.6 Verify-Proof Algorithm

Upon receiving the proof {Scs, Ccs}, TPV executes the following steps to check
the correctness.

1. TPV calculates hi,1 = H1(IDi∥Ai), h
j
i,4 = H4(IDi∥namej∥Xl∥PKi) and

hj
i,5 = H5(namej∥Xl∥Ai).

2. TPV checks whether the following equation holds.

Scs = Ccs +
∑
j∈I

(vjh
j
i,4)PKi +

∑
j∈I

(vjh
j
i,5)(Ai + hi,1Ppub) (3)

If the equation holds, the TPV outputs ”Accept”; otherwise, TPV outputs
”Reject”.

4 Security Analysis

In this section, we firstly present a security model for the proposed scheme. Ane
then, we analyze and prove the security of the proposed CL-PDP scheme.

4.1 Security Model

There are two types of unbounded adversaries namely A1 and A2. Type I adver-
sary A1 can replace the public key of the user but doesn’t access the master key.
Type II adversary A2 cannot access replace the public key of the user but has
ability to access the master key. The adversary A1 and A2 and the challenger C
could make the following queries in the game.

Setup. In this query, C inputs the master key and public parameters. C
keeps the master key secretly and sends the public parameters A. C also sends
the master key to A if A is a Type II adversary.

Query. In this query, A can make some queries and C answers back:

1. Create Data Owner : C executes the key generation algorithm to generate the
DO’s partial private key and secret value, and returns the DO’s public key
to A.

2. Extract Partial Private Key : C returns a partial private key of DO to A as
an answer.

3. Public Key Replacement : A can replace the public key of DO with a new
value chosen by A.

Title Suppressed Due to Excessive Length 7

4. Extract Secret Value: C returns a secret value of ID to A as an answer.
5. Generate Tag : C generates a Tag of a block and returns it to A.

Forge. A outputs a one-time-use verification key S∗ and a Tag X∗ corre-
sponding the challenging identity ID∗.

A wins the game if the following requirements are satisfied:

1. T ∗ is the corresponding valid tag of the challenging identity ID∗.
2. T ∗ is not generated by querying Generate Tag.
3. ID∗ is independent of algorithm of Extract Partial Private Key/Extract Se-

cret Value if A is Type I/Type II adversary.

Definition 1. The proposed certificateless provable data possession (CL-
PDP) scheme is secure against forging Tag attack, if there is no any adversary
A ∈ {A1,A2} which wins the above-mentioned game with a non-negligible prob-
ability.

4.2 Security Theorem

Theorem 1. According to the assumption of the difficulty of the DL problem,
the proposed CL-PDP scheme is secure against Type I adversary.

Proof. Assuming given P,Q = aP , where P,Q are two points on elliptic curve
Eq, A1 can forge a one-time-use verification key S∗ and a Tag X∗ corresponding
the challenging identity ID∗. We have built a game between A1 and a challenger
C1, and C1 has the ability to run A1 with a non-negligible probability as a
subroutine to solve DL problem.

Setup: The master key s is randomly selected by challenger C1. And C1 then
calculates the corresponding public key Ppub = sP . Next, C1 sends the system
parameters params = {q, Z∗

q , Ppub,H} to A1. C1 chooses a challenging identity
ID∗ and answers the following queries from A1.

Hi queries: When A1 uses the elements mi for Hi query, C1 checks whether
the elements (mi, τhi) already exists in the hash list Lhi(i = 0, 1, ..., 5). If it is,
C1 sends τhi = H1(mi) to A1. Otherwise, C1 picks τhi ∈ Z∗

q randomly and adds
the elements (mi, τhi) to the hash list Lhi , then C1 sends τhi = H1(mi) to A1.

Create Data Owner query : When A1 performs a create data owner query
on the challenging identity ID∗, C1 checks whether the form (IDi, sk2, sk1, αi, PKi,
Ai) exists in L6. If exists, C1 replies (PKi, Ai) to A1. Otherwise, C1 works as
following:

– If IDi = ID∗, C1 picks three elements sk1, sk2, τh1 ∈ Z∗
q randomly and

computes PKi = sk2P and Ai = sk1P − τh1Ppub. C1 inserts the tuple
(IDi, Ai, τh1) and (IDi, sk2, sk1,⊥, PKi, Ai) into Lh1 and L6, respectively.
Note that ⊥ denotes null.

– Otherwise, IDi ̸= ID∗, C1 picks three elements αi, sk2, τh1 ∈ Z∗
q randomly

and computes PKi = sk2P and Ai = αiP . C1 inserts the tuple (IDi, Ai, τh1)
and (IDi, sk2,⊥, αi, PKi, Ai) into Lh1 and L6, respectively.

8 J. Zhang et al.

Extract Partial Private Key query : Upon receiving A1’s query, C1 checks
whether IDi already exists in hash list Lh2 . If C1 cannot find the corresponding
tuple, C1 makes H1 query on IDi itself to produce τh1 . Then, C1 works as
following:

– If IDi ̸= ID∗, C1 first checks whether IDi exists in L6. If exists, C1 searches
the tuple (IDi, sk2, sk1, αi, PKi, Ai) and returns (Ai, sk1) to A1. Otherwise,
C1 picks two element sk1, τh1 ∈ Z∗

q and computes Ai = sk1P − τh1Ppub.
Then, C1 returns (Ai, sk1) to A1 and stores (IDi, sk2, sk1, αi, PKi, Ai) to
L6.

– Otherwise, IDi = ID∗, C1 stops the game.

Public Key Replacement query : When A1 performs a public key re-
placement query on (IDi, A

∗
i , PK∗

i), C1 first checks whether IDi exists in L6. C1
answers as following:

– If list L6 contains IDi, C1 replaces the tuple (IDi, sk2, sk1, αi, PKi, Ai) with
(IDi, sk2, sk1, αi, PK∗

i , A
∗
i).

– Otherwise, C1 inserts the tuple (IDi,⊥,⊥,⊥, PK∗
i , A

∗
i) to L6.

Extract Secret Value query : Upon receiving A1’s extract secret value
query on IDi, C1 answers as following:

– If list L6 involves (IDi, sk2, sk1, αi, PKi, Ai), C1 checks whether sk2 = ⊥ is
true. If sk2 = ⊥, C1 sends sk2 to A1. Otherwise, C1 performs a create data
owner query to generate PKi = sk2P . After that, C1 sends sk2 to A1 and
updates (ski, PKi) to list L6.

– If list L6 does not involve (IDi, sk2, sk1, αi, PKi, Ai), C1 performs a create
data owner query and sends sk2 to A1. After that, C1 sends sk2 to A1 and
updates (IDi, ski, PKi) to list L6.

Generate Tag query : A1 performs a generate tag query on (namel,Ml)
under (IDi, PKi, Ai). C1 first checks whether IDi exists in L6, Lh1 , Lh4 and
Lh5 . C1 answers as following:

– If IDi = ID∗, C1 stops the game.
– Otherwise, C1 picks three elements Sl, τh1 , τh4 , τh5 ∈ Z∗

q randomly and com-
putes Xl = EK(Ml)

−1(SlP − τh4PKi− τh5(Ai+ τh1Ppub)). Then, C1 returns
(Sl, Xl) to A1. Note that if τh4 or τh5 already exists in hash list Lh4 or Lh5 ,
C1 picks an element Sl and works again.

Forgery : At last, A1 outputs a Ml’s Tag {XM , S∗
M , Z, Y,Xl, S

∗
l , EK(Ml)}

under (IDi, PKi, Ai). If IDi ̸= ID∗, C1 aborts the game. Otherwise, on the
basis of the forking lemma [10], C1 has the ability to get two different valid Tags
Tl = (Xl, Sl) and T ∗

l = (Xl, S
∗
l) in polynomial time through A1, if C1 repeat the

process with a different choice of H1. We have the following equation:

SlP = EK(Ml)Xl + hl
i,4PKi + hl

i,5(Ai + hi,1Ppub) (4)

S∗
l P = EK(Ml)Xl + hl

i,4PKi + hl
i,5(Ai + h∗

i,1Ppub) (5)

Title Suppressed Due to Excessive Length 9

Hence, we can get that

(Sl − S∗
l)P =SlP − S∗

l P

=EK(Ml)Xl + hl
i,4PKi + hl

i,5(Ai + hi,1Ppub)

− EK(Ml)Xl + hl
i,4PKi + hl

i,5(Ai + h∗
i,1Ppub)

=(hi,1 − h∗
i,1)h

l
i,5Ppub

=a(hi,1 − h∗
i,1)h

l
i,5P

(6)

and

a =
Sl − S∗

l

(hi,1 − h∗
i,1)h

l
i,5

(7)

Thus, C1 could solve the DL problem. However, this is in contradiction with
the difficulty of DL problem.

Similarly, if A1 could correctly guess the output of H2, C1 also has the ability
to get two different valid signatures {XM , SM , Z, Y } and {XM , S∗

M , Z, Y } based
on the forking lemma [10]. C1 also repeat the process with a different choice of
H1 and we have the following equation:

SMP = hi,2XM + hi,3PKi +Ai + hi,1Ppub (8)

S∗
MP = h∗

i,2XM + hi,3PKi +Ai + h∗
i,1Ppub (9)

In the same way, if hi,2 = h∗
i,2, we can get a =

SM−S∗
M

hi,1−h∗
i,1

.

Unfortunately, the premise of this equation is not only that A1 can correctly
guess the output of H2, but also that C1 can solve the DL problem.

Analysis: The probability that A1 can correctly guess the output of H2

is 1
2q . Assume C1 can solve the DL problem with negligible advantage ε. The

following three events are used to analyze the probability that C1 can solve the
DL problem.

– Event E1: A1 can forge a valid Tag {X∗
M , S∗

M , Z∗, Y ∗, X∗
l , S

∗
l , EK(Ml)

∗} un-
der (IDi, PKi, Ai).

– Event E2: C1 does not abort when A1 performs extract partial private key
query and generate tag query.

– Event E3: IDi = ID∗.

Under the random oracle model, a probabilistic polynomial-time adversary
A1 forges a Tag in an attack modeled by the forking lemma after making qHi(i =
1, 2, 3, 4, 5) times queries, qppk times extract partial private key queries, and qtag
times generate tag queries. We can achieve that Pr(E1) = η, Pr(E2|E1) =
(1− 1

qH1
)qppk+qTag and Pr(E3|E1∧E2) =

1
qH1

. The probability that C1 can solve

the DL problem is

ε = Pr(E1 ∧ E2 ∧ E3)

= Pr(E3|E1 ∧ E2)Pr(E2|E1)Pr(E1)

=
1

qH1

(1− 1

qH1

)qppk+qTag · η
(10)

10 J. Zhang et al.

Thus, the probability that A1 forges a Tag is ε
′
= 1

2q · ε.
Due to η is non-negligible, ε is also non-negligible. Thus, C1 can solve the

DL problem with a non-negligible probability. However, it is difficult to solve
the DL problem, namely, the proposed CL-PDP scheme is secure against Type
I adversary.

Theorem 2. According to the assumption of the difficulty of the DL problem,
the proposed CL-PDP scheme is secure against Type II adversary.

Proof. Assuming given P,Q = aP , where P,Q are two points on elliptic curve
Eq, A2 can forge a one-time-use verification key S∗ and a Tag X∗ corresponding
the challenging identity ID∗. We have built a game between A2 and a challenger
C2, and C2 has the ability to run A2 with a non-negligible probability as a
subroutine to solve DL problem.

Setup: The master key s is randomly selected by challenger C2. And C2 then
calculates the corresponding public key Ppub = sP . Next, C1 sends the master
key s and system parameters params = {q, Z∗

q , Ppub,H} to A2. C2 chooses a
challenging identity ID∗ and answers the following queries from A2.

Hi queries: Similar to Hi queries in the Proof of Theorem 1.
Create Data Owner query : When A2 performs a create data owner query

on the challenging identity ID∗, C2 checks whether the form (IDi, sk2, sk1, PKi,
Ai) exists in L6. If exists, C2 replies (PKi, Ai) to A2. Otherwise, C2 works as
following:

– If IDi = ID∗, C2 picks three elements αi, τh1 ∈ Z∗
q randomly and computes

Ai = αiP and sk1 = αi + hi,1s(modq). C2 inserts the tuple (IDi, Ai, τh1)
and (IDi,⊥, sk1, PKi, Ai) into Lh1

and L6, respectively.
– Otherwise, IDi ̸= ID∗, C2 picks three elements αi, sk2 ∈ Z∗

q randomly and
computes PKi = sk2P , Ai = αiP , τh1 = H1(IDi∥Ai) and sk1 = αi +
τh1s(modq). C2 inserts the tuple (IDi, Ai, τh1) and (IDi, sk2,⊥, PKi, Ai)
into Lh1 and L6, respectively.

Extract Partial Private Key query : Upon receiving A2’s query, C2 checks
whether IDi already exists in hash list Lh2 . If C2 cannot find the corresponding
tuple, C2 makes H1 query on IDi itself to produce τh1 . Then, C2 works as
following:

– If IDi ̸= ID∗, C2 first checks whether IDi exists in L6. If exists, C2 searches
the tuple (IDi, sk2, sk1, PKi, Ai) and returns (Ai, sk1) to A2. Otherwise, C2
picks two element sk1, τh1

∈ Z∗
q and computes Ai = sk1P − τh1

Ppub. Then,
C2 returns (Ai, sk1) to A2 and stores (IDi, sk2, sk1, PKi, Ai) to L6.

– Otherwise, IDi = ID∗, C2 searches the tuple (IDi, sk2, sk1, PKi, Ai) and
returns (Ai, sk1) to A2.

Extract Secret Value query : Upon receiving A2’s extract secret value
query on IDi, C2 answers as following:

Title Suppressed Due to Excessive Length 11

– If IDi ̸= ID∗, C2 first checks whether IDi exists in L6. If exists, C2 searches
the tuple (IDi, sk2, sk1, PKi, Ai) and returns sk2 to A2. Otherwise, C1 picks
two element sk2 ∈ Z∗

q and computes pki = sk2P . Then, C2 returns sk2 to
A2 and stores (IDi, sk2, sk1, PKi, Ai) to L6.

– Otherwise, IDi = ID∗, C2 stops the game.

Generate Tag query : A2 performs a generate tag query on (namel,Ml)
under (IDi, PKi, Ai). C2 first checks whether IDi exists in L6, Lh1 , Lh4 and
Lh5 . C2 answers as following:

– If IDi = ID∗, C2 stops the game.
– Otherwise, C2 picks three elements Sl, τh1 , τh4 , τh5 ∈ Z∗

q randomly and com-
putes Xl = EK(Ml)

−1(SlP − τh4PKi− τh5(Ai+ τh1Ppub)). Then, C2 returns
(Sl, Xl) to A2. Note that if τh4 or τh5 already exists in hash list Lh4 or Lh5 ,
C2 picks an element Sl and works again.

Forgery : At last, A2 outputs a Ml’s Tag {XM , S∗
M , Z, Y,Xl, S

∗
l , EK(Ml)}

under (IDi, PKi, Ai). If IDi ̸= ID∗, C2 aborts the game. Otherwise, on the
basis of the forking lemma [10], C2 has the ability to get two different valid Tags
Tl = (Xl, Sl) and T ∗

l = (Xl, S
∗
l) in polynomial time through A2, if C2 repeat the

process with a different choice of H4. We have the following equation:

SlP = EK(Ml)Xl + hl
i,4PKi + hl

i,5(Ai + hi,1Ppub) (11)

S∗
l P = EK(Ml)Xl + hl∗

i,4PKi + hl
i,5(Ai + hi,1Ppub) (12)

Hence, we can get that

(Sl − S∗
l)P =SlP − S∗

l P

=EK(Ml)Xl + hl
i,4PKi + hl

i,5(Ai + hi,1Ppub)

− EK(Ml)Xl + hl∗
i,4PKi + hl

i,5(Ai + hi,1Ppub)

=(hl
i,4 − hl∗

i,4)PKi

=sk2(h
l
i,4 − hl∗

i,4)P

(13)

and

sk2 =
Sl − S∗

l

(hl
i,4 − hl∗

i,4)
(14)

Thus, C2 could solve the DL problem. However, this is in contradiction with
the difficulty of DL problem.

Similarly, if A2 could correctly guess the output of H2, C2 also has the ability
to get two different valid signatures {XM , SM , Z, Y } and {XM , S∗

M , Z, Y } based
on the forking lemma [10]. C2 also repeat the process with a different choice of

H1 and we can get sk2 =
Sl−S∗

l

(hl
i,4−hl∗

i,4)
.

Analysis: The probability that A2 can correctly guess the output of H2

is 1
2q . Assume C2 can solve the DL problem with negligible advantage ε. The

following three events are used to analyze the probability that C2 can solve the
DL problem.

12 J. Zhang et al.

– Event E1: A2 can forge a valid Tag {X∗
M , S∗

M , Z∗, Y ∗, X∗
l , S

∗
l , EK(Ml)

∗} un-
der (IDi, PKi, Ai).

– Event E2: C2 does not abort when A2 performs extract secret value query
and generate tag query.

– Event E3: IDi = ID∗.

Under the random oracle model, a probabilistic polynomial-time adversary
A2 forges a Tag in an attack modeled by the forking lemma after making qHi(i =
1, 2, 3, 4, 5) times queries, qsev times extract secret value queries, and qtag times
generate tag queries. We can achieve that Pr(E1) = η, Pr(E2|E1) = (1 −
1

qH1
)qsev+qTag and Pr(E3|E1 ∧E2) =

1
qH1

. The probability that C2 can solve the

DL problem is

ε = Pr(E1 ∧ E2 ∧ E3)

= Pr(E3|E1 ∧ E2)Pr(E2|E1)Pr(E1)

=
1

qH1

(1− 1

qH1

)qsev+qTag · η
(15)

Thus, the probability that A2 forges a Tag is ε
′
= 1

2q · ε.
Due to η is non-negligible, ε is also non-negligible. Thus, C2 can solve the

DL problem with a non-negligible probability. However, it is difficult to solve
the DL problem, namely, the proposed CL-PDP scheme is secure against Type
II adversary.

4.3 Discussion

Table 1 compares the security and functionality feature analyse of the related
schemes[19, 7, 5, 4] and our scheme. The symbol

√
indicates that the scheme is

secure or provides that feature. In contrast, the symbol × indicates that the
scheme is insecure or does not provide that feature. This table indicates that
only our proposed scheme can provide better security features than those of
existing schemes[19, 7, 5, 4].

Table 1. Comparison of Security and Functionality Features.

Security Features Zhang et al.[19] Kang et al.[7] He et al.[5] Gao et al.[4] The proposed

Public verifiability
√ √ √ √ √

Storage correctness
√ √

× ×
√

Data privacy preserving × × × ×
√

Tag cannot be forged
√ √

×
√ √

Batch verification
√ √ √ √ √

5 Performance Evaluation

In this section, we discuss comparisons of computation and communication costs
of the proposed CL-PDP scheme and other existing related schemes[19, 7, 5, 4].

Title Suppressed Due to Excessive Length 13

Because the analyses of the other existing schemes are similar to the analysis
of our proposed scheme, we discuss only our proposed scheme in the following
subsection.

To compare fairness, bilinear pairing is constructed as follows: bilinear pairing
ē: G1×G1 → G2 are built on the security level of 80-bit. G1 is an additive group
whose order is q̄ and the generator is p̄, which is a point on the super singular
elliptic curve Ē : y2 = x3+x mod p̄ with an embedding degree of 2, where p̄ is a
512-bit prime number and q̄ is a 160-bit prime number. For elliptic curve-based
scheme, we construct an additive group G generated by a point P with order p
on a non-singular elliptic curve E: y2 = x3+ ax+ b(modq) to achieve a security
level of 80 bits, where p, q are two 160 bit prime numbers.

5.1 Computation Cost

In our experiments, we used a computer that is HP with an Intel(R) Core(TM)
i7-6700@ 3.4GHz processor, 8GB main memory, and the Ubuntu 14.04 operation
system to derive the average execution time of the running 5000 times based on
the MiRACL library[16]. To facilitate the analysis of computational cost, we list
some notations about execution time, as shown in Table 2.

Table 2. Execution time of different cryptographic operations.

Notations Definitions Execution time

Tbp Bilinear pairing operation 5.086 ms
Tbp.m The scale multiplication operation based on bilinear pairing 0.694 ms
Tbp.a The point addition operation based on bilinear pairing 0.0018 ms
TH The hash-to-point operation based on bilinear pairing 0.0992 ms
Te.m The scale multiplication operation based on ECC 0.3218 ms
Te.a Calculating the point addition operation related to ECC 0.0024 ms
Th Hash operation 0.001 ms

Table 3 shows the computational overhead of Tag Generation, Generate-
Proof and Verify-Proof Algorithms. Note that I represents the size of the subset
I ∈ {1, 2, ..., n}.

For the Tag Generation Algorithm of the proposed scheme, the DO needs
to execute one scalar multiplication operation and two hash function operations
for each block Ml. Thus, the execution time of n blocks is nTe.m + 2nTh ≈
0.3266nms. The computation of Generate-Proof Algorithm requires (I + 1) s-
calar multiplication operations and (I − 1) point addition operations related to
the ECC, thus, the computation time of the phase is (I +1)Te.m+(I − 1)Te.a ≈
0.3242I + 0.3194ms. For the Verify-Proof Algorithm of the proposed scheme,
verifier executes three scalar multiplication operations, three point addition op-
erations and (2I +1) hash function operations, Therefore, the execution time of
the phase is 3Te.m + 3Te.a + (2I + 1)Th ≈ 0.002I + 0.9736ms.

To make a more significant comparison, Fig. 2 and Fig. 3 are used to show
that the computation cost of Generate-Proof Algorithm and Verify-Proof Al-
gorithm increases with an increasing number of blocks, respectively. Based on

14 J. Zhang et al.

Table 3. Comparison of computation cost.

Schemes Tag Generation Generate-Proof Verify-Proof

Zhang et al.[19]
(3n+ 3)Tbp.m + 4Tbp.a

+3TH + nTh

≈ 2.083n+ 2.3868ms

(2I)Tbp.m + (2I − 2)Tbp.a

≈ 1.3916I − 0.0036ms

4Tbp + 5Tbp.m + 2Tbp.a

+5TH + ITh

≈ 0.001I + 24.3136ms

Kang et al.[7]
(4n)Tbp.m + (2n)Tbp.a

+(n+ 1)TH + nTh

≈ 2.8798n+ 0.0992ms

(I + 1)Tbp.m + (I − 1)Tbp.a

+Th ≈ 0.6958I + 0.6932ms

4Tp + (2I + 3)Tbp.m + ITH

+(2I)Tbp.a + (I + 1)Th

≈ 1.3926I + 22.5262ms

He et al.[5]
(2n+ 2)Tbp.m + (n)Tbp.a

+(n+ 1)TH + 2Th

≈ 1.488n+ 1.4892ms

(I + 1)Tbp.m + (I − 1)Tbp.a

+Th ≈ 0.6958I + 0.6932ms

2Tp + (I + 5)Tbp.m + 4Th

+(I + 4)Tbp.a + (I + 1)TH

≈ 0.794I + 13.7524ms

Gao et al.[4]
(2n)Tbp.m + (n)Tbp.a

+TH + (2n+ 1)Th

≈ 1.3918n+ 0.1002ms

(2I + 2)Tbp.m + TH+
(2I − 1)Tbp.a + (I + 1)Th

≈ 1.3926I + 1.4864ms

3Tp + (I + 3)Tbp.m+
ITbp.a + TH + 4Th

≈ 0.6958I + 17.4464ms

The proposed
nTe.m + 2nTh

≈ 0.3266nms
(I + 1)Te.m + (I − 1)Te.a

≈ 0.3242I + 0.3194ms
3Te.m + 3Te.a + (2I + 1)Th

≈ 0.002I + 0.9736ms

an analysis and comparison of Table 3, Fig. 2 and Fig. 3, we conclude that
the computation cost of the proposed scheme is lower than those of the related
schemes[19, 7, 5, 4].

200 300 400 500 600 700 800 900 1000

number of blocks

0

200

400

600

800

1000

1200

1400

C
om

pu
ta

tio
n

co
st

 o
f G

en
er

at
e-

P
ro

of
(m

s)

Zhang et al.
Kang et al.
He et al.
Gao et al.
The proposed scheme

Fig. 2. Cost of Generate-Proof

200 300 400 500 600 700 800 900 1000

number of blocks

0

500

1000

1500

C
om

pu
ta

tio
n

co
st

 o
f G

en
er

at
e-

P
ro

of
(m

s)

Zhang et al.
Kang et al.
He et al.
Gao et al.
The proposed scheme

Fig. 3. Cost of Verify-Proof

5.2 Communication Cost

As p and p are 64 and 20 bytes, the sizes of the elements in G1 and G are 64
× 2 = 128 bytes and 20 × 2 = 40 bytes, respectively. Set the size of block l be
4 bytes and the length of Z∗

q be 20 bytes. The communication cost of the five
scheme are shown in Table 4.

In the proposed scheme, the TPV sends the challenging message {j, vj}j∈I

to CS, and the CS generates the response proof {Scs, Ccs} and returns it to
TPV, where j ∈ l, vj ∈ Z∗

q and Scs, Ccs ∈ G. Therefore, the communication
cost of the proposed scheme is (|l|+ |Z∗

q |)I + 2|G| = 24I + 80 bytes. According

Title Suppressed Due to Excessive Length 15

Table 4. Comparison of Communication Cost.

Schemes Communication Costs

Zhang et al.[19] (|l|+ |Z∗
q |)I + 2|G1|+ 2|Z∗

q | = 24I + 196 bytes
Kang et al.[7] (|l|+ |Z∗

q |)I + 2|G1|+ 1|Z∗
q | = 24I + 176 bytes

He et al.[5] (|l|+ |Z∗
q |)I + 4|G1|+ 1|Z∗

q | = 24I + 532 bytes
Gao et al.[4] (|l|+ |Z∗

q |)I + 2|G1|+ 1|Z∗
q | = 24I + 176 bytes

The proposed (|l|+ |Z∗
q |)I + 2|G| = 24I + 80 bytes

to Table 4, our proposed scheme expends less communication cost than those of
other existing schemes[19, 7, 5, 4].

6 Conclusion

The proposed scheme can realize the confidentiality of outsourcing data and
solve the problem of data privacy leakage in the cloud data management system.
In order to ensure the integrity of encrypted data, we used not only a third-
party verifier to randomly check and verify, but also the public key of cloud
services to encrypt random strings, so that the reliability of the stored data can
be further ensured. Moreover, the detailed analysis showed that the proposed
scheme is secure against the Type-I and Type-II adversaries under the random
oracle model. Additionally, we compared and analyzed existing schemes from the
perspective of Tag Generation and Generate-Proof and Verify-Proof Algorithms.
The results verified that our scheme can effectively reduce delays and improve
authentication efficiency.

Acknowledgment

The work was supported by the NSFC grant (No. U1936220, No. 61872001, No.
62011530046), and the Special Fund for Key Program of Science and Technology
of Anhui Province, China (Grant No. 202003A05020043).

References

1. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee,
G., Patterson, D., Rabkin, A., Stoica, I., et al.: A view of cloud computing. Com-
munications of the ACM 53(4), 50–58 (2010)

2. Ateniese, G., Burns, R., Curtmola, R., Herring, J., Kissner, L., Peterson, Z., Song,
D.: Provable data possession at untrusted stores. In: Proceedings of the 14th ACM
conference on Computer and communications security. pp. 598–609 (2007)

3. Fernandes, D.A., Soares, L.F., Gomes, J.V., Freire, M.M., Inácio, P.R.: Security is-
sues in cloud environments: a survey. International Journal of Information Security
13(2), 113–170 (2014)

4. Gao, G., Fei, H., Qin, Z.: An efficient certificateless public auditing scheme in cloud
storage. Concurrency and Computation: Practice and Experience p. e5924 (2020)

16 J. Zhang et al.

5. He, D., Kumar, N., Zeadally, S., Wang, H.: Certificateless provable data possession
scheme for cloud-based smart grid data management systems. IEEE Transactions
on Industrial Informatics 14(3), 1232–1241 (2018)

6. He, D., Zeadally, S., Wu, L.: Certificateless public auditing scheme for cloud-
assisted wireless body area networks. IEEE Systems Journal 12(1), 64–73 (2015)

7. Kang, B., Wang, J., Shao, D.: Certificateless public auditing with privacy preserv-
ing for cloud-assisted wireless body area networks. Mobile Information Systems
2017 (2017)

8. Ming, Y., Shi, W.: Efficient privacy-preserving certificateless provable data posses-
sion scheme for cloud storage. IEEE Access 7, 122091–122105 (2019)

9. Nayak, S.K., Tripathy, S.: Sepdp: Secure and efficient privacy preserving provable
data possession in cloud storage. IEEE Transactions on Services Computing (2018)

10. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind sig-
natures. Journal of cryptology 13(3), 361–396 (2000)

11. Wang, B., Li, B., Li, H., Li, F.: Certificateless public auditing for data integrity
in the cloud. In: 2013 IEEE conference on communications and network security
(CNS). pp. 136–144. IEEE (2013)

12. Wang, C., Wang, Q., Ren, K., Lou, W.: Privacy-preserving public auditing for data
storage security in cloud computing. In: 2010 proceedings ieee infocom. pp. 1–9.
Ieee (2010)

13. Wang, F., Xu, L., Gao, W.: Comments on sclpv: Secure certificateless public ver-
ification for cloud-based cyber-physical-social systems against malicious auditors.
IEEE Transactions on Computational Social Systems 5(3), 854–857 (2018)

14. Wang, H., He, D., Tang, S.: Identity-based proxy-oriented data uploading and
remote data integrity checking in public cloud. IEEE Transactions on Information
Forensics and Security 11(6), 1165–1176 (2016)

15. Wang, H., Wu, Q., Qin, B., Domingo-Ferrer, J.: Identity-based remote data pos-
session checking in public clouds. IET Information Security 8(2), 114–121 (2013)

16. Wenger, E., Werner, M.: Evaluating 16-bit processors for elliptic curve cryptogra-
phy. In: International Conference on Smart Card Research and Advanced Appli-
cations. pp. 166–181. Springer (2011)

17. Yang, K., Jia, X.: An efficient and secure dynamic auditing protocol for data storage
in cloud computing. IEEE transactions on parallel and distributed systems 24(9),
1717–1726 (2012)

18. Yu, Y., Au, M.H., Ateniese, G., Huang, X., Susilo, W., Dai, Y., Min, G.: Identity-
based remote data integrity checking with perfect data privacy preserving for cloud
storage. IEEE Transactions on Information Forensics and Security 12(4), 767–778
(2016)

19. Zhang, Y., Xu, C., Yu, S., Li, H., Zhang, X.: Sclpv: Secure certificateless public ver-
ification for cloud-based cyber-physical-social systems against malicious auditors.
IEEE Transactions on Computational Social Systems 2(4), 159–170 (2015)

20. Zhang, Y., Yu, J., Hao, R., Wang, C., Ren, K.: Enabling efficient user revocation
in identity-based cloud storage auditing for shared big data. IEEE Transactions on
Dependable and Secure computing 17(3), 608–619 (2020)

21. Zhou, C.: Security analysis of a certificateless public provable data possession
scheme with privacy preserving for cloud-based smart grid data management sys-
tem. International Journal of Network Security 22(4), 584–588 (2020)

22. Zhu, Y., Hu, H., Ahn, G.J., Yu, M.: Cooperative provable data possession for
integrity verification in multicloud storage. IEEE transactions on parallel and dis-
tributed systems 23(12), 2231–2244 (2012)

