Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1383))

Included in the following conference series:

  • 928 Accesses

Abstract

Semi Non-negative Matrix Factorization (SNMF) is a machine learning algorithm that is used to decompose large data matrices where the data matrix is unconstrained (i.e., it may have mixed signs). We develop the quantum version of SNMF using quantum gradient descent, and we show that the quantum version of SNMF provides an exponential speedup compared to its classical version. Our approach is well adapted for high-dimensional problems since in the context of using a quantum approach only a few number of iterations is enough to obtain a close approximation of the factorization. From the algorithmic analysis point of view, the proposed algorithm for Quantum Semi Non-negative Matrix Factorization (QSNMF) yields a performance \(T\mathcal {O}( polylog K (M+N)),\) while the classical version of Semi Non-negative Matrix Factorization (SNMF) yields a performance \(T\mathcal {O}(poly (K M N))\) where M and N are the dimensions of the matrix, K is the number of clusters and T is the maximum number of iterations to prepare the quantum states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benlamine, K., Grozavu, N., Bennani, Y., Matei, B.: Collaborative non-negative matrix factorization. In: International Conference on Artificial Neural Networks, pp. 655–666. Springer (2019)

    Google Scholar 

  2. Cichocki, A., Phan, A.-H.: Fast local algorithms for large scale nonnegative matrix and tensor factorizations. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 92(3), 708–721 (2009)

    Article  Google Scholar 

  3. Ding, C., He, X., Simon, H.D.: On the equivalence of nonnegative matrix factorization and spectral clustering. In: Proceedings of the 2005 SIAM International Conference on Data Mining, pp. 606–610. SIAM (2005)

    Google Scholar 

  4. Ding, C.H.Q., Li, T., Jordan, M.I.: Convex and semi-nonnegative matrix factorizations. IEEE Trans. Pattern Anal. Mach. Intell. 32(1), 45–55 (2008)

    Article  Google Scholar 

  5. Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103(15), 150502 (2009)

    Article  MathSciNet  Google Scholar 

  6. Iten, R., Colbeck, R., Kukuljan, I., Home, J., Christandl, M.: Quantum circuits for isometries. Phys. Rev. A, 93, 032318 (2016)

    Google Scholar 

  7. Kim, J., Park, H.: Sparse nonnegative matrix factorization for clustering. Technical report, Georgia Institute of Technology (2008)

    Google Scholar 

  8. Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Nature 401(6755), 788 (1999)

    Article  Google Scholar 

  9. Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In: Advances in Neural Information Processing Systems, pp. 556–562 (2001)

    Google Scholar 

  10. Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum algorithms for supervised and unsupervised machine learning. arXiv preprint arXiv:1307.0411 (2013)

  11. Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum principal component analysis. Nat. Phys. 10(9), 631 (2014)

    Article  Google Scholar 

  12. Paatero, P., Tapper, U.: Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 5(2), 111–126 (1994)

    Article  Google Scholar 

  13. Rebentrost, P., Mohseni, M., Lloyd, S.: Quantum support vector machine for big feature and big data classification. arXiv preprint arXiv:1307.0471 (2013)

  14. Rebentrost, P., Schuld, M., Wossnig, L., Petruccione, F., Lloyd, S.: Quantum gradient descent and newton’s method for constrained polynomial optimization. New J. Phys. 21(7) (2019)

    Google Scholar 

  15. Shahnaz, F., Berry, M.W., Pauca, V.P., Plemmons, R.J.: Document clustering using nonnegative matrix factorization. Inf. Process. Manage. 42(2), 373–386 (2006)

    Article  Google Scholar 

  16. Xie, Y.-L., Hopke, P.K., Paatero, P.: Positive matrix factorization applied to a curve resolution problem. J. Chemom. 12(6), 357–364 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaoutar Benlamine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Benlamine, K., Bennani, Y., Matei, B., Grozavu, N. (2021). Quantum Semi Non-negative Matrix Factorization. In: Abraham, A., et al. Proceedings of the 12th International Conference on Soft Computing and Pattern Recognition (SoCPaR 2020). SoCPaR 2020. Advances in Intelligent Systems and Computing, vol 1383. Springer, Cham. https://doi.org/10.1007/978-3-030-73689-7_14

Download citation

Publish with us

Policies and ethics