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Abstract. Data augmentation (DA) aims to generate constrained and
diversified data to improve classifiers in Low-Resource Classification (LRC).
Previous studies mostly use a fine-tuned Language Model (LM) to strengthen
the constraints but ignore the fact that the potential of diversity could
improve the effectiveness of generated data. In LRC, strong constraints
but weak diversity in DA result in the poor generalization ability of clas-
sifiers. To address this dilemma, we propose a Diversity-Enhanced and
Constraints-Relaxed Augmentation (DECRA). Our DECRA has two
essential components on top of a transformer-based backbone model. 1)
A k-8B augmentation, an essential component of DECRA, is proposed
to enhance the diversity in generating constrained data. It expands the
changing scope and improves the degree of complexity of the generated
data. 2) A masked language model loss, instead of fine-tuning, is used
as a regularization. It relaxes constraints so that the classifier can be
trained with more scattered generated data. The combination of these
two components generates data that can reach or approach category
boundaries and hence help the classifier generalize better. We evaluate
our DECRA on three public benchmark datasets under low-resource set-
tings. Extensive experiments demonstrate that our DECRA outperforms
state-of-the-art approaches by 3.8% in the overall score.

Keywords: text mining - data augmentation - regularization - low-
resource classification.

1 Introduction

Data Augmentation (DA) approaches [7,3,13,15, 35] are often used to alleviate
the thirst for labeled data in Low-Resource Classification (LRC [29]). Classifi-
cation is essential in building intelligent systems, such as empathetic dialogue
systems [39, 5] and medical diagnosis systems [1,20]. In most cases, external re-
sources, such as the similar task data [35] and unlabeled data [33], are hard to
obtain or even unavailable. In low-resource settings, the greatest challenge is the
expensive cost as well as the shortage of experienced experts who serve to collect
and label large-scale data. Without sufficient labeled data, the deep networks
tend to generalize poorly, leading to unsatisfactory performance.
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Fig. 1. The demonstration of how augmentation works in LRC. Fig 1(a) is the aug-
mentation with strong constraints and weak diversity. The generated data is near to
the original ones. So, the classifier learns a decision boundary that generalizes poorly.
Fig 1(b) is augmentation with enhanced diversity and relaxed constraints. Ideally, the
generated data will will be close to the boundary of the categories. Therefore, the clas-
sifier learns a decision boundary that has a better generalization ability.

Data Augmentation (DA) in text data aims to generate constrained and
diversified data to improve classifier performance [38,11, 14, 15]. Ideally, we as-
sume data generated by DA is able to present the data distribution in every
category. Thus, the generated data is supposed to extend the range of labeled
data which would help the classifier make better decisions [36]. As shown in
Fig. 1(a), constraints and diversity are two main concepts in DA. The con-
straints mainly pull the generated data towards the original one. The diversity
in generating comes from partially changed labeled data. It pushes the generated
data away from the original one. Previous researches focus on strengthening the
constraints [18,37, 15], especially contextually. The fine-tuned [2,12] Language
Models (LM) are often used to generate contextual constraints, e.g., Bidirectional
Encoder Representations from Transformers (BERT([8]). In the meantime, addi-
tional constraints from the labels are introduced through fine-tuning, such as the
Conditional BERT (CBERT [18]), which is fine-tuned with the additional con-
straints on labels. CBERT overfits in the low data conditions and consequently
lacks diversity in generating. To improve generalization ability, the Learning
Data Manipulate for Augmentation and Weighting (LDMAW [15]) unifies the
learning targets of both the augmentation and the classification through a re-
inforcement learning framework. Noticeably, LDMAW uses a BERT (fine-tuned
LM) to generate data for another BERT (classifier).

As depicted in Fig. 1(a), previous studies often suffer from poor generaliza-
tion ability in low-resource conditions [33] due to strong constraints but weak
diversity in augmentation. As the Language Model (LM) tends to overfit on
limited data in low-resource conditions, strong constraints are formed after fine-
tuning [37,15]. As a result, the generated data is pulled towards the original
data. At the same time, the weakness of diversity in augmentation is often ig-
nored. Current DA approaches mostly use the method that is identical to the
masked Language Model learning in BERT [8]. In this method, diversity is in-
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fluenced by the changing scope and degree of complexity in the generated data.
The changing scope is proportional to the times of the DA applied. In each time
of augmentation, one set of maskers is generated [15,18]. And the masked posi-
tions are the ones to be augmented. This process results in a fixed and narrow
changing scope. On the other hand, the degree of complexity is related to the
amount of information used in the augmenting data in masked positions. For
each masked position, routinely, one sampled tokens are applied [37,18]. There-
fore, it results in the low complexity of the generated data. Consequently, strong
constraints but weak diversity causes the poor generalization ability in LRC.

To address the described problem, we propose a Diversity-Enhanced and
Constraints-Relaxed Augmentation (DECRA), as displayed in Fig. 1(b). DE-
CRA allows the generated data to be more scattered within the extended bound-
ary. Our DECRA is based on the modified LDMAW [15], which is the state-of-
the-art model in LRC. The backbone model, a simplified LDMAW, shares pa-
rameters in BERT to reduce overfitting for better generalization ability. The
backbone model consists of a transformer-based encoder (TBE), a language
model layer (LML) and a classification layer (CL). DECRA has two essential
components based on the backbone model: k-8 augmentation and regularization
(masked LM loss). 1) k-0 augmentation, an essential component in DECRA, will
enhance the diversity in generating. It expands the changing scope by applying
augmentation  times and enhances the degree of complexity by using top-k to-
kens to augment the masked position. 2) The regularization, masked LM loss on
original data, generates more relaxed constraints compared to fine-tuning. DE-
CRA will be trained by the combination of masked LM loss and the classification
loss. Our model can learn the constraints dynamically and progressively during
the training process. It will processe more scattered generated data, which will
reach or approach the boundary of categories, to achieve better generalization
ability. Therefore, enhanced diversity as well as relaxed constraints help to gener-
ate data more scattered within the extended boundary. Trained with the labeled
and generated data, the classifier will make better decisions and consequently
achieve better generalization ability in LRC.

We evaluate DECRA on three text classification benchmark datasets un-
der low-resource settings. Extensive experiments show that our model achieves
superior performance than advanced baselines, such as LDMAW and CBERT.

The major contributions of this paper are summarized below:

1) We first propose a Diversity-Enhanced and Constraints-Relaxed Augmentation

(DECRA) for Low-Resource Classification (LRC). Experimental results
show that our DECRA outperforms the state-of-the-art approach by 3.8%
in the overall score.

2) We propose a k- augmentation to enhance the diversity in constrained
generating. It can improve diversity by expanding the changing scope and
enhancing the degree of complexity.

3) We propose to use the masked Language Model (LM) loss on original data
as a regularization instead of fine-tuning. It helps to relax the constraints,
and eventually improve the generalization ability of classifiers.
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2 Related Work

2.1 Language model

Recently, many works have shown that pre-trained Language models (LM) on
large corpora can learn common language representations, which is beneficial for
downstream Natural Language Processing (NLP) tasks and can avoid training
new models from scratch [24, 8]. With the development of computing power, the
emergence of deep models (i.e. Transformer [34]) and the continuous improve-
ment of training skills, the architecture of LM has evolved from shallow to deep.
The first generation of LM is designed to learn contextual-free word embedding.
They are usually shallow for computational efficiency[24, 26]. Although these pre-
trained embeddings can capture the semantics of words, they have no context
and cannot capture high-level concepts in the context. The second generation of
LM focuses on learning contextual word embeddings, such as GPT-2 [27] and
BERT [8].

2.2 Text data augmentation

Data Augmentation (DA) in text data, different from the image data [7,41], is
difficult due to the to preserve grammar and semantics. The text augmentation
can be divided into the rule-based approaches and the Language Model (LM)-
based approaches.

The rule-based approaches mainly augment labeled data with the prior rules [28,
36, 10]. Some works inject small perturbation into the representation of labeled
data [25]. That increases the model’s generalization ability. Some works are in-
spired by the smoothing hypothesis [32, 31]. They propose to use a weight to mix
two labeled data into one generated data [40,10]. Training with both data, it
achieves better generalization ability [6,4]. Some works use a pre-trained trans-
lation model to augment the labeled data by translating it into another language
and translate it back to its original language [29].

The LM-based approaches use the Language Model (LM) to generate di-
verse data with constraints. The essential operation is to randomly replace some
tokens in the labeled data with contextual and label constraints. Easy Data
Augmentation (EDA) [36] generates data without label constraints which of-
ten results in the label-drift. That will introduce noise into the generated data.
Staged fine-tuned LM on labeled data is suitable for the operation [23]. The
Contextual Augmentation (CA) [18] uses an LSTM based LM to improve the
contextual constraints. The LSTM-based LM with context-free word embeddings
can not handle the contextual constraints well. Therefore, the contextual aware
embeddings are introduced into DA [37,2].

3 Problem formulation

For a text classification dataset {(x;,v;)},i € [1, N], where x; € RT*V and y; €
R, N is the training data size, T is the length of data and V is the vocabulary
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size, C' is the number of classes. In Low-Resource Classification (LRC), the N is
very small, such as lower than 40 samples per class. That embodies the needs of
Language Model (LM) gp, to generate diverse data to improve the generalization
ability of the classifier fy,, where 8, and 6. represent the parameters respectively.
The generated data should contain constraints as well as maintain diversity to
ensure generalization ability. The formulation of an operation in augmentation
is

)A(i,j = d)(xi;kaﬁaga),j S [Lﬂ] . (1)

Here, ¢ is the operation in augmentation, X; ; € RT*V is the j-th data generated
based on x;, 8 is the number of runs for data generation, 6, are the parameters
of LM. The generated data X; ; has the same label with x;.

The classifier learns the map function of

Y = f5.(X), (2)

where {(X,Y)} is the joint of {(x;,v;)} and {(%;;,v:)},J € [1,0].
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Fig. 2. The structure of Diversity-Enhanced and Constraints-Relaxed Augmentation
(DECRA).

4 Model Description

Fig. 2 shows the structure of the Diversity-Enhanced and Constraints-Relaxed
Augmentation (DECRA). Our DECRA has two essential components based on
a backbone model which has a Transformer-Based Encoder (TBE), a Language
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Model Layer (LML) and a Classification Layer (CL). Firstly, the k-8 augmenta-
tion is applied to the original data to generate diversity-enhanced data. Secondly,
the masked Language Model (LM) loss is introduced as the regularization, which
is the relaxed-constraint in generating.

4.1 Transformer-based encoder

Transformer-Based Encoder (TBE) stacks multiple layers of transformers [34] to
encode the text data into embeddings. It is initialized by a pre-trained Language
Model (LM) which is trained on large-scale multi-domain datasets. The original
data x; is masked into X;. The original data x; is encoded as follows,

e; = Tansformery,(x;) . (3)

Here, e; € RT*H is the embeddings for classification, Transformerg, repre-
sents the processing of transformers, 7" is the length of original data, H is the
hidden size of embeddings, 6; is the parameters of TBE. Similarly, we can get
embeddings €; for the masked data X;.

4.2 Language model layer

Language Model Layer (LML) is composed of a fully-connected layer. The fully-
connected layer predicts the masked position based on its contextual embed-
ding [8] that is fundamental for k-3 augmentation. It also essential to calculate
the masked Language Model loss [8] on original data as a regularization. The €;
is embeddings of masked data. The prediction is calculated as,

Pi = 90,(€:) - (4)

Here, p; € RT*V represents the probabilities of tokens in masked positions,
9o, (-) maps the embedding size vector to vocabulary size.

4.3 Classification layer

Classification Layer (CL) takes the first position of embeddings encoded by the
TBE as input, and outputs the class categories. For labeled data, we calculate
the predictions as follow,

0i = fo.(ei), ()

where fy_(-) represents the function of CL, . is the parameters of CL, o; € R
represents the predictions.

4.4 K-(3 augmentation

k-p algorithm is designed to enhance the diversity in generating. It aims to
augment the original data x; § times to get the generated data X; ;,j € (1, 3].

)A(i,j = ¢(Xi;k7ﬁ70ta9a)aj € [Lﬁ] (6)
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Here, ¢ is the k- augmentation, 8 is the set of masks as well as the times of
augmentation applied, k is the number of tokens used for replacing the masked
position, 8; and 0, are the parameters in TBE and LML respectively. By this,
the changing scope of generated data is expanded. Also, the degree of complexity
of generated data is enhanced.

For each time of augmentation, the original data x; is randomly masked X;
for augmentation, as shown in Fig. 3. Data augmentation consists of four steps:
predict, top-k, softmax and replace.
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Fig. 3. The demonstration of k-3 augmentation. V =3, T'= 2 and k = 2. For a given
sample X; ;, the masked position is ¢ = 2, the masked token is B. The ﬁ;j is generated
based on €; ;, the pfyj is the top-k of T)ﬁm the ﬁ;j is the normalized p;j.

Predict. The embedding of the randomly masked position is feed into LML
to get the predictions ﬁ,j € RY. The predictions represent the probabilities of
tokens to fit the ¢-th position.

Top-k. The top-k sampling, which is often used to improve the diversity in
data augmentation [9], is used. The top-k probabilities tokens in ﬁﬁ,j are selected
as pl ; € RF.

Softmax. The top-k probabilities are feed into a softmax function to nor-
malize the probabilities.

pr; = softmaz(p} ;) (7)

Here, p} ; € R* is the normalized top-k probabilities.

Replace. For the convenient of replacement [15], we fill the value of j} ; into
a zero vector to get pf,j € RY. Instead of only one sampled token, we use k
tokens to replace the masked token iﬁ’j, and get the generated data X; ;. Note
that the number of masked tokens is not fixed. The progress is repeated 8 times
to get X;;,j € [1,05]. The labels %X; ; all set to y; as the setting in [37]. The
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generated data are encoded for classification &; ;,j € [1, 5] as in Eq. 3. Then,
as in Eq. 5, we can get the prediction of generated data after k-8 augmentation

6i,jaj € [175}
4.5 Regularization

Masked Language Model (LM) loss [8] generates relaxed contextual constraints
compared to fine-tuning. The labeled data is corrupted by randomly replacing
some positions into maskers. Then, the model learns to predict the original token
with the contextual embedding in the masked position. It takes the embeddings
of the masked position €; as inputs, takes the original tokens x; as labels, and
calculates the loss as follow,

T
1 ¢ —
Ly = i ; mx; log(fo, (€;)), (8)

where Ly represents the masked LM loss, m; = 1 indicates the token on ¢
position is masked, xt € RV is the ¢-th token, 6, is the parameters of LML, M
is the number of masked positions.

4.6 Training process

As described in Algorithm 1, the cross-entropy between the predictions and y;
is calculated as

N
1
Lcg = N ; yi log(0;), 9)

where NV is the total number of original data.
Similarly, we can get cross-entropy loss Lo for the data generated by k-8
augmentation,

Lop = —%% > yilog(6i). (10)

Here, we average the loss calculated on 3 generated data which can get a more
stable improvement [6].
The final loss is weighted average as follow,

Lfinat = Lop + Nalor + NmLiy - (11)

Here, The A\, and )\;,,, are the weights for each loss term.

5 Experiments

5.1 Experimental settings

Dataset To evaluate the text augmentation in low-resource classification, we
use the same settings in [15]. We evaluate the UABC model based on three
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Algorithm 1 The training algorithm of DECRA.
Require: corpus {(x:,%i)},i € N, Aq and A\im, 8 and k.
Initialize 6, and 6, by a pre-trained BERT
Initialize 6.
for epoch =1, ---, M do
fori=1,---,N do
Masking x; to get X;
Get embeddings e;, € through Transformerg,
Calculating the £ based on gg, (€;) and x;
Geting the generated data X; ;,j € [1, 8] through ¢(x:; k, 3, 0+, 0.)
Calculating the Lo g based on fo, (Transformery, (%i;)) and y;
Calculating the Lcg based on fo, (e;) and y;
Liinat = Log + AaLlor + AimLLm
Update the gradients of 0, 6, and 6.
end for
end for

benchmark classification datasets, including TREC, SST-5, and IMDB. TREC
is to categorize a question into six question types [19]. SST-5 is the Stanford Sen-
timent Treebank with five categories of very positive, positive, neutral, negative
and very negative [30]. IMDB is for binary movie review sentiment [21], Table 1
summarizes the statistics of the three datasets. For each dataset, we randomly
sample 15 small datasets. Each contains 40 samples per class for training and 5
(except SST-5 is 2) samples per class for validation. The models are evaluated
on the validation set at the end of each epoch. The optimal model on the val-
idation set is evaluated on the full-size testing set. The mean accuracy of the
15 small datasets used as the final result to evaluate the model performance on
each dataset. The average of the mean accuracy on three datasets is the overall
score for each model.

Table 1. The statistics of datasets. ¢: Number of target classes. [: Average sentence
length. Train: Train set size. Val: Validation set size. Test: Test set size.

Data c l Train Val Test
SST-5 5 19 200 10 2210
IMDB 2 252 80 10 2500
TREC 6 10 240 30 500

5.2 Comparison methods

We compare our model with six methods that can be utilized for Low-Resource
Classification (LRC). BERT (base, uncased) for text classification without aug-
mentation [8] is the baseline. Five augmentation methods are listed as follow:
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— EDA [36] is a recent data augmentation approach containing a set of four
text augmentation techniques, including synonym replacement, random in-
sertion, random swap, and random deletion.

— BT! [29] translates the labeled data into another language and then trans-
lates it back into the original language.

— Mixup [16] generates out-of-manifold samples through linearly interpolating
data representations and their corresponding labels of random sample pairs.

— CBERT [37] is the latest model-based augmentation that uses a conditional
BERT, which is pre-trained on a training set, for augmentation.

— LDMAW [15] is the state-of-the-art augmentation that uses reinforcement
learning to train both the augmenter BERT and classifier BERT for LRC.

5.3 Implementation details

We use BERT-base [8] to initialize our transformer-based encoder and language
model layer, and randomly initialize the classification layer. We use Adam opti-
mization [17] with an initial learning rate of 2e — 5. The epoch is set to 20 and
the batch size is 8 for all datasets. For each minibatch data, we use k- augmen-
tation with 8§ = 18 and k = 2. The weights of losses are w, = 1 and wy,,, = 1.5.
For each experiment, the model is evaluated on the validation set after every
training epoch, and the optimal epoch on the validation set is evaluated on the
test set.

5.4 Classification in low-resource condition

Table 2. DA extrinsic evaluation in low-resource settings. Results are reported as
Mean (STD) accuracy on full test set. Experiments are repeated 15 times. t refers to
the results reported in [15]

Datasets

Methods SST5(200) IMDB(R0) TREC(Z40) V¢
Bascline’ 3] 333462 636444 883129 617
EDA [36] 36.8+6.1 62.8+6.0 86.6+4.1 62.1
BT [29} 35.8+4.3 66.4+4.2 86.6+4.3 62.8
Mixup [16} 36.0+4.0 67.3£5.1 88.3+£3.2 63.9
CBERT" [37] 34.846.9  63.7+4.8  88.3+£1.1  62.3
LDMAW 1 [15] 37.043.0  65.643.7  89.242.1  63.9

DECRA (our work) 40.3+3.4 69.0+£4.0 89.5+1.6 66.3

Table 2 exhibits the results of all models on three datasets. Our DECRA out-
performs all baselines on all three datasets. Firstly, our DECRA can improve the

! We implement the back translation based on MarianMT in Transformers,
https://huggingface.co/transformers.
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classification performance in LRC from 63.9% to 66.3%. When compared with
LDMAW and Mixup, our model achieves a higher overall score. That benefits
from the effects of our k-8 augmentation which effectively enhances the diver-
sity of generated data. Secondly, our DECRA achieves the highest mean accu-
racy score on every dataset. The stable improvement may benefit from the ex-
panded changing scope in k-3 augmentation. Thirdly, our DECRA has a smaller
parameters-scale than LM-based approaches. When compared with CBERT and
LDMAW, our model unifies the augmenter and classifier by reducing nearly half
of the parameters. Noticeable that the LDMAW uses reinforcement learning to
tune the augmenter(BERT) for the classifier(BERT). Our DECRA improves the
overall score by a significant margin. It’s 3.8% improvements against the LD-
MAW and 6.3% improvements against CBERT. The improvement benefits from
the improvement of generalization ability.

5.5 Ablation study

Table 3. The ablation results(%) of DECRA model. Results are reported as Mean
(STD) accuracy on full test set. Experiments are repeated 15 times.

Dataset
D k- Reg: —gorsm00) TMDB(R0)  TREC(A0) V¢
T x  x 33362 636444  883%+29 617
2 x v 338429  64.6444  865+34  6L6
3 v x 365432 656450  89.0£18  63.7
4 x A 382433  688+41 884430  65.1
5 v A 390451 687454 887419 655
6 v v 403434  69.044.0  89.5+16  66.3

x indicates the component is removed form DECRA, v indicates the component is
added in DECRA. k-0 is the k-8 augmentation and Reg. is the masked LM loss. A
indicates the DECRA is pre-trained with masked LM loss and then finetuned as [12].

To better understand the working mechanism of the DECRA, we conduct
ablation studies on all three datasets, as listed in Table 3. 1) Without augmen-
tation, the I D2, which has relaxed constraints compared to I D4, results in lower
classification accuracy. The results indicate that strong constraints are more ef-
fective in LRC without augmentation. 2) With augmentation, the D6, which
has relaxed-constraints compared to I D5, promotes the overall score from 65.5
to 66.3. The improvement of the overall score in LRC with augmentation mainly
from the relaxed-constraints. 3) Besides, the I D3 outperforms D1 due to the
diversity-enhanced k-8 augmentation. Also, the I D5 has a higher overall score
(65.5) than ID4 (65.1). The results show the effects of k-8 augmentation in
LRC, which enhance the diversity of generated data.
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5.6 Importance of diversity and constraints.

To analyze the importance of diversity and constraints (ﬁc g and Lr), we grid
search the optimal weights (A, and A, ) on SST5. Experiments are repeated 15
times. Firstly, the Ay, is set to 1.0 in the searching of the A,. Then, the A, is set
to the optimal (1.0) in the search of A;,. Fig. 4(a) describes the effects of weight
Aq for k- augmentation Lcp. The average accuracy achieves the peak when the
Aq is 1.0. The generated data has equal importance to the original data. This
setting is identical to [15]. Fig. 4(b) shows the effects of weight A, for masked
LM loss L. The model reaches the optimal classification performance when
the A\, is 1.5. The Ly has larger weights than Lo g. It shows the importance
of contextual constraints in LRC.
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Fig. 6. The results of different k settings on SST-5.

5.7 k-3 augmentation on enhancing diversity

To analyze the effects of the hyperparameter in k-8 augmentation, we conduct
two groups of experiments. The A\, and Ay, are set to 1.0 as default. Experiments
are repeated 15 times.

Degree of complexity To explore the effects of k (degree of complexity) in
k-8 augmentation, we conduct two sets of experiments. As shown in Fig. 6, one
set is k € [1,2,---,10] and another is k& € [10,20,---,100]. k£ is the number
of tokens to replace the masked token. In LRC, the operation increases the
diversity in generating. Through the top-k operation, the generated data will
contain complex information from (number of masks)* samples generated by
the previous operation in [37]. As shown in Fig. 6(a), the model achieves the
highest overall score when k = 2. The mean accuracy decreases along with an
increase of k. That may be caused by noise information. The model achieves a
lower mean accuracy when k = 1. That is expected as a result of lacking diversity
in generating. The results indicate that k = 2 is an optimal choice for DECRA.

Changing scope To explore the effect of 5 (changing scope) in k- augmenta-
tion, we evaluate the model under the setting of 3 € [1,25] and k = 2. The § is
the times of generating maskers for original data. As shown in Fig. 5, as 3 goes
from 1 to 18, the mean accuracy of the model tends to increase generally. This
benefits from enhancing the changing scope of the augmentation. When § = 18,
the highest mean accuracy is achieved for generated diverse data for classifi-
cation. As the increase of 5 from 18 to 25, the model performance begins to
fluctuate around 39%. The 8 reaches its limit in improving diversity. Therefore,
we choose 18 as the optimal setting.

5.8 Visualization

To present the effectiveness of the diversity and constraints in DECRA, we vi-
sualized the labeled data and generated data in the subset 0 of TREC with the
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Fig. 7. The visualization of original data and generated data on TREC (subset = 0).
Different colors are used to mark the original and generated data in each category.

settings, k = 2, 8 = 3, A\, = 1.0 and A, = 1.0. The visualization data in two
specific epochs, epoch = 10 and epoch = 20, with TSNE [22] represents two
different phrases in the training process. As shown in Fig. 7, we can observe the
diversity of the generated data in all training phrases as well as the constraints.
The generated data partly distributes around the cluster of its “should be” class
and partly distributes distantly away. That demonstrates the effects of diversity
and constraints in DECRA. It proves our DECRA works well in LRC.

6 Conclusion

In Low-Resource Classification (LRC), the currently used augmentation ap-
proaches, such as LDMAW, suffer from generalizing poorly due to strong con-
straints but weak diversity. To address this dilemma, we propose a Diversity-
Enhanced and Constraints-Relaxed Augmentation (DECRA). The DECRA has
two essential components on top of a transformer-based backbone model. We
propose a k-f augmentation to enhance the diversity of generated data by ex-
panding the changing scope and enhancing the degree of complexity in gen-
erated data. We introduce the masked Language Model loss instead of staged
fine-tuning to generate relaxed-constraints. The improved diversity and relaxed
constraints help to generate data scattered near or approach the category bound-
aries. Trained with both labeled and generated data in low-resource conditions,
the model achieves better generalization ability. Experimental results demon-
strate that our DECRA significantly outperforms state-of-the-art augmentation
techniques in low-resource classification. The results may shed some light on

LRC.
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