Skip to main content

On the Implementation and Strengthening of Intersection Cuts for QCQPs

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12707))

Abstract

The generation of strong linear inequalities for QCQPs has been recently tackled by a number of authors using the intersection cut paradigm—a highly studied tool in integer programming whose flexibility has triggered these renewed efforts in non-linear settings. In this work, we consider intersection cuts using the recently proposed construction of maximal quadratic-free sets. Using these sets, we derive closed-form formulas to compute intersection cuts which allow for quick cut-computations by simply plugging-in parameters associated to an arbitrary quadratic inequality being violated by a vertex of an LP relaxation. Additionally, we implement a cut-strengthening procedure that dates back to Glover and evaluate these techniques with extensive computational experiments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    If \(\bar{s}\in S\) the problem would be solved.

  2. 2.

    Since we are considering rays of a simplicial cone of dimension p, they are all linearly independent. However, in practice, the set \(S\) is usually of dimension \(\ll p\). In these cases, one can either extend the \(S\)-free set to dimension p, or restrict the rays to the support of \(S\) for computational purposes. The latter might create linear dependence.

References

  1. Andersen, K., Jensen, A.N.: Intersection cuts for mixed integer conic quadratic sets. In: Goemans, M., Correa, J. (eds.) IPCO 2013. LNCS, vol. 7801, pp. 37–48. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36694-9_4

    Chapter  MATH  Google Scholar 

  2. Andersen, K., Louveaux, Q., Weismantel, R.: An analysis of mixed integer linear sets based on lattice point free convex sets. Math. Oper. Res. 35(1), 233–256 (2010)

    Article  MathSciNet  Google Scholar 

  3. Andersen, K., Louveaux, Q., Weismantel, R., Wolsey, L.A.: Inequalities from two rows of a simplex tableau. In: Fischetti, M., Williamson, D.P. (eds.) IPCO 2007. LNCS, vol. 4513, pp. 1–15. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72792-7_1

    Chapter  Google Scholar 

  4. Balas, E.: Intersection cuts–a new type of cutting planes for integer programming. Oper. Res. 19(1), 19–39 (1971). https://doi.org/10.1287/opre.19.1.19

    Article  MathSciNet  MATH  Google Scholar 

  5. Basu, A., Conforti, M., Cornuéjols, G., Zambelli, G.: Maximal lattice-free convex sets in linear subspaces. Math. Oper. Res. 35(3), 704–720 (2010). https://doi.org/10.1287/moor.1100.0461

    Article  MathSciNet  MATH  Google Scholar 

  6. Basu, A., Conforti, M., Cornuéjols, G., Zambelli, G.: Minimal inequalities for an infinite relaxation of integer programs. SIAM J. Discrete Math. 24(1), 158–168 (2010)

    Article  MathSciNet  Google Scholar 

  7. Bienstock, D., Chen, C., Muñoz, G.: Intersection cuts for polynomial optimization. In: Lodi, A., Nagarajan, V. (eds.) IPCO 2019. LNCS, vol. 11480, pp. 72–87. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17953-3_6

    Chapter  MATH  Google Scholar 

  8. Bienstock, D., Chen, C., Gonzalo, M., et al.: Outer-product-free sets for polynomial optimization and oracle-based cuts. Math. Program. 183, 105–148 (2020). https://doi.org/10.1007/s10107-020-01484-3

    Article  MathSciNet  MATH  Google Scholar 

  9. Bonami, P., Linderoth, J., Lodi, A.: Disjunctive cuts for mixed integer nonlinear programming problems. Prog. Comb. Optim., 521–541 (2011)

    Google Scholar 

  10. Borozan, V., Cornuéjols, G.: Minimal valid inequalities for integer constraints. Math. Oper. Res. 34(3), 538–546 (2009). https://doi.org/10.1287/moor.1080.0370

    Article  MathSciNet  MATH  Google Scholar 

  11. Burer, S., Fatma, K.K.: How to convexify the intersection of a second order cone and a nonconvex quadratic. Math. Program. 162, 393–429 (2016). https://doi.org/10.1007/s10107-016-1045-z

    Article  MathSciNet  MATH  Google Scholar 

  12. Chmiela, A., Muñoz, G., Serrano, F.: On the implementation and strengthening of intersection cuts for QCQPs. Online preprint (2020). https://opus4.kobv.de/opus4-zib/frontdoor/index/index/docId/7999

  13. Conforti, M., Cornuéjols, G., Daniilidis, A., Lemaréchal, C., Malick, J.: Cut-generating functions and S-free sets. Math. Oper. Res. 40(2), 276–391 (2015). https://doi.org/10.1287/moor.2014.0670

    Article  MathSciNet  MATH  Google Scholar 

  14. Cornuéjols, G., Wolsey, L., Yıldız, S.: Sufficiency of cut-generating functions. Math. Program. 152(1), 643–651 (2014). https://doi.org/10.1007/s10107-014-0780-2

    Article  MathSciNet  MATH  Google Scholar 

  15. Dey, S.S., Wolsey, L.A.: Lifting integer variables in minimal inequalities corresponding to lattice-free triangles. In: Lodi, A., Panconesi, A., Rinaldi, G. (eds.) IPCO 2008. LNCS, vol. 5035, pp. 463–475. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68891-4_32

    Chapter  MATH  Google Scholar 

  16. Fischetti, M., Ljubić, I., Monaci, M., Sinnl, M.: Intersection cuts for bilevel optimization. In: Louveaux, Q., Skutella, M. (eds.) IPCO 2016. LNCS, vol. 9682, pp. 77–88. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33461-5_7

    Chapter  MATH  Google Scholar 

  17. Fischetti, M., Monaci, M.: A branch-and-cut algorithm for mixed-integer bilinear programming. Eur. J. Oper. Res. 282, 506–514 (2019). https://doi.org/10.1016/j.ejor.2019.09.043

    Article  MathSciNet  MATH  Google Scholar 

  18. Glover, F.: Polyhedral convexity cuts and negative edge extensions. Zeitschrift für Oper. Res. 18(5), 181–186 (1974)

    MathSciNet  MATH  Google Scholar 

  19. Glover, F.: Convexity cuts and cut search. Oper. Res. 21(1), 123–134 (1973). https://doi.org/10.1287/opre.21.1.123

    Article  MathSciNet  MATH  Google Scholar 

  20. Gomory, R.E., Johnson, E.L.: Some continuous functions related to corner polyhedra. Math. Program. 3(1), 23–85 (1972). https://doi.org/10.1007/bf01584976

    Article  MathSciNet  MATH  Google Scholar 

  21. Kılınç-Karzan, F.: On minimal valid inequalities for mixed integer conic programs. Math. Oper. Res. 41(2), 477–510 (2015)

    Article  MathSciNet  Google Scholar 

  22. McCormick, G.P.: Computability of global solutions to factorable nonconvex programs: Part i – convex underestimating problems. Math. Program. 10(1), 147–175 (1976). https://doi.org/10.1007/bf01580665

    Article  MATH  Google Scholar 

  23. MINLP library. http://www.minlplib.org/

  24. Modaresi, S., Kılınç, M.R., Vielma, J.P.: Split cuts and extended formulations for mixed integer conic quadratic programming. Oper. Res. Lett. 43(1), 10–15 (2015)

    Article  MathSciNet  Google Scholar 

  25. Modaresi, S., Kılınç, M.R., Vielma, J.P.: Intersection cuts for nonlinear integer programming: convexification techniques for structured sets. Math. Program. 155(1–2), 575–611 (2016)

    Article  MathSciNet  Google Scholar 

  26. Muñoz, G., Serrano, F.: Maximal quadratic-free sets. In: Bienstock, D., Zambelli, G. (eds.) IPCO 2020. LNCS, vol. 12125, pp. 307–321. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45771-6_24

    Chapter  Google Scholar 

  27. Santana, A., Dey, S.S.: The convex hull of a quadratic constraint over a polytope. arXiv preprint arXiv:1812.10160 (2018)

  28. SCIP - Solving Constraint Integer Programs. http://scip.zib.de

  29. Sen, S., Sherali, H.D.: Facet inequalities from simple disjunctions in cutting plane theory. Math. Program. 34(1), 72–83 (1986). https://doi.org/10.1007/bf01582164

    Article  MathSciNet  MATH  Google Scholar 

  30. Sen, S., Sherali, H.D.: Nondifferentiable reverse convex programs and facetial convexity cuts via a disjunctive characterization. Math. Program. 37(2), 169–183 (1987)

    Article  MathSciNet  Google Scholar 

  31. Serrano, F.: Intersection cuts for factorable MINLP. In: Lodi, A., Nagarajan, V. (eds.) IPCO 2019. LNCS, vol. 11480, pp. 385–398. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17953-3_29

    Chapter  Google Scholar 

  32. Towle, E., Luedtke, J.: Intersection disjunctions for reverse convex sets. arXiv preprint arXiv:1901.02112 (2019)

  33. Tuy, H.: Concave programming with linear constraints. In: Doklady Akademii Nauk, vol. 159, pp. 32–35. Russian Academy of Sciences (1964)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gonzalo Muñoz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chmiela, A., Muñoz, G., Serrano, F. (2021). On the Implementation and Strengthening of Intersection Cuts for QCQPs. In: Singh, M., Williamson, D.P. (eds) Integer Programming and Combinatorial Optimization. IPCO 2021. Lecture Notes in Computer Science(), vol 12707. Springer, Cham. https://doi.org/10.1007/978-3-030-73879-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73879-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73878-5

  • Online ISBN: 978-3-030-73879-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics