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Abstract. Internet of Things (IoT) have demonstrated significant im-
pact on all aspects of human daily lives due to their pervasive applications
in areas such as telehealth, home appliances, surveillance, and wearable
devices. The number of IoT devices and sensors connected to the Inter-
net across the world is expected to reach over 50 billion by the end of
2020. However, the connection of such rapidly increasing number of IoT
devices to the Internet leads to concerns in cyber-attacks such as mal-
ware, worms, denial of service attack (DoS) and distributed DoS attack
(DDoS). To prevent these attacks from compromising the performance of
IoT devices, various approaches for detecting and mitigating cyber secu-
rity threats have been developed. This paper reports an IoT attack and
anomaly detection approach using the dendritic cell algorithm (DCA).
In particular, DCA is an artificial immune system (AIS), which is de-
veloped from the inspiration of the working principles and characteristic
behaviours of the human immune system, specifically for the purpose
of detecting anomalies in computer networks. The performance of the
DCA on detecting IoT attacks is evaluated using publicly available IoT
datasets involving five attacks including DoS, DDoS, Reconnaissance,
Keylogging, and Data exfiltration. The experimental results show that,
the DCA achieved better detection performance compared to some of
the commonly used classifiers, such as the decision trees, random forests,
support vector machines, artificial neural networks and näıve Bayes, but
with reasonably high computational efficiency.

Keywords: IoT, artificial immune systems, dendritic cell algorithm,
anomaly detection, cyber-attacks.

1 Introduction

The demand and deployment of IoT automated networks have been increas-
ing significantly in the past years [1, 2]. IoT sensors and actuators are deployed

This work has been supported by the Commonwealth Scholarship Commission (CSC-
TZCS-2017-717), the Royal Academy of Engineering (IAPP1\100077), and Mr.
Aminu Abulmalik who contributed to data processing and part of the experimenta-
tion under the Royal Academy of Engineering project.



2 Noe Elisa et al.

in various places, such as in industry, health monitoring systems, battlefield,
weather, transportation system etc, for monitoring, reporting, and activating
different events for timely and informed decision making [2]. IoT devices can
misbehave due to cyber-attacks or even due to breakdown of the system itself.
As IoT networks expand, attacks and anomalies in IoT networks increase signif-
icantly [3]. Typical cyber attacks to business websites, e-Government [4, 5], and
internet devices [6], such as malware, keyloggers, network scan, spying, DoS,
DDoS, Ramsonware, are more and more commonly appeared in IoT networks,
which can cause serious damages to IoT services and applications.

Many machine learning approaches ranging from supervised, unsupervised to
semi-supervised algorithms have been well exploited to develop IoT intrusion de-
tection models with promising performance generated [1,7]. One of the methods
that was developed for the purpose of anomaly detection in computer network
is AIS algorithms. This study develops an intrusion detection and mitigation
approach for IoT networks by using AIS. One of the robust, effective and re-
cently proposed AIS algorithm for anomaly detection is the DCA algorithm [8],
and this algorithm has been used in this study to develop the anomaly detection
approach for IoT networks. The development of AIS is mainly inspired by the
human immune system.

The DCA is a mathematical representation of the danger theory of human
immune system (HIS), which state that the HIS is concerned with things that
might cause damage to the human body and things that might not [9]. Thus, in
HIS, the recognition of invaders is performed by natural dendritic cells (DCs)
[10]. In HIS, any harmful substance is said to be associated with three signals
namely pathogenic associated molecular pattern (PAMP), danger signals (DS)
and safe signals (SS); and hence, the DCs sample these signals and present them
to HIS for a specialised immune response such as elimination or tolerance. In
fact, the DCA has been applied to detect attacks in computer networks with
promising performances [11–13].

The DCA goes through four phases to perform anomaly detection including
feature selection and signal categorisation, context detection of data samples,
context assignment, and finally classification of data samples [8]. Briefly, feature
selection is applied with the DCA to select the most informative attributes based
on a training dataset. Then, the selected features are categorised into three
signals of either PAMP, Danger Signal (DS) or Safe Singal (SS) depending on
their characteristic behaviour abstracted from the natural immune signals. Then,
the DCA initialises a number of artificial DCs which use a weighted function to
determine the context of each data sample from the three signals. Since each
DC process multiple data instances, during the context assignment phase, each
DC assigns all its data samples to the context it has found either as normal or
anomaly. During the classification phase, the final class of each data instance
is determined from a consensus decision reached by multiples DCs which have
sampled the data instance.

In this study, feature selection was performed by using the information gain
method [14], then, mutual information method was used to categorise each fea-
ture to its appropriate signal category by maximising mutual information in
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normal and anomaly class label presented in the dataset. Particles swarm opti-
misation algorithm (PSO) [15] was used to generate and optimise the weights
required by the DCs to process the signals of data samples during the context
detection phase of the DCA. The PSO was selected due to its ability to achieve
a good balance between exploitation and exploration of search space, implying
faster performance compared to other optimisation methods, such as genetic
algorithm, which has also been applied to optimise the DCA [12,16,17].

The performance of the proposed approach was evaluated by using publicly
available BoT IoT dataset which is comprised of five attacks including DoS,
DDoS, Reconnaissance and Keylogging and Data Exfiltration [7]. The perfor-
mance of the DCA method was compared with five state-of-the-art machine
learning classifiers including Support Vector Machine (SVM), Decision Tree
(DT), Random Forest (RF), Artificial Neural Network (ANN) and Näıve Bayes
(NB). The result shows that, the DCA method achieved better performance com-
pared to SVM, ANN and NB; whilst producing the comparable performance to
that of DT and RF.

The rest of this paper is structured as follows. Section 2 introduces the theo-
retical underpinnings of the IoT, biological DCs and the DCA algorithm. Section
3 presents the DCA-based approach used in this study. Section 4 details the ex-
perimentation process and finally, Section 5 concludes this study and suggests
probable future works.

2 Background

This section presents the theoretical underpinnings of IoT, biological DCs and
the DCA algorithm.

2.1 Internet of Things

IoT technologies comprise of automated devices that are networked together to
share information via the Internet [18]. IoT is one of the recently fastest grow-
ing technologies, with the number of IoT devices and sensors connected to the
Internet across the world expected to reach over 50 billion by the end of the
year 2020 [18]. Three elements make up a typical IoT based infrastructure: iden-
tification/data capture, processing, and communication. Thus, devices collect
data, process and send them to the server and return the results through the
Internet. The frequently generated data from IoT devices is collected at a cen-
tralised server for storage and analytics [1]. There are several application domain
in which IoT systems exist such as smart cities, logistics, healthcare, energy and
home automation [1].

Like any other networked systems, IoT networks are facing many cyber se-
curity threats [1–3]. Devices, data and network are some of the ways in which
attacks can be launched against IoT infrastructure. Attacks in IoT networks
include malware, keyloggers, scanner, spyware, DoS, and DDoS [1]. A compro-
mised IoT system can result into unavailability of network in its entirety or slow
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response due to overwhelmed request sent by attackers. The consequences of at-
tacks in IoT can be devastating causing a substantial loss in finance and putting
lives in danger such as in logistics and healthcare [1, 3].

Several techniques exist for detecting intrusion and attacks in IoT. Signature
based detection compares network activities to a database of suspected attacks
and whenever there is a match an alert is raised [3]. This approach clearly fails
when a new attack pattern is discovered and also requires that the database is
often updated with new attack patterns [17]. In contrast, anomaly based detec-
tion compares previous network activities with current activities and raises an
alarm when a deviation is detected. Thus, anomaly based detection is able to
detect novel patterns such as zero day attacks. Machine learning techniques such
as SVM, ANN, DT, RF, NB and etc, have been exploited to develop models for
anomaly detection for IoT [1]. However, these models suffer a number of limita-
tions such as high rate of false positives, high running costs and scalability [3].

2.2 Biological DCs

In natural HIS, the DCs are available in the body tissues such as skin, nose and
lung where they act as the first line of defense against foreign invaders [10]. DCs
are responsible for capturing antigens such as bacteria and virus or anything
identified as harmful and presenting them to the adaptive immune system for
a specialised immune response. DCs express co-stimulatory molecules and cy-
tokines on their own cell surface which limit the amount of time spent while
gathering antigens in the tissue before they migrate to the adaptive immune
system for presentation. In the adaptive immune system, T-cells are responsible
for destroying the invaders presented by DCs, including any cells infected by a
virus or bacteria [9]. DCs are sensitive to the concentrations of the following
three signals in HIS [9]:

– PAMP are abnormal proteins produced by viruses or bacteria which can
easily activate immune response.

– DS are released from the disrupted or stressed cells in the tissue which
indicates an anomalous situation but with lower score than the PAMP.

– SS are produced by normal cell death process in the tissue, which is an
indicator of normal cell behavior.

Generally, DCs exist in three states in HIS [9] depending on the concentra-
tions of SS, PAMP or DS signals in the tissue as follows:

1. Immature DCs (iDCs): are found in tissues in their pure state where
they still collect antigens (i.e.; normal proteins or anything foreign). The
concentration of the signals of the collected antigens causes iDC to move to
a full-mature or semi-mature state.

2. Full-mature DCs (mDCs): iDCs are transformed to mDCs when they are
exposed to a greater quantity of either PAMP or DS than SS which causes
immune reaction.

3. Semi-mature DCs (smDCs): iDCS are transformed to smDCs when they
are exposed to more SS than PAMP and DS which causes immune tolerance.
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2.3 Dendritic Cell Algorithm

DCA is a population based intrusion detection system where a population of
artificial DCs is created to form a pool from which a number of DCs are selected
to perform data sampling, context analysis and classification [8]. DCs in the pool
are exposed to current signal values and the corresponding data items included
in the data source [11]. Each DC has the ability to sample multiple data items.
During the classification, an aggregated sampling value from different DCs for a
particular data item is computed which is used to classify a data item as normal
or anomalous.

Normally, feature selection process is first applied with the DCA. Then, the
selected features are categorised into three input signals of either “PAMP”, “DS”
or “SS”. Briefly, PAMP indicates an definite abnormality associated with a par-
ticular feature. DS represents an abnormality associated with a feature but with
lower score than PAMP; and SS indicates a normality behaviour associated with
a feature. There are two common signal categorisation techniques used with the
DCA in the literature, including the manual approach by relying on the expert
knowledge of the problem domain [8, 19], and the automatic methods such as
PCA [13], fuzzy-rough set theory [20], GA shuffle mutation [21] or fuzzy infer-
ence systems [22,23]. In addition, the input features can also be aggregated into
the three signals using inference approaches [24].

After signal categorisation process, the DCA algorithm initialises a popu-
lation of artificial DCs (often 100) in a pool [8]. Then, the three input signals
are processed by a pre-selected number of DCs (often 10) in order to get three
output signals namely co-stimulatory signal (csm), mature signal (mDC) and
semi-mature signal (smDC) by applying:

Context[csm, smDC,mDC] =

m∑
d=1

∑3
i,j=1,1(cj ∗ wj

i )∑3
i,j=1,1 w

j
i

, (1)

where cj(j = 1, 2, 3), represent the PAMP, DS and SS signal values respectively;

and wj
i (i, j = 1, 2, 3) represent the weights of csm, mDC and smDC context,

regarding PAMP, DS and SS, respectively. The weights are usually either pre-
defined or derived empirically from the dataset [20]. Each DC is assigned a
migration threshold in order to determine the lifespan that it spends while sam-
pling data items and signals from the data source. Note that, DCs accumulate
the values of csm, mDCS and smDC overtime for multiple data items they
sample to obtain the cumulative values.

As soon as the cumulative csm value of a DC exceeds its assigned migration
threshold, it ceases sampling and moves to the mature pool. Then, the DC com-
pares the values of cumulative mDC and cumulative smDC to determine the
nature of the sampled data items. If cumulative smDC is greater than cumula-
tive mDC, the DC differentiate to semi-mature context, implying that the data
items collected are under normal condition. Otherwise, the DCs goes to mature
context, which implies that the data items sampled are potentially anomalous.

Note that, since one data item is usually sampled by multiple DCs, the final
classification label of each data item is determined from the number of DCs that
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are fully matured, and it is represented by the mature context antigen value
(MCAV). The MCAV is used to evaluate the degree of anomaly of each sampled
data item by multiple DCs. The MCAV is determined by dividing the number
of times a data sample is presented in mature context, by the total number of
presentation by multiples DCs that have sampled it. The closer the MCAV is to
1.0, the higher the probability that the data item is anomalous. Thus, an anomaly
threshold is computed from the training dataset by taking the percentage of
anomalous data samples. Those data items whose MCAV are greater than the
anomaly threshold are classified into the anomalous class, otherwise into the
normal one.

3 Anomaly detection in IoT Networks Using DCA

The proposed system for detecting anomalies and attacks in IoT networks by
using the DCA algorithm is illustrated in Figure 1. Firstly, feature selection
process is applied to a training dataset to select the most informative features.
Secondly, the selected features are categorised into three signals of either PAMP,
DS or SS based on their definitions derived from the biological metaphor [8].
Then, the PSO algorithm is exploited to generate and optimise the weights used
by the DCA in its context detection phase. The last two phases of the proposed
system are exactly the same as that in the conventional DCA, and thus the rest
of this section only focuses on feature selection, signal categorisation and context
detection phases of the DCA.

Fig. 1. The proposed DCA-based anomaly detection system in IoT networks

3.1 Feature Selection

The information gain method is firstly applied to select the most informative
features from the IoT dataset due to its efficiency and effectiveness [14]. Features
with high information gain are retained in the dataset as they have stronger
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influence in classifying the present data samples. Briefly, given a dataset S, the
information gain of an attribute F can be evaluated by using [14]:

G(S, F ) = H(S)−
∑

v∈values(F )

|Sv|
|S|
∗H(Sv), (2)

where values(F ) represents the whole set of potential values that attribute F
may take, Sv is a subset of S each having value v for attribute F , G is the
information gain, and H is the entropy. In particular, the entropy H is computed
as:

H(S) =

i=2∑
i=1

−pi ∗ log2pi, (3)

where pi is the probability of class i in the dataset S based on the values of
attribute F . The higher the entropy is, the higher the information the corre-
sponding attribute provides. A threshold is set so that only attributes with
higher information gains than the threshold are retained in the dataset for sig-
nal categorisation.

3.2 Signal Categorisation

In order to find a relevant subset of features for either PAMP, DS or SS, signal
categorisation is performed by maximising the feature-class mutual information
in this study. The mutual information, I(F ;C) between two random features F
and C is the amount of information that C gives about F . I(F ;C) is calculated
using:

I(F ;C) =
∑

f∈values(F ),c∈values(C)

p(f, c) ∗ log(
p(f, c)

p(f)p(c)
), (4)

where p(f, c) is the joint probability of values of f and c being taken, p(f)
and p(c) are the marginal probability of attributes values f and c being taken
respectively.

Note that, If an attribute has a higher mutual information with the normal
class and significant lower mutual information with the anomalous class, it is
assigned to SS; if an attribute has higher mutual information with the anomalous
class but significant lower mutual information with the normal class, it is assigned
to PAMP; otherwise, the feature is assigned to DS.

3.3 Weights Generation and Optimisation Using PSO

PSO is a population based stochastic optimisation technique insipired by the
behaviour of bird flocking [15,25]. Usually, PSO starts by initialising a population
of random solutions (i.e. particles) and search for optimal solution by updating
the velocity and position of each particle while iterating over a search space over
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a number of iterations. In PSO, diversification of solutions lies on the velocity
of particles, direction of particles and the best regions in the search space.

Typically, the initialised particles in PSO algorithm move through search
space by following the best particle in the current iteration. Thus, two best
values are used to update the position of particles in every iteration. The first
one is the fitness value that a particle has achieved so far, called personal best
(pbest). The second is called the global best value (gbest), which is the fitness
value of the best particle in the current iteration.

After evaluating the best values, each particle update its velocity (Vj(t+ 1))
and position (Zj(t + 1)) by using:

Vj(t + 1) = ωVj(t) + c1r1[pbest− Zj(t)] + c2r2[gbest− Zi(t)], (5)

Zj(t + 1) = Zj(t) + Vj(t + 1), (6)

where j is the index of a particle; ω is the inertia coefficient of the PSO; c1 and
c2 are particle’s acceleration coefficients (0 ≤ c1, c2 ≤ 2); r1 and r2 are random
values (0 ≤ r1, r2 ≤ 1) which are regenerated every time the velocity of a particle
is updated; Vj(t) is the velocity of a particle at time t; Zj(t) is the position of a
particle at time t; pbest is the particle’s individual best position at time t; gbest
is the swarm’s best particle in the current iteration at time t.

Each of the PSO parameters used in this work is detailed in the following
main steps.

1) Particle representation: In this work, a particle (P ) within a swarm is a
designated solution that comprises of all the parameters of DCA’s Equations 1.
Therefore, an individual is represented as
I = {w1

smDC , w
2
smDC , w

3
smDC , w

1
mDC , w

2
mDC , w

3
mDC , w

1
csm, w2

csm, w3
csm}, where

1,2,3 represent the three signals categories extracted from the selected features
during the pre-processing step.

2) Initialisation of particle’s parameters: The swarm S = {P1, P2, ..., PM} is
initialised with random numbers from a Gaussian distribution with a mean of 0
and a standard deviation of 5. Where, M is the total number of particles in the
swarm, with 10-30 being widely used [15,25].

3) Objective function: In this study, the objective function of the PSO is
equal to the classification accuracy computed by the DCA for each particle.

4) Acceleration coefficients: The acceleration coefficients c1 and c2, and the
random values r1 and r2, control the collaboration among particles and the best
particle in the swarm, as well as stochastic influence on the overall velocity of a
particle. Low values for c1 and c2 allow the particles to visit the search space far
from the best regions before being pulled back towards the best solutions [15],
while, r1 and r2 are randomly updated every time the velocity is calculated.

5) Inertia component: The ω helps to maintain the steady movement of parti-
cles in the same direction. Smaller value of ω accelerate convergence while larger
value encourages exploration of the search space, and is usually set between 0.8
and 1.2 [15].

6) neighborhood size: The neighborhood size defines the degree of particles
interaction within the swarm. The larger the neighborhood size the faster the
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convergence although the PSO will be more susceptible to local optimal solu-
tions. The smaller the neighborhood size, the slower the convergence but the
PSO will be more reliable to converge to global optimal solutions.

7) Iteration and termination: In this study, the PSO terminates when the
classification performance of the DCA exceeds the pre-specified threshold of the
maximum optimum accuracy or the pre-defined maximum number of iterations
is attained.

4 Experimentation

This section details the experimentation process and validation of the results as
well as the comparative evaluation of the DCA-based approach with five of the
state-of-the-art machine learning classifiers. All experiments were implemented
by using JAVA in NetBeans IDE 8.2. Then, the performance comparison were
performed by using an HP workstation with Intelr XeonTM E5-16030 v4 CPU
@3.70 GHz and 32GB RAM.

4.1 Benchmark Datasets

The dataset named BoT IoT [7] from Cyber Range Lab of the University of New
South Wales, Australia was used to evaluate the performance of the proposed
approach. The BoT IoT dataset was created by designing a realistic IoT network
environment while incorporating legitimate and simulated IoT network traffic,
along with five types of attacks including DDoS, DoS, Reconnaissance, Key-
logging and Data exfiltration attacks (i.e., Information Theft) [7]. The dataset
contains 7336090 samples and 17 features. Each data sample within the dataset
is labelled as either normal or anomaly.

Dataset Pre-processing: The IG method and mutual information maximisa-
tion were used for feature selection and signal categorisation respectively. Each
feature was normalised using the min-max normalisation.

DCs Initialisation and Sampling: The size of DCs population in the pool was
initialised to 100, then, in each DCA cycle, 10 matured DCs were used to process
the data samples and signals in the mature pool. The migration thresholds of
DCs were initialised in a Gaussian distribution with a mean of 5.0 and standard
deviation of 1.0. The anomaly threshold of each dataset was computed by taking
the ratio of the total number of anomaly class’s samples to the total number of
samples present in the dataset.

PSO Parameters: The parameter values used for the PSO include 250 number
of iterations, 20 individuals in a swarm, c1 = c2 = 2.0, 0 ≤ r1, r2 ≤ 1, initial
velocity V0 = 0, maximum velocity Vmax = 10 and ω = 0.95, as these values
have been found to be most suitable for the PSO [15].



10 Noe Elisa et al.

Measurement Metrics The performance of the DCA-based approach was
measured in terms of accuracy and detection rate of each attack type present in
the dataset.

Accuracy and detection rate are defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
,

Detection Rate =
TP

TP + FN

(7)

where TP, FP, TN, and FN refer respectively to true positive, false positive, true
negative and false negative, respectively.

4.2 Results and Analysis

The testing results on accuracy and detection rate for each attack type are sum-
marised in Table 1 regarding the proposed DCA-based approach and four widely
used classifiers including SVM, ANN, DT, RF and NB. The best performance
amongst these approaches on overall accuracy and each attack type is highlighted
in bold.

Table 1. Performance results and comparison

Approach Overall Accuracy (%)
Attacks detection rate(%)

DoS DDoS Reconn Info Theft

DCA 97.96 99.38 98.24 97.73 73.74

SVM 72.65 90.49 37.12 92.84 25.32

DT 95.92 96.94 95.95 93.94 89.67

RF 97.97 97.95 96.98 100.00 97.47

ANN 89.15 96.67 85.42 84.24 0.0

NB 66.10 92.38 95.18 2.68 98.73

From the results displayed in Table 1, it can be noticed that, the DCA-
based approach has produced higher detection rates on DoS and DDoS attacks
compared to the state-of-the-art classifiers. The classification accuracy of the
DCA is almost the same as the best performing accuracy of RF, thus, it has best
overall detection performances compared to other classifiers. For instance, RF
has better detection rate on reconnaissance attack but less effective on DoS and
DDoS and information theft when compared to the DCA. Same remark is noticed
for NB classifier where it has produced better detection rate on information
theft attack but it has poor detection performance on other attacks and the
overall classification accuracy. Ultimately, it can be concluded that, the DCA
algorithm is effective on detecting anomalies and attacks in IoT networks with
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better detection performances compared to some best state-of-the-art machine
learning classifiers.

Furthermore, the performance comparison in terms of running time for the
DCA and the compared classifiers is illustrated in Figure 2. Although DCA takes
much more time to train in comparison to RF and DT, taking its detection per-
formances in account, DCA is more appropriate and reasonable for mitigating
anomalies in IoT networks. Generally, the main goal is to make sure that, when
the DCA is deployed to detect attacks in IoT networks, it is capable of pro-
ducing higher and satisfactory detection results in comparison to the referenced
commonly used classifiers.

Fig. 2. The running time (sec) for classifiers

5 Conclusions

This work presented an approach for detecting anomalies and attacks in IoT
networks by using the DCA algorithm. The performance of the proposed ap-
proach was evaluated by using publicly available IoT datasets which include
five attacks DoS, DDoS, Reconnaissance and Keylogging and Data Exfiltration.
The DCA-based approach achieved better performance compared to some of
the commonly used classifiers such as SVM, DT, RF, ANN and NB. Although
promising, future work can improve its performance. It is interesting to further
explore how the DCA-based approach can be integrated with privacy-preserving
technologies such as the blockchain technology and cryptography to develop a
privacy-preserving system for IoT networks in order to reinforce information
privacy and security.
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