Skip to main content

Demand Forecasting for Textile Products Using Statistical Analysis and Machine Learning Algorithms

  • Conference paper
  • First Online:
Intelligent Information and Database Systems (ACIIDS 2021)

Abstract

The generation of an accurate forecast model to estimate the future demand for textile products that favor decision-making around an organization's key processes is very important. The minimization of the model's uncertainty allows the generation of reliable results, which prevent the textile industry's economic commitment and improve the strategies adopted around production planning and decision making. That is why this work is focused on the demand forecasting for textile products through the application of artificial neural networks, from a statistical analysis of the time series and disaggregation in different time horizons through temporal hierarchies, to develop a more accurate forecast. With the results achieved, a comparison is made with statistical methods and machine learning algorithms, providing an environment where there is an adequate development of demand forecasting, improving accuracy and performance. Where all the variables that affect the productive environment of this sector under study are considered. Finally, as a result of the analysis, multilayer perceptron achieved better performance compared to conventional and machine learning algorithms. Featuring the best behavior and accuracy in demand forecasting of the analyzed textile products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lorente-Leyva, L.L., et al.: Optimization of the master production scheduling in a textile industry using genetic algorithm. In: Pérez García, H., Sánchez González, L., Castejón Limas, M., Quintián Pardo, H., Corchado Rodríguez, E. (eds.) HAIS 2019. LNCS (LNAI), vol. 11734, pp. 674–685. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29859-3_57

    Chapter  Google Scholar 

  2. Ren, S., Chan, H.-L., Ram, P.: A comparative study on fashion demand forecasting models with multiple sources of uncertainty. Ann. Oper. Res. 257(1–2), 335–355 (2016). https://doi.org/10.1007/s10479-016-2204-6

    Article  MathSciNet  Google Scholar 

  3. Bruzda, J.: Quantile smoothing in supply chain and logistics forecasting. Int. J. Prod. Econ. 208, 122–139 (2019). https://doi.org/10.1016/j.ijpe.2018.11.015

    Article  Google Scholar 

  4. Silva, P.C.L., Sadaei, H.J., Ballini, R., Guimaraes, F.G.: Probabilistic forecasting with fuzzy time series. IEEE Trans. Fuzzy Syst. (2019). https://doi.org/10.1109/TFUZZ.2019.2922152

    Article  Google Scholar 

  5. Trull, O., García-Díaz, J.C., Troncoso, A.: Initialization methods for multiple seasonal Holt-Winters forecasting models. Mathematics 8(2), 1–6 (2020). https://doi.org/10.3390/math8020268

    Article  Google Scholar 

  6. Murray, P.W., Agard, B., Barajas, M.A.: Forecast of individual customer’s demand from a large and noisy dataset. Comput. Ind. Eng. 118, 33–43 (2018). https://doi.org/10.1016/j.cie.2018.02.007

    Article  Google Scholar 

  7. Prak, D., Teunter, R.: A general method for addressing forecasting uncertainty in inventory models. Int. J. Forecast. 35(1), 224–238 (2019). https://doi.org/10.1016/j.ijforecast.2017.11.004

    Article  Google Scholar 

  8. Fabianova, J., Kacmary, P., Janekova, J.: Operative production planning utilising quantitative forecasting and Monte Carlo simulations. Open Engineering 9(1), 613–622 (2020). https://doi.org/10.1515/eng-2019-0071

    Article  Google Scholar 

  9. Bajari, P., Nekipelov, D., Ryan, S.P., Yang, M.: Machine learning methods for demand estimation. Am. Econ. Rev. 105(5), 481–485 (2015). https://doi.org/10.1257/aer.p20151021

    Article  Google Scholar 

  10. Villegas, M.A., Pedregal, D.J., Trapero, J.R.: A support vector machine for model selection in demand forecasting applications. Comput. Ind. Eng. 121, 1–7 (2018). https://doi.org/10.1016/j.cie.2018.04.042

    Article  Google Scholar 

  11. Han, S., Ko, Y., Kim, J., Hong, T.: Housing market trend forecasts through statistical comparisons based on big data analytic methods. J. Manage. Eng. 34(2) (2018). https://doi.org/10.1061/(ASCE)ME.1943-5479.0000583

  12. Lorente-Leyva, L.L., Alemany, M.M.E., Peluffo-Ordóñez, D.H., Herrera-Granda, I.D.: A comparison of machine learning and classical demand forecasting methods: a case study of Ecuadorian textile industry. In: Nicosia, G., et al. (eds.) LOD 2020. LNCS, vol. 12566, pp. 131–142. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64580-9_11

    Chapter  Google Scholar 

  13. Ren, S., Chan, H.-L., Siqin, T.: Demand forecasting in retail operations for fashionable products: methods, practices, and real case study. Ann. Oper. Res. 291(1–2), 761–777 (2019). https://doi.org/10.1007/s10479-019-03148-8

    Article  MathSciNet  Google Scholar 

  14. DuBreuil, M., Lu, S.: Traditional vs. big-data fashion trend forecasting: an examination using WGSN and EDITED. Int. J. Fashion Des. Technol. Educ. 13(1), 68–77 (2020). https://doi.org/10.1080/17543266.2020.1732482

    Article  Google Scholar 

  15. Ha, C., Seok, H., Ok, C.: Evaluation of forecasting methods in aggregate production planning: a Cumulative Absolute Forecast Error (CAFE). Comput. Ind. Eng. 118, 329–339 (2018). https://doi.org/10.1016/j.cie.2018.03.003

    Article  Google Scholar 

  16. Lorente-Leyva, L.L., et al.: Artificial neural networks in the demand forecasting of a metal-mechanical industry. J. Eng. Appl. Sci. 15, 81–87 (2020). https://doi.org/10.36478/jeasci.2020.81.87

    Article  Google Scholar 

  17. Weng, Y., et al.: Forecasting horticultural products price using ARIMA model and neural network based on a large-scale data set collected by Web Crawler. IEEE Trans. Comput. Soc. Syst. 6(3), 547–553 (2019). https://doi.org/10.1109/TCSS.2019.2914499

    Article  Google Scholar 

  18. Lorente-Leyva, L.L., et al.: Artificial neural networks for urban water demand forecasting: a case study. J. Phys. Conf. Ser. 1284(1), 012004 (2019). https://doi.org/10.1088/1742-6596/1284/1/012004

    Article  Google Scholar 

  19. Kley-Holsteg, J., Ziel, F.: Probabilistic multi-step-ahead short-term water demand forecasting with Lasso. J. Water Resour. Plan. Manage. 146(10), 04020077 (2020). https://doi.org/10.1061/(ASCE)WR.1943-5452.0001268

    Article  Google Scholar 

  20. Kück, M., Freitag, M.: Forecasting of customer demands for production planning by local k-nearest neighbor models. Int. J. Prod. Econ. 231, 107837 (2021). https://doi.org/10.1016/j.ijpe.2020.107837

    Article  Google Scholar 

  21. Gaba, A., Popescu, D.G., Chen, Z.: Assessing uncertainty from point forecasts. Manage. Sci. 65(1), 90–106 (2019). https://doi.org/10.1287/mnsc.2017.2936

    Article  Google Scholar 

  22. Zeng, Y., Yang, T., Breheny, P.: Hybrid safe–strong rules for efficient optimization in lasso-type problems. Comput. Stat. Data Anal. 153, 107063 (2021). https://doi.org/10.1016/j.csda.2020.107063

    Article  MathSciNet  Google Scholar 

  23. Coad, A., Srhoj, S.: Catching Gazelles with a Lasso: big data techniques for the prediction of high-growth firms. Small Bus. Econ. 55(3), 541–565 (2019). https://doi.org/10.1007/s11187-019-00203-3

    Article  Google Scholar 

  24. Li, M., Guo, Q., Zhai, W.J., Chen, B.Z.: The linearized alternating direction method of multipliers for low-rank and fused LASSO matrix regression model. J. Appl. Stat. 47(13–15), 2623–2640 (2020). https://doi.org/10.1080/02664763.2020.1742296

    Article  MathSciNet  Google Scholar 

  25. Loureiro, A.L., Miguéis, V.L., da Silva, L.F.: Exploring the use of deep neural networks for sales forecasting in fashion retail. Decis. Support Syst. 114, 81–93 (2018). https://doi.org/10.1016/j.dss.2018.08.010

    Article  Google Scholar 

  26. Du, W., Leung, S.Y.S., Kwong, C.K.: A multiobjective optimization-based neural network model for short-term replenishment forecasting in fashion industry. Neurocomputing 151, 342–353 (2015). https://doi.org/10.1016/j.neucom.2014.09.030

    Article  Google Scholar 

  27. Abolghasemi, M., Beh, E., Tarr, G., Gerlach, R.: Demand forecasting in supply chain: the impact of demand volatility in the presence of promotion. Comput. Ind. Eng. 142, 106380 (2020). https://doi.org/10.1016/j.cie.2020.106380

    Article  Google Scholar 

  28. Sagaert, Y.R., Aghezzaf, E.-H., Kourentzes, N., Desmet, B.: Tactical sales forecasting using a very large set of macroeconomic indicators. Eur. J. Oper. Res. 264(2), 558–569 (2018). https://doi.org/10.1016/j.ejor.2017.06.054

    Article  MATH  Google Scholar 

  29. Crone, S.F., Kourentzes, N.: Feature selection for time series prediction–a combined filter and wrapper approach for neural networks. Neurocomputing 73(10–12), 1923–1936 (2010). https://doi.org/10.1016/j.neucom.2010.01.017

    Article  Google Scholar 

  30. Ewees, A., et al.: Improving multilayer perceptron neural network using chaotic grasshopper optimization algorithm to forecast iron ore price volatility. Resour. Policy 65, 101555 (2020). https://doi.org/10.1016/j.resourpol.2019.101555

    Article  Google Scholar 

  31. Beale, M.H., Hagan, M.T., Demuth, H. B.: Neural network toolbox™ user’s guide. In: R2012a, The MathWorks, Inc., 3 Apple Hill Drive Natick, MA, 01760-2098 (2012). www.mathworks.com.

  32. Athanasopoulos, G., Hyndman, R.J., Kourentzes, N., Petropoulos, F.: Forecasting with temporal hierarchies. Eur. J. Oper. Res. 262(1), 60–74 (2017). https://doi.org/10.1016/j.ejor.2017.02.046

    Article  MathSciNet  MATH  Google Scholar 

  33. Spiliotis, E., Petropoulos, F., Assimakopoulos, V.: Improving the forecasting performance of temporal hierarchies. PLoS ONE 14(10), e0223422 (2019). https://doi.org/10.1371/journal.pone.0223422

    Article  Google Scholar 

Download references

Acknowledgment

The authors are greatly grateful by the support given by the SDAS Research Group (www.sdas-group.com).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leandro L. Lorente-Leyva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lorente-Leyva, L.L., Alemany, M.M.E., Peluffo-Ordóñez, D.H., Araujo, R.A. (2021). Demand Forecasting for Textile Products Using Statistical Analysis and Machine Learning Algorithms. In: Nguyen, N.T., Chittayasothorn, S., Niyato, D., Trawiński, B. (eds) Intelligent Information and Database Systems. ACIIDS 2021. Lecture Notes in Computer Science(), vol 12672. Springer, Cham. https://doi.org/10.1007/978-3-030-73280-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73280-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73279-0

  • Online ISBN: 978-3-030-73280-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics