Skip to main content

Phase Prediction of Multi-principal Element Alloys Using Support Vector Machine and Bayesian Optimization

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12672))

Abstract

Designing new materials with desired properties is a complex and time-consuming process. One of the challenging factors of the design process is the huge search space of possible materials. Machine learning methods such as k-nearest neighbours, support vector machine (SVM) and artificial neural network (ANN) can contribute to this process by predicting materials properties accurately. Properties of multi-principal element alloys (MPEAs) highly depend on alloys’ phase. Thus, accurate prediction of the alloy’s phase is important to narrow down the search space. In this paper, we propose a solution of employing support vector machine method with hyperparameters tuning and the use of weight values for prediction of the alloy’s phase. Using the dataset consisting of the experimental results of 118 MPEAs, our solution achieves the cross-validation accuracy of 90.2%. We confirm the superiority of this score over the performance of ANN statistically. On the other dataset containing 401 MPEAs, our SVM model is comparable to ANN and exhibits 70.6% cross-validation accuracy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abu-Odeh, A., et al.: Efficient exploration of the high entropy alloy composition-phase space. Acta Mater. 152, 41–57 (2018). https://doi.org/10.1016/j.actamat.2018.04.012

    Article  Google Scholar 

  2. Cantor, B., Chang, I.T.H., Knight, P., Vincent, A.J.B.: Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 375–377(1–2), 213–218 (2004). https://doi.org/10.1016/j.msea.2003.10.257

    Article  Google Scholar 

  3. Chattopadhyay, C., Prasad, A., Murty, B.S.: Phase prediction in high entropy alloys - a kinetic approach. Acta Mater. 153, 214–225 (2018). https://doi.org/10.1016/j.actamat.2018.05.002

    Article  Google Scholar 

  4. Cohen, P.R.: Empirical Methods for Artificial Intelligence. The MIT Press, Cambridge (1995)

    MATH  Google Scholar 

  5. Dai, D., et al.: Using machine learning and feature engineering to characterize limited material datasets of high-entropy alloys. Comput. Mater. Sci 175, 109618 (2020). https://doi.org/10.1016/j.commatsci.2020.109618

  6. Guo, S., Liu, C.T.: Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase. Progress Natural Sci. Materials Int. 21(6), 433–446 (2011). https://doi.org/10.1016/S1002-0071(12)60080-X

    Article  Google Scholar 

  7. Han, J., Kamber, M., Pei, J.: Data Mining. Elsevier (2012). https://doi.org/10.1016/C2009-0-61819-5. https://linkinghub.elsevier.com/retrieve/pii/C20090618195

  8. Huang, W., Martin, P., Zhuang, H.L.: Machine-learning phase prediction of high-entropy alloys. Acta Mater. 169, 225–236 (2019). https://doi.org/10.1016/j.actamat.2019.03.012

    Article  Google Scholar 

  9. Huhn, W.P., Widom, M.: Prediction of A2 to B2 phase transition in the high-entropy alloy Mo-Nb-Ta-W. JOM 65(12), 1772–1779 (2013). https://doi.org/10.1007/s11837-013-0772-3

    Article  Google Scholar 

  10. Islam, N., Huang, W., Zhuang, H.: Machine learning for phase selection in multi-principal element alloys. Comput. Mater. Sci. 150, 230–235 (2018). https://doi.org/10.1016/j.commatsci.2018.04.003

    Article  Google Scholar 

  11. Kanji, G.: 100 Statistical Tests. SAGE Publications Ltd, 1 Oliver’s Yard, 55 City Road, London EC1Y 1SP United Kingdom (2006). https://doi.org/10.4135/9781849208499, http://methods.sagepub.com/book/100-statistical-tests

  12. Kim, G., Diao, H., Lee, C., Samaei, A., Phan, T., de Jong, M., An, K., Ma, D., Liaw, P.K., Chen, W.: First-principles and machine learning predictions of elasticity in severely lattice-distorted high-entropy alloys with experimental validation. Acta Mater. 181, 124–138 (2019). https://doi.org/10.1016/j.actamat.2019.09.026

    Article  Google Scholar 

  13. Koval, N.E., Juaristi, J.I., Díez Muiño, R., Alducin, M.: Elastic properties of the \(\rm TiZrNbTaMo\) multi-principal element alloy studied from first principles. Intermetallics 106, 130–140 (2019). https://doi.org/10.1016/j.intermet.2018.12.014

    Article  Google Scholar 

  14. Kuhn, M., Johnson, K.: Applied Predictive Modeling. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-6849-3

  15. Lee, S.Y., Byeon, S., Kim, H.S., Jin, H., Lee, S.: Deep learning-based phase prediction of high-entropy alloys: optimization, generation, and explanation. Mater. Des. 197, 109260 (2021). https://doi.org/10.1016/j.matdes.2020.109260

  16. Lyu, Z., Lee, C., Wang, S.-Y., Fan, X., Yeh, J.-W., Liaw, P.K.: Effects of constituent elements and fabrication methods on mechanical behavior of high-entropy alloys: a review. Metall. Mater. Trans. A. 50(1), 1–28 (2018). https://doi.org/10.1007/s11661-018-4970-z

    Article  Google Scholar 

  17. Ma, D., Grabowski, B., Körmann, F., Neugebauer, J., Raabe, D.: Ab initio thermodynamics of the cocrfemnni high entropy alloy: importance of entropy contributions beyond the configurational one. Acta Mater. 100, 90–97 (2015). https://doi.org/10.1016/j.actamat.2015.08.050

    Article  Google Scholar 

  18. Manzoor, A., Aidhy, D.S.: Predicting vibrational entropy of fcc solids uniquely from bond chemistry using machine learning. Materialia 12, 100804 (2020). https://doi.org/10.1016/j.mtla.2020.100804

  19. Miracle, D.B., Senkov, O.N.: A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448–511 (2017). https://doi.org/10.1016/j.actamat.2016.08.081

    Article  Google Scholar 

  20. Mockus, J.: Bayesian Approach to Global Optimization: Theory and Applications. Kluwer Academic Publishers, New York (1989)

    Book  Google Scholar 

  21. Niu, X., Yang, C., Wang, H., Wang, Y.: Investigation of ANN and SVM based on limited samples for performance and emissions prediction of a CRDI-assisted marine diesel engine. Appl. Therm. Eng. 111, 1353–1364 (2017). https://doi.org/10.1016/j.applthermaleng.2016.10.042

    Article  Google Scholar 

  22. Nong, Z., Wang, H., Zhu, J.: First-principles calculations of structural, elastic and electronic properties of \(({\rm TaNb})_{0.67}({\rm HfZrTi})_{0.33}\) high-entropy alloy under high pressure. Int. J. Miner. Metall. Mater. 27(10), 1405–1414 (2020). https://doi.org/10.1007/s12613-020-2095-z

    Article  Google Scholar 

  23. Nong, Z.S., Zhu, J.C., Cao, Y., Yang, X.W., Lai, Z.H., Liu, Y.: Stability and structure prediction of cubic phase in as cast high entropy alloys. Mater. Sci. Technol. (United Kingdom) 30(3), 363–369 (2014). https://doi.org/10.1179/1743284713Y.0000000368

    Article  Google Scholar 

  24. Pei, Z., Yin, J., Hawk, J., Alman, D.E., Gao, M.C.: Machine-learning informed prediction of high-entropy solid solution formation: Beyond the Hume-Rothery rules. NPJ Comput. Mater. 6(1), 50 (2020). https://doi.org/10.1038/s41524-020-0308-7

  25. Roy, A., Babuska, T., Krick, B., Balasubramanian, G.: Machine learned feature identification for predicting phase and Young’s modulus of low-, medium- and high-entropy alloys. Scripta Mater. 185, 152–158 (2020). https://doi.org/10.1016/j.scriptamat.2020.04.016

    Article  Google Scholar 

  26. Senkov, O.N., Miller, J.D., Miracle, D.B., Woodward, C.: Accelerated exploration of multi-principal element alloys with solid solution phases. Nat. Commun. 6, 6529 (2015). https://doi.org/10.1038/ncomms7529

    Article  Google Scholar 

  27. Stanton, J.M.: Reasoning with Data: An Introduction to Traditional and Bayesian Statistics Using R. The Guilford Press, New York (2017)

    Google Scholar 

  28. Takeuchi, A., Inoue, A.: Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater. Trans. 46(12), 2817–2829 (2005). https://doi.org/10.2320/matertrans.46.2817, https://www.jstage.jst.go.jp/article/matertrans/46/12/46_12_2817/_article

  29. Tian, F., Delczeg, L., Chen, N., Varga, L.K., Shen, J., Vitos, L.: Structural stability of \(\rm NiCoFeCrAl_{x}\) high-entropy alloy from AB initio theory. Phys. Rev. B 88(8), 085128 (2013). https://doi.org/10.1103/PhysRevB.88.085128

  30. Tian, F., Varga, L.K., Chen, N., Shen, J., Vitos, L.: Ab initio design of elastically isotropic \(\rm TiZrNbMoV_{x}\) high-entropy alloys. J. Alloy. Compd. 599, 19–25 (2014). https://doi.org/10.1016/j.jallcom.2014.01.237

    Article  Google Scholar 

  31. Troparevsky, M.C., Morris, J.R., Daene, M., Wang, Y., Lupini, A.R., Stocks, G.M.: Beyond atomic sizes and Hume-Rothery rules: understanding and predicting high-entropy alloys. JOM 67(10), 2350–2363 (2015). https://doi.org/10.1007/s11837-015-1594-2

    Article  Google Scholar 

  32. Tsai, M.H., Yeh, J.W.: High-entropy alloys: a critical review. Mater. Res. Lett. 2(3), 107–123 (2014). https://doi.org/10.1080/21663831.2014.912690

    Article  Google Scholar 

  33. Wen, C., et al.: Machine learning assisted design of high entropy alloys with desired property. Acta Mater. 170, 109–117 (2019). https://doi.org/10.1016/j.actamat.2019.03.010

    Article  Google Scholar 

  34. Yao, H.W., Qiao, J.W., Hawk, J.A., Zhou, H.F., Chen, M.W., Gao, M.C.: Mechanical properties of refractory high-entropy alloys: experiments and modeling. J. Alloy. Compd. 696, 1139–1150 (2017). https://doi.org/10.1016/j.jallcom.2016.11.188

    Article  Google Scholar 

  35. Ye, Y.F., Wang, Q., Lu, J., Liu, C.T., Yang, Y.: High-entropy alloy: challenges and prospects. Mater. Today 19(6), 349–362 (2016). https://doi.org/10.1016/j.mattod.2015.11.026

    Article  Google Scholar 

  36. Yeh, J.W., et al.: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6(5), 299–303 (2004). https://doi.org/10.1002/adem.200300567

    Article  Google Scholar 

  37. Zhou, Z., Zhou, Y., He, Q., Ding, Z., Li, F., Yang, Y.: Machine learning guided appraisal and exploration of phase design for high entropy alloys. NPJ Comput. Mater. 5(1), 128 (2019). https://doi.org/10.1038/s41524-019-0265-1

Download references

Acknowledgement

This work was partly carried out at the Joint Research Center for Environmentally Conscious Technologies in Materials Science (Project No. 02007, Grant No. JPMXP0618217637) at ZAIKEN, Waseda University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Hai Chau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chau, N.H., Kubo, M., Hai, L.V., Yamamoto, T. (2021). Phase Prediction of Multi-principal Element Alloys Using Support Vector Machine and Bayesian Optimization. In: Nguyen, N.T., Chittayasothorn, S., Niyato, D., Trawiński, B. (eds) Intelligent Information and Database Systems. ACIIDS 2021. Lecture Notes in Computer Science(), vol 12672. Springer, Cham. https://doi.org/10.1007/978-3-030-73280-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73280-6_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73279-0

  • Online ISBN: 978-3-030-73280-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics