Skip to main content

Double Ensemble Soft Transfer Network for Unsupervised Domain Adaptation

  • Conference paper
  • First Online:
  • 2687 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12682))

Abstract

Domain adaptation aims to transfer the enriched label knowledge from large amounts of source data to unlabeled target data. Recent methods start to solve the class-wise domain adaptation problem by incorporating the soft labels to each target data. Although the soft label strategy could alleviate the negative influence caused by the hard label strategy to some extent, the improper propagation sequence ignoring the labeling difficulties of different target examples will lead to confusing probabilities problem. Moreover, the instability of a single propagation model in dealing with various data may also hinder the performance of target label inference. To address these limitations, we propose a Double Ensemble Soft Transfer Network (DESTN) to jointly optimize the class-wise adaptation and learn the discriminative domain-invariant features with clear soft target labels. Our motivation is to construct a Label Propagation Ensemble (LPE) model by various feature subspaces so as to get robust and clear soft target labels for class-wise domain adaptation. Meanwhile, the other Classifiers Ensemble Framework (CEF) is trained on the labeled source samples and the reliable pseudo-labeled target samples for learning the discriminative features during the iteration. Extensive experiments show that DESTN significantly outperforms several state-of-the-art methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://hemanthdv.github.io/officehome-dataset/.

References

  1. Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F. and Vaughan, J.W.: A theory of learning from different domains. Mach. Learn. 79(1), 151-175 (2009). https://doi.org/10.1007/s10994-009-5152-4

  2. Bermúdez Chacón, R., Salzmann, M., Fua, P.: Domain-adaptive multibranch networks. In: ICLR, No. CONF (2020)

    Google Scholar 

  3. Cai, R., Li, Z., Wei, P., Qiao, J., Zhang, K.: Learning disentangled semantic representation for domain adaptation. In: IJCAI (2019)

    Google Scholar 

  4. Cao, M., Zhou, X., Xu, Y., Pang, Y., Yao, B.: Adversarial domain adaptation with semantic consistency for cross-domain image classification. In: CIKM (2019)

    Google Scholar 

  5. Chen, C., Chen, Z., Jiang, B., Jin, X.: Joint domain alignment and discriminative feature learning for unsupervised deep domain adaptation. In: AAAI (2019)

    Google Scholar 

  6. Chen, C., et al.: Progressive feature alignment for unsupervised domain adaptation. In: CVPR (2019)

    Google Scholar 

  7. Chen, M., Zhao, S., Liu, H., Cai, D.: Adversarial-learned loss for domain adaptation. In: AAAI (2020)

    Google Scholar 

  8. Ding, Z., Li, S., Shao, M., Fu, Y.: Graph adaptive knowledge transfer for unsupervised domain adaptation. In: ECCV, pp. 37–52 (2018)

    Google Scholar 

  9. Goodfellow, I., et al.: Generative adversarial nets. In: NeurIPS (2014)

    Google Scholar 

  10. Gretton, A., Borgwardt, K., Rasch, M., Schölkopf, B., Smola, A.J.: A kernel method for the two-sample-problem. In: NeurIPS, pp. 513–520 (2007)

    Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  12. Hull, J.J.: A database for handwritten text recognition research. IEEE Trans. Pattern Anal. Mach. Intell. 16(5), 550–554 (2002)

    Article  Google Scholar 

  13. Kang, G., Jiang, L., Yang, Y., Hauptmann, A.G.: Contrastive adaptation network for unsupervised domain adaptation. In: CVPR, pp. 4893–4902 (2019)

    Google Scholar 

  14. Laradji, I.H., Babanezhad, R.: M-adda: Unsupervised domain adaptation with deep metric learning. In: ICML (2018)

    Google Scholar 

  15. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  16. Liu, H., Long, M., Wang, J., Jordan, M.: Transferable adversarial training: a general approach to adapting deep classifiers. In: ICML, pp. 4013–4022 (2019)

    Google Scholar 

  17. Long, M., Cao, Y., Wang, J., Jordan, M.I.: Learning transferable features with deep adaptation networks. In: ICML (2015)

    Google Scholar 

  18. Long, M., Cao, Z., Wang, J., Jordan, M.I.: Conditional adversarial domain adaptation. In: NeurIPS, pp. 1640–1650 (2018)

    Google Scholar 

  19. Long, M., Zhu, H., Wang, J., Jordan, M.I.: Deep transfer learning with joint adaptation networks. In: ICML, pp. 2208–2217 (2017)

    Google Scholar 

  20. Luo, L., Wang, X., Hu, S., Wang, C., Tang, Y., Chen, L.: Close yet distinctive domain adaptation. In: ICCV (2017)

    Google Scholar 

  21. Luo, Y., Zheng, L., Guan, T., Yu, J., Yang, Y.: Taking a closer look at domain shift: category-level adversaries for semantics consistent domain adaptation. In: CVPR, pp. 2507–2516 (2019)

    Google Scholar 

  22. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits in natural images with unsupervised feature learning. In: NeurIPS (2011)

    Google Scholar 

  23. Pei, Z., Cao, Z., Long, M., Wang, J.: Multi-adversarial domain adaptation. In: AAAI (2018)

    Google Scholar 

  24. Philip, J., Gharbi, M., Zhou, T., Efros, A.A., Drettakis, G.: Multi-view relighting using a geometry-aware network. TOG 38(4), 1–14 (2019)

    Article  Google Scholar 

  25. Ro, H., Park, Y.J., Byun, J.H., Han, T.D.: Display methods of projection augmented reality based on deep learning pose estimation. In: SIGGRAPH (2019)

    Google Scholar 

  26. Saenko, K., Kulis, B., Fritz, M., Darrell, T.: Adapting visual category models to new domains. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 213–226. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15561-1_16

    Chapter  Google Scholar 

  27. Soh, J.W., Cho, S., Cho, N.I.: Meta-transfer learning for zero-shot super-resolution. In: CVPR (2020)

    Google Scholar 

  28. Sohn, K., Shang, W., Yu, X., Chandraker, M.: Unsupervised domain adaptation for distance metric learning. In: ICLR (2019)

    Google Scholar 

  29. Sun, X., Nasrabadi, N.M., Tran, T.D.: Supervised deep sparse coding networks for image classification. TIP 29, 405–418 (2019)

    MathSciNet  Google Scholar 

  30. Tang, H., Jia, K.: Discriminative adversarial domain adaptation. In: AAAI (2020)

    Google Scholar 

  31. Tseng, H.Y., Lee, H.Y., Huang, J.B., Yang, M.H.: Cross-domain few-shot classification via learned feature-wise transformation. In: ICLR (2020)

    Google Scholar 

  32. Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain adaptation. In: CVPR, pp. 7167–7176 (2017)

    Google Scholar 

  33. Wang, H., Shen, T., Zhang, W., Duan, L., Mei, T.: Classes matter: a fine-grained adversarial approach to cross-domain semantic segmentation. In: ECCV (2020)

    Google Scholar 

  34. Wen, Y., Zhang, K., Li, Z., Qiao, Yu.: A discriminative feature learning approach for deep face recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 499–515. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_31

    Chapter  Google Scholar 

  35. Wu, X., et al.: A unified adversarial learning framework for semi-supervised multi-target domain adaptation. In: DASFAA (2020)

    Google Scholar 

  36. Xie, S., Zheng, Z., Chen, L., Chen, C.: Learning semantic representations for unsupervised domain adaptation. In: ICML, pp. 5419–5428 (2018)

    Google Scholar 

  37. Yao, Y., Zhang, Y., Li, X., Ye, Y.: Heterogeneous domain adaptation via soft transfer network. In: ACM MM, pp. 1578–1586 (2019)

    Google Scholar 

  38. Zhang, W., Ouyang, W., Li, W., Xu, D.: Collaborative and adversarial network for unsupervised domain adaptation. In: CVPR, pp. 3801–3809 (2018)

    Google Scholar 

  39. Zhang, Y., Deng, B., Jia, K., Zhang, L.: Label propagation with augmented anchors: A simple semi-supervised learning baseline for unsupervised domain adaptation. In: ECCV (2020)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the National Key Research and Development Program of China, No.2018YFB1402600.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangdong Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cao, M., Zhou, X., Lin, L., Yao, B. (2021). Double Ensemble Soft Transfer Network for Unsupervised Domain Adaptation. In: Jensen, C.S., et al. Database Systems for Advanced Applications. DASFAA 2021. Lecture Notes in Computer Science(), vol 12682. Springer, Cham. https://doi.org/10.1007/978-3-030-73197-7_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73197-7_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73196-0

  • Online ISBN: 978-3-030-73197-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics