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Abstract. A lot of online marketing campaigns aim to promote user
interaction. The average treatment effect (ATE) of campaign strategies
need to be monitored throughout the campaign. A/B testing is usually
conducted for such needs, whereas the existence of user interaction can
introduce interference to normal A/B testing. With the help of link pre-
diction, we design a network A/B testing method LinkLouvain to mini-
mize graph interference and it gives an accurate and sound estimate of
the campaign’s ATE. In this paper, we analyze the network A/B test-
ing problem under a real-world online marketing campaign, describe our
proposed LinkLouvain method, and evaluate it on real-world data. Our
method achieves significant performance compared with others and is
deployed in the online marketing campaign.

Keywords: Graph neural networks · Graph partitioning · Graph clus-
tering · Network A/B testing.

1 Introduction

Recently, Alipay launched an online marketing campaign that encourages users
to invite others to join the campaign, so they can all receive discounts or cash
rewards. Such user interaction-promoting services (IPS) are common to increase
user engagement. Various strategies are developed for this campaign, and de-
signing an A/B testing solution to quantify their average treatment effects is
crucial. However, normal A/B testing solutions for IPS are improper because
edges (user invitations) exist between different test groups and introduce bias
to ATE; A/B testing addressing such interference is called network A/B testing.
Under a thorough analysis of real-world graphs, we develop a graph cluster-
ing method LinkLouvain for network A/B testing and deploy it in the online
marketing campaign. LinkLouvain has the following strengths:

1. Scalability. It conducts on graphs of billions of nodes and tens of billions of
edges in 10 hours.

2. Simplicity. It is a static method that runs only once before the online mar-
keting campaign. There is no need for additional streaming support.

? These authors contributed equally.
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Fig. 1: Visualization of our online marketing campaign. Coupons are handed out
to users (colored red in left figure), and users can invite their friends to join this
marketing campaign, and they all receive a cash coupon (colored red in right
figure).

3. Effectiveness. It reduces network interference and reduces the heterogene-
ity of test groups throughout the campaign lifecycle (7 days). We develop
two metrics estimator bias and estimator variance to measure the network
interference and heterogeneity, respectively. Results show LinkLouvain out-
performs others.

1.1 Interaction-Promoting Services (IPS)

For consumer-facing online products, encouraging user interactions is a common
practice to increase user engagement. Some examples are ‘People You May Know’
on Facebook, ‘Connections You May Know’ on LinkedIn, and online marketing
campaigns where coupons can be shared with others on Alipay. Such services,
referred to as interaction-promoting services (IPS), are designed to encourage
user interaction, and therefore benefit user engagement of the product.

All users and their interactions on the Alipay platform construct a real-world
thorough social network with billions of nodes and tens of billions of edges. Users
(nodes) and user invitations (edges) in our online marketing campaign form a
subgraph of this thorough social network. Engaging nodes and edges increase
throughout the campaign, and this time-evolving graph is always a subgraph of
the social network.

In our paper, we analyze the growth properties of the network and the inter-
ference patterns from the campaign for a sound understanding of the following
network A/B testing problem.

1.2 Network A/B Testing

For IPS, users who do not receive new services may still be affected through
interactions with those who do receive new services. It introduces interference
for user-level A/B testing; thus, a direct estimation of the ATE is no longer
unbiased. Network A/B testing solutions are of great interest.
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Fig. 2: Visualization of estimation bias in different A/B testing scheme. Left : In
user-level randomization, users are randomly selected for the treatment (colored
yellow) and the control group (colored cyan). However, the online marketing
campaign in the treatment group may affect users in control group. In this case,
both the treatment group and the control group has the same number of invited
users, and the A/B testing misleadingly concludes that the treatment does not
make any difference. Right Network A/B testing clusters users with interference
together, and the cluster-level metrics show that the treatment group has more
invited users.

There are mainly two approaches to conduct an unbiased estimation of ATE
under network interference. The first is afterward correction. For example, [4]
assumes the interference is linear-additive, estimates the exposure probability,
and weighs the estimation accordingly. The performance of this type of approach
relies on making the right decision for the form of interference. We analyze the
interference in a real social network, and in our case, however, the linear-additive
model is over-simplified and a panacea solution is missing.

The other approach is to perform randomization at the cluster-level. That is,
clusters of users, instead of users themselves, are used as randomization units.
This approach assumes no/low interference between clusters. Our method falls
into this category.

1.3 Graph Clustering

Many clustering algorithms have been studied to reduce the interference be-
tween their resulting clusters. [11] proposes a clustering algorithm r-net. Label
propagation and modularity maximization algorithms are also studied in [4],
and it suggests modularity maximization outperforms the other. However, these
approaches usually assume their graphs are restricted-growth graphs (formally
defined later) to perform better, which is hard to meet through our analysis of
real social networks. Later, we’ll introduce our LinkLouvain approach built on
Louvain 1.

We also consider graph partitioning methods to generate balanced test groups
with minimal edges between groups. Dynamic graphs at scale impose great chal-

1 A fast and parallel approximation for modularity maximization.
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lenges for graph partitioning. Most existing algorithms can not scale to billions
of nodes. Graph theory based algorithms aiming to solve the optimal min-cut
graph partitioning task have been proven NP-hard. Classical graph partitioning
methods such as Metis [5] also have high computational complexity. To handle
rapidly evolving graphs, classical methods are not favorable for efficiency issues
and dynamic graph partitioning algorithms [7,8] are proposed by constantly
updating labels and graph structure changes that require additional streaming
support.

Our method also focuses on rapidly evolving graphs, however, in a more
static manner. Unlike other static methods [9,10] that run periodically to obtain
continuous partitioning results, we make a guess on the graph structure in the
future (e.g. in a week) and partition the predicted graph for only once. In the
beginning, we obtain an ‘omniscient’ view of all users and all possible interactions
between them. Also, we have a campaign graph in the early stage campaign. Then
we predict possible edges with graph neural networks (GNNs) to gain knowledge
of a future snapshot of the campaign graph. The current snapshot and future
snapshot are formed by invitations in the campaign, while the omniscient graph is
irrelevant to specific applications. The predicted edges form a guess of the future
snapshot, and it’s then clustered by efficient graph clustering methods with
linearithmic time such as Louvain. Finally, the clusters are randomly merged
to p desired test groups for A/B testing.

2 Preliminaries

2.1 Problem Formulation

In this paper, we are interested in the task of network A/B testing. More specif-
ically, we aim at estimating a precise and sound ATE. Estimating ATE when
launching or updating IPS, however, is non-trivial. In the absence of interactions,
user-level A/B testing is commonly used to estimate potential effects [6]. The
estimation is unbiased if the Stable Unit Treatment Value Assumption (SUTVA)
holds. This assumption requires the response of a unit (in this case, a user) to
be invariant to treatments assigned to other units [1]. With this assumption, the
average treatment effect (ATE) of a new service can be defined as

ATE =
1

N

∑
i

y1(i)− y0(i),

where y0(i) is the outcome for user i if not treated and y1(i) is the outcome for
user i if treated. N represents the number of users.

However, the ground-truth ATE in real-world network A/B testing is impos-
sible to obtain. Our work designs an estimator of ATE in the presence of network
interference by splitting graph to clusters. The estimator is formulated as

ˆATE =
1

M

∑
i

∑
j

y1(qij)−
1

N

∑
i

∑
j

y0(cij),
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where qij is i-th user in j-th cluster of the treatment group Q and cij is i-th user
in j-th cluster of the control group C. M and N represent numbers of users in
Q and C, respectively.

Our goal is to design an ATE estimator that minimizes the estimation bias
and variance. Therefore, the estimated ATE can guide business decisions.

2.2 Two Graphs of Interest

In our online marketing campaign, we have access to two graphs: a stable social
graph G = (V,E) and a time-evolving label graph L = (VL, EL). We collect the
social graph G containing all users of Alipay as nodes V and their historical
interactions as edges E. It contains billions of nodes and tens of billions of edges
and lays the foundation for predicting users’ future interactions.

Additionally, as the new online marketing campaign goes on, we collect a
label graph L, where users who participate in the online marketing campaign
form node set VL and user invitations form edge set EL. L0 and LT represent
the label graph in its early stage and by the end of the campaign of lifecycle
T , respectively. It is called a label graph since the interaction data provides a
strong hint for the form of interference. Previously, labeled data is less discussed
because users already participated cannot join a new round of A/B testing. The
novelty of LinkLouvain is that it uses link prediction to generalize the form of
interference from this label graph to all users in the social graph G, and predicts
an “estimator bias” for all edges V .

Various properties of the two collected graphs are analyzed in section 4.1.

3 The Proposed Framework

To cluster a rapidly evolving graph, we train a GNN based link prediction model
to predict possible edges in the evolving graph. Then we apply a traditional graph
clustering algorithm such as Louvain to split the graph into small clusters. To
use these clusters in A/B testing, we randomly combine them into desired p test
groups. The procedure is shown in Figure 3. Label comes from the edges (positive
labels) in the current campaign graph and non-edges (negative labels) that exist
only in the social graph G.

Fig. 3: Processing pipeline of the proposed LinkLouvain framework.
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3.1 GNN based Link Prediction Models

GNNs are a set of deep learning architectures that aggregate information from
nodes’ neighbors using neural networks. Deeper layers aggregate more distant
neighbors, and the kth layer embedding of node v is

hk
v = σ(Wk ·AGG(hk−1

u ,∀u ∈ N (v) ∪ {v}))

where the initial embedding h0
v = xv is its node feature vector, σ is a non-linear

function, and AGG is an aggregation function that differs in GNN architectures.

Figure 4 shows a naive GNN based link prediction algorithm with a twin-
tower architecture. Each target node of an edge aggregates its own neighbors for
K times. After aggregation of K-hop neighbors, the final embeddings hK

A and
hK
B of two target nodes A and B are concatenated and fed to the final dense

layer.

Fig. 4: Model architecture for link prediction. G: 1-hop neighborhood of a node;
X: edge features; h: GNN embeddings; one-hot vectors: node labeling.

Moreover, we add structural features called node labeling [12] to naive link
prediction. Node labeling assigns a one-hot vector to each node in the K-hop
neighborhood of two target nodes A and B. It marks nodes’ different roles in
this neighborhood. For example, the left graph in Figure 4 has 5 nodes in A and
B’s 1-hop neighborhood. There are three roles in the neighborhood: A and B are
target nodes; C and D are nodes connecting both target nodes; E is a node that
only connects to one target. The node labeling vector is appended to each node’s
original feature vector and tells GNN its relative location around the edge to be
predicted. It helps GNN to have more accurate predictions on link existence.
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Comparison of Link Prediction Models in Online Marketing Campaign
In the early stage of the online marketing campaign, we collect and sample user
interactions as positive training samples and non-invitation relations as negative
training samples. All training samples exist in our social graph G. There are 1.5
million positive edges and 1.5 million negative edges. Each edge has 128 features
representing user interaction history. We compare the following models for the
link prediction task:

– DNN: a dense neural network of five layers with layer size [512, 256, 128, 64, 16].
– NG-LP: a naive GNN link prediction method with 2-hop neighbors (K = 2)

and embedding size 64.
– NL-LP: a node labeling link prediction method with 2-hop neighbors (K = 2)

and embedding size 64.

The main results are summarized in Table 1. F12, KS3, and AUC 4 are widely
used binary classification metrics. NL-LP performs the best by taking structural
information into account.

Table 1: Link prediction task comparison.
DNN NG-LP NL-LP

F1 0.88 0.89 0.91
KS 0.74 0.79 0.84
AUC 0.91 0.92 0.96

3.2 Graph Filtering

The output scores on edges represent possibilities of future online interactions.
We filter out less possible edges and set the prediction score as edge weight.
Graph filtering is crucial for a billion-node graph and the reasons are two-fold:

– Computation resources are limited for graphs of such size.
– Clustering algorithms like Louvain tend to generate unbalanced clusters

when handling densely connected graphs. They undermine A/B testing per-
formance heavily. Removing unnecessary edges help prevent long tails of
resulting clusters.

However, if we set the threshold (γ) to abandon or keep an edge too high,
we could drop too many possible edges. This introduces great bias on ATE esti-
mates. We choose γ considering the trade-off between efficiency and effectiveness.

In the online marketing campaign, we set the threshold to be 0.5, and clus-
tering the remaining graph costs 0.6 hours.

2 https://en.wikipedia.org/wiki/F1_score
3 https://en.wikipedia.org/wiki/Kolmogorov-Smirnov_test
4 https://en.wikipedia.org/wiki/Receiver_operating_characteristic

https://en.wikipedia.org/wiki/F1_score
https://en.wikipedia.org/wiki/Kolmogorov-Smirnov_test
https://en.wikipedia.org/wiki/Receiver_operating_characteristic
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Fig. 5: Left : The vertex degree distribution of our real social network G at dif-
ferent growth levels, as well as G after graph filtering by LinkLouvain. Right :
Since the treatment effect of a user depends on his/her neighborhood’s treat-
ment status, there exists interference. Moreover, this influence is non-linear to
the fractional exposure level, and cannot be corrected afterward easily.

3.3 Graph Clustering

To generate clusters of users as randomization units, we use Louvain to cluster
the filtered graph G′ . Clustering algorithms are well-discussed. In [4], researchers
investigate several distributed clustering algorithms, such as label propagation
and Louvain. Their result shows that Louvain performs better in preserving more
intra-cluster edges and reducing network interference. Experiment results in the
next section (Table 2) also support this conclusion.

The resulting clusters are finally randomly merged into partitions of the
desired size p. These are the p test groups in A/B testing.

4 Application on Online Marketing Campaign

4.1 Patterns of Our Real-World Graphs

Though G is a large social network that does not change frequently, the size of
L grows quickly as users joining our campaign. Therefore we can analyze the
growth property of our social network. As the number of nodes in L reaches 1,
10, 40, 160 millions, we construct a subgraph of G with all nodes in L, and keep
all edges between these nodes. Hence we can analyze the growth property of our
social network retrospectively. We compare the graph properties of these four
subgraphs of G, as well as the full graph G, which contains more than 1 billion
nodes.

Maximum Degree Growth is Unbounded In Figure 5 Left, we compare the
degree distribution of G at different growth levels. We find that as the network
grows larger, customers build more connections with each other, and the degree



LinkLouvain 9

distribution shifts right. The long right tails of all five series suggest that the
degree of this social network has a right-skewed distribution regardless of the
network size. Moreover, diverged from bounded maximum degree assumptions
[11], the maximum degree grows almost linearly to the number of nodes in the
graph, and thus, unbounded.

In Figure 5 Left, We also plot the degree distribution of the full graph G
after graph filtering by LinkLouvain. It is clear that the degree distribution
is less skewed compared to the original distribution of the full social graph G
(labeled ”>1B”). The intuition behind is that not all edges in G have the same
influence on our online marketing campaign. Therefore we can eliminate many
edges that are not likely to have interactions with LinkLouvain and hence reduce
interference in our cluster-level randomization scheme.

Network Interference We examine network interference patterns on our social
network by estimating the ATE on different neighborhood fractional exposure
level [4] (share of neighbors that are in the treatment group) to see if there is
any pattern. We divide users into subgroups according to their different fractional
exposure levels and plot estimate ATEs with respect to each group as a curve in
figure 5 Right. We can draw two main conclusions. First, the treatment effect of
a user depends on his/her neighborhood’s treatment status, which means that
the interference exists. Second, the interference does not follow a linear-additive
pattern; in other words, the ATE is not linear with the fractional exposure level.

This explains the difficulty of using the afterward correction approach: there
is no universal assumption for the form of interference suitable for all cases.
The true form of interference might be complicated, and the linear-additive
assumption might be over-simplified.

4.2 Metrics

Lower estimator bias and variance indicate more accurate and sound estimations.
Here we introduce how to measure them.

Estimator Bias is measured by the degree of network interference between
test groups. Clusters of users are randomly merged to p desired A/B test groups.
Edges of graph LT exist between test groups, and their interference is denoted

as I = |E−|
|ET

L |
, where ET

L is the set of all edges (invitations in the campaign) in

graph LT , and E− is the set of edges in graph LT connecting nodes across test
groups.

Estimator Variance represents the statistical power of designed estimators.
To get higher statistical power, our estimator should generate clusters where the
ATE metric of the clusters has a lower variance, which means online experiments
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are more sensitive. We use the following formula from [2] to calculate the variance
of clusters in an estimator,

Var(Y ) ≈ 1

Kµ2
N

(
σ2
S − 2

µS

µN
σSN +

µ2
S

µ2
N

σ2
N

)
,

where Ȳ is the total estimated conversion rate in this A/B testing group. K is
the number of clusters in the group. S and N are the random variables of the sum
of individual conversion and individual number respectively. µ and σ calculate
the mean and variance/covariance of the corresponding random variables. We
evaluate the metric variance with the same group size (1% of the total traffic).

4.3 Methods for Comparison

The methods in our comparative evaluation are as follows.

– Geo: the classical strategy to cluster users by their geographic locations.
– LinkLouvain: our proposed method with graph filtering threshold γ.
– Louvain: an ablation study that removes the link prediction stage and the

graph filtering stage.
– HRLouvain: an ablation study that replaces the link prediction stage and

the graph filtering stage by removing hotspots (nodes with more than θ
neighbors).

– LinkLouvain-UW: an ablation study that replaces link prediction edge weight
by 1 in our proposed method.

– LinkLabel: an ablation study with Louvain replaced by label propagation for
graph clustering.

4.4 Evaluation

Table 2 summarizes the evaluation results of all the methods on our campaign.
Metrics include estimator bias and estimator variance described in Section 4.2
as well as computation time. The number of clusters is also summarized for
reference.

In general, LinkLouvain shows effectiveness in delivering precise and sound
estimates and efficiency to run within 6 hours.

Consistency We compare three sets of threshold γ (0.2, 0.3, and 0.5) for Lin-
kLouvain, and their key metrics are consistent. It leads to an easier tuning pro-
cess during experiments.

Computational Performance We run clustering methods with 40 workers
on GRAPE [3]. Table 2 summarizes the computation time, and LinkLouvain
with γ = 0.5 and HRLouvain with θ = 40 are the most efficient in graph based
methods.
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Table 2: Evaluation summary. (Louvain runs for more than one day and drains
computational resources. Its results are not available.)

Methods # of clusters I V ar(Ȳ ) Time
(%) (10−8) (h)

Geo 346 52 47890 0.2

LinkLouvain, γ = 0.2 206M 50 1.17 12.7

LinkLouvain, γ = 0.3 248M 49 1.15 9.8

LinkLouvain, γ = 0.5 359M 52 1.11 5.6

Louvain - - - >24

HRLouvain, θ = 40 367M 82 1.10 5.4

HRLouvain, θ = 100 145M 67 32.45 12.1

HRLouvain, θ = 200 98M 66 232.62 12.6

LinkLouvain-UW 442M 64 1.07 6.1

LinkLabel 351M 67 1.37 10.2

Comparison with Geo-based Methods A popular way to run A/B testing
in online services is to use geographic regions as randomization units. It serves
as a practical baseline for comparison. It is easy to use since it only requires
locations of user queries. We compare our method with geo-based partitioning,
and the results show we achieve much lower variance compared to this popular
approach.

4.5 Online Results

The online campaign run for 7 days and our LinkLouvain (γ = 0.5) method was
deployed to give estimates of ATE of different campaign strategies such as giving
discount coupons or cash coupons. The ATE is the average payment made by
users who receive coupons, and the ATE estimate of the best strategy is 1.05
times better than baseline (giving everyone a small amount of cash) without
increasing the campaign budget. The A/B test was run on 2% users in the
campaign, and after monitoring strategies for a day, the best coupon-distributing
strategy was applied to 100% users. The performance of the campaign exceeds
expectations with the help of LinkLouvain.

5 Conclusion

In this paper, we discuss network A/B testing motivated by interaction-promoting
services. We analyze this problem in a real social graph and our label graph and
develop LinkLouvain to address network A/B testing. The proposed approach is
computationally efficient and achieves the preferable balance between estimator
bias and estimator variance with the help of link prediction. It is deployed on a
real marketing campaign and gives accurate and sound estimates of ATEs.
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