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Abstract
While the basic greedy algorithm gives a semi-streaming algorithm with an approx-
imation guarantee of 2 for the unweighted matching problem, it was only recently
that Paz and Schwartzman obtained an analogous result for weighted instances. Their
approach is based on the versatile local ratio technique and also applies to gener-
alizations such as weighted hypergraph matchings. However, the framework for the
analysis fails for the related problem of weighted matroid intersection and as a result
the approximation guarantee forweighted instances did notmatch the factor 2 achieved
by the greedy algorithm for unweighted instances.Our main result closes this gap by
developing a semi-streaming algorithm with an approximation guarantee of 2+ ε for
weighted matroid intersection, improving upon the previous best guarantee of 4 + ε.
Our techniques also allow us to generalize recent results by Levin and Wajc on sub-
modular maximization subject to matching constraints to that of matroid-intersection
constraints. While our algorithm is an adaptation of the local ratio technique used in
previous works, the analysis deviates significantly and relies on structural properties
of matroid intersection, called kernels. Finally, we also conjecture that our algorithm
gives a (k + ε) approximation for the intersection of k matroids but prove that new
tools are needed in the analysis as the structural properties we use fail for k ≥ 3.
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1 Introduction

For large problems, it is often not realistic to assume that the entire input can be stored
in random access memory so more memory efficient algorithms are preferable. A
popular model for such algorithms is the (semi-)streaming model (see e.g. [13]): the
elements of the input are fed to the algorithm in a stream and the algorithm is required
to have a small memory footprint.

Consider the classic maximum matching problem in an undirected graph G =
(V , E). An algorithm in the semi-streaming model1 is fed the edges one-by-one
in a stream e1, e2, . . . , e|E | and at any point of time the algorithm is only allowed
O(|V | polylog(|V |)) bits of storage. The goal is to output a large matching M ⊆ E at
the end of the stream. Note that the allowed memory usage is sufficient for the algo-
rithm to store a solution M but in general it is much smaller than the size of the input
since the number of edges may be as many as |V |2/2. Indeed, the intuitive difficulty
in designing a semi-streaming algorithm is that the algorithm needs to discard many
of the seen edges (due to the memory restriction) without knowing the future edges
and still return a good solution at the end of the stream.

For the unweighted matching problem, the best known semi-streaming algorithm
is the basic greedy approach:

Initially, let M = ∅. Then for each edge e in the stream, add it toM if M∪{e}
is a feasible solution, i.e., a matching; otherwise the edge e is discarded.

The algorithm uses space O(|V | log |V |) and a simple proof shows that it returns a
2-approximate solution in the unweighted case, i.e, a matching of size at least half
the size of an maximum matching. However, this basic approach fails to achieve any
approximation guarantee for weighted graphs.

Indeed, for weighted matchings, it is non-trivial to even get a small constant-factor
approximation. One way to do so is to replace edges if we have a much heavier
edge. This is formalized in [7] who get a 6-approximation. Later, [12] improved this
algorithm to find a 5.828-approximation; and, with a more involved technique, [5]
provided a (4 + ε)-approximation.

It was only in recent breakthrough work [14] that the gap in the approximation
guarantee between unweighted and weighted matchings was closed. Specifically,
[14] gave a semi-streaming algorithm for weighted matchings with an approxima-
tion guarantee of 2 + ε for every ε > 0. Shortly after, [9] came up with a simplified
analysis of their algorithm, reducing the memory requirement from Oε(|V | log2 |V |)
to Oε(|V | log |V |). These results for weighted matchings are tight (up to the ε) in the

1 This model can also be considered in the multi-pass setting when the algorithm is allowed to take several
passes over the stream. However, in this work we focus on the most basic and widely studied setting in
which the algorithm takes a single pass over the stream.
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sense that any improvement would also improve the state-of-the-art in the unweighted
case, which is a long-standing open problem.

The algorithm of [14] is an elegant use of the local ratio technique [2, 3] in the semi-
streaming setting. While this technique is very versatile and it readily generalizes to
weighted hypergraph matchings, it is much harder to use it for the related problem of
weighted matroid intersection. This is perhaps surprising as many of the prior results
for the matching problem also applies to the matroid intersection problem in the semi-
streaming model (see Sect. 2 for definitions). Indeed, the greedy algorithm still returns
a 2-approximate solution in the unweighted case and the algorithm in [5] returns a
(4+ ε)-approximate solution for weighted instances. So, prior to our work, the status
of the matroid intersection problem was that of the matching problem before [14].

We now describe at a high-level the reason that the techniques from [14] are not
easily applicable to matroid intersection and our approach for dealing with this dif-
ficulty. The approach in [14] works in two parts, first certain elements of the stream
are selected and added to a set S, and then at the end of the stream a matching M is
computed by the greedy algorithm that inspects the edges of S in the reverse order in
which they were added. This way of constructing the solution M greedily by going
backwards in time is a standard framework for analyzing algorithms based on the
local ratio technique. Now in order to adapt their algorithm to matroid intersection,
recall that the bipartite matching problem can be formulated as the intersection of two
partition matroids. We can thus reinterpret their algorithm and analysis in this set-
ting. Furthermore, after this reinterpretation, it is not too hard to define an algorithm
that works for the intersection of any two matroids. However, bipartite matching is
a special case of matroid intersection which captures a rich set of seemingly more
complex problems. This added expressiveness causes the analysis and the standard
framework for analyzing local ratio algorithms to fail. Specifically, we prove that a
solution formed by running the greedy algorithm on S in the reverse order (as done
for the matching problem) fails to give any constant-factor approximation guarantee
for the matroid intersection problem. To overcome this and to obtain our main result,
we make a connection to a concept called matroid kernels (see [8] for more details
about kernels), which allows us to, in a more complex way, identify a subset of S with
an approximation guarantee of 2 + ε.

Finally, for the intersection of more than two matroids, the same approach in the
analysis does not work, because the notion of matroid kernel does not generalize
to more than two matroids. However, we conjecture that the subset S generated
for the intersection of k matroids still contains a (k + ε)-approximation. Cur-
rently, the best approximation results are a (k2 + ε)-approximation from [5] and a
(2(k+√

k(k − 1))−1)-approximation from [4]. For k = 3, the former is better, giving
a (9+ε)-approximation. For k > 3, the latter is better, giving an O(k)-approximation.

Generalization to submodular functions. Very recently, Levin and Wajc [11] obtained
improved approximation ratios for matching and b-matching problems in the semi-
streaming model with respect to submodular functions.

Specifically, they get a (3 + 2
√
2)-approximation for monotone submodular b-

matching, (4 + 3
√
2)-approximation for non-monotone submodular matching, and a

(3+ ε)-approximation for maximum weight (linear) b-matching. In our paper, we are
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able to extend our algorithm for weighted matroid intersection to work with submodu-
lar functions by combining our and their ideas. In fact, we are able to generalize all their
results to the case of matroid intersection with better or equal2 approximation ratios:
we get (3+ 2

√
2+ δ)-approximation for monotone submodular matroid intersection,

(4+3
√
2+δ)-approximation for non-monotone submodular matroid intersection and

(2 + ε)-approximation for maximum weight (linear) matroid intersection.

Outline. In Sect. 2 we introduce basic matroid concepts and we formally define the
weighted matroid intersection problem in the semi-streaming model. Sections 3 and 4
are devoted to our main result, i.e., the semi-streaming algorithm for weighted matroid
intersection with an approximation guarantee of (2 + ε). Specifically, in Sect. 3 we
adapt the algorithm of [14] without worrying about the memory requirements, show
why the standard analysis fails, and then give our new analysis. We then make the
obtained algorithm memory efficient in Sect. 4. Further in Sect. 5, we adapt our
algorithm to work with submodular functions by using ideas from [11]. Finally, in
Sect. 6, we discuss the case of more than two matroids.

2 Preliminaries

Matroids.We define and give a brief overview of the basic concepts related tomatroids
that we use in this paper. For a more comprehensive treatment, we refer the reader to
[15]. A matroid is a tuple M = (E, I ) consisting of a finite ground set E and a family
I ⊆ 2E of subsets of E satisfying:

– if X ⊆ Y ,Y ∈ I , then X ∈ I ; and
– if X ∈ I ,Y ∈ I and |Y | > |X |, then ∃ e ∈ Y\X such that X ∪ {e} ∈ I .

The elements in I (that are subsets of E) are referred to as the independent sets of the
matroid and the set E is referred to as the ground set. With a matroid M = (E, I ), we
associate the rank function rankM : 2E → N and the span function spanM : 2E → 2E

defined as follows for every E ′ ⊆ E ,

rankM (E ′) = max{|X | | X ⊆ E ′ and X ∈ I },
spanM (E ′) = {e ∈ E | rankM (E ′ ∪ {e}) = rankM (E ′)}.

We simply write rank(·) and span(·) when the matroid M is clear from the context. In
words, the rank function equals the size of the largest independent setwhen restricted to
E ′ and the span function equals the elements in E ′ and all elements that cannot be added
to a maximum cardinality independent set of E ′ while maintaining independence. The
rank of the matroid equals rank(E), i.e., the size of the largest independent set.

The weighted matroid intersection problem in the semi-streaming model. In the
weightedmatroid intersectionproblem,we are given twomatroidsM1 = (E, I1), M2 =
(E, I2) on a common ground set E and a non-negative weight functionw : E → R≥0

2 One can get rid of the δ factor if we assume that the function value is polynomially bounded by |E |, an
assumption made by [11].
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on the elements of the ground set. The goal is to find a subset X ⊆ E that is indepen-
dent in bothmatroids, i.e., X ∈ I1 and X ∈ I2, and whose weightw(X) = ∑

e∈X w(e)
is maximized.

In seminal work [6], Edmonds gave a polynomial-time algorithm for solving the
weighted matroid intersection problem to optimality in the classic model of compu-
tation when the whole input is available to the algorithm throughout the computation.
In contrast, the problem becomes significantly harder and tight results are still elud-
ing us in the semi-streaming model where the memory footprint of the algorithm
and its access pattern to the input are restricted. Specifically, in the semi-streaming
model the ground set E is revealed in a stream e1, e2, . . . , e|E | and at time i the
algorithm gets access to ei and can perform computation based on ei and its current
memory but without knowledge of future elements ei+1, . . . , e|E |. The algorithm has
independence-oracle access to the matroids M1 and M2 restricted to the elements
stored in the memory, i.e., for a set of such elements, the algorithm can query whether
the set is independent in each matroid.. The goal is to design an algorithm such that
(i) the memory usage is near-linear O((r1 + r2) polylog(r1 + r2)) at any time, where
r1 and r2 denote the ranks of the input matroids M1 and M2, respectively, and (ii) at
the end of the stream the algorithm should output a feasible solution X ⊆ E , i.e., a
subset X that satisfies X ∈ I1 and X ∈ I2, of large weight w(X). We remark that the
memory requirement O((r1 + r2) polylog(r1 + r2)) is natural as r1 + r2 = |V | when
formulating a bipartite matching problem as the intersection of two matroids3.

The difficulty in designing a good semi-streaming algorithm is that the memory
requirement is much smaller than the size of the ground set E and thus the algorithm
must intuitively discard many of the elements without knowledge of the future and
without significantly deteriorating the weight of the final solution X . The quality of
the algorithm is measured in terms of its approximation guarantee: an algorithm is
said to have an approximation guarantee of α if it is guaranteed to output a solution
X , no matter the input and the order of the stream, such that w(X) ≥ OPT/α where
OPT denotes the weight of an optimal solution to the instance. As aforementioned,
our main result in this paper is a semi-streaming algorithm with an approximation
guarantee of 2 + ε, for every ε > 0, improving upon the previous best guarantee of
4 + ε [5].

3 The local ratio technique for weightedmatroid intersection

In this section, we first present the local ratio algorithm for the weighted matching
problem that forms the basis of the semi-streaming algorithm in [14]. We then adapt
it to the weighted matroid intersection problem. While the algorithm is fairly nat-
ural to adapt to this setting, we give an example in Sect. 3.2.1 that shows that the

3 The considered problem can also be formulated as the problem of finding an independent set in one of
the matroids, say M1, and maximizing a submodular function which would be the (weighted) rank function
of M2. For that problem, [10] recently gave a streaming algorithm with an approximation guarantee of
(2 + ε). However, the space requirement of their algorithm is exponential in the rank of M1 (which would
correspond to exponential in |V | in the matching case) and thus it does not provide a meaningful algorithm
for our setting.
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same techniques as used for analyzing the algorithm for matchings does not work for
matroid intersection. Instead, our analysis, which is presented in Sect. 3.3, deviates
from the standard framework for analyzing local ratio algorithms and it heavily relies
on a structural property of matroid intersection known as kernels. We remark that the
algorithms considered in this section do not have a small memory footprint. We deal
with this in Sect. 4 to obtain our semi-streaming algorithm.

3.1 Local-ratio technique for weightedmatching

The local ratio algorithm for the weighted matching problem is given in Algorithm 1.
The algorithm maintains vertex potentials w(u) for every vertex u, a set S of selected
edges, and an auxiliary weight function g : S → R≥0 of the selected edges. Initially
the vertex potentials are set to 0 and the set S is empty.When an edge e = {u, v} arrives,
the algorithm computes how much it gains compared to the previous edges, by taking
its weight minus the weight/potential of its endpoints (g(e) = w(e) − w(u) − w(v)).
If the gain is positive, then we add the edge to S, and add the gain to the weight of the
endpoints, that is, we set w(u) = w(u) + g(e) and w(v) = w(v) + g(e).

Algorithm 1 Local ratio algorithm for weighted matching
Input: A stream of the edges of a graph G = (V , E) with a weight function w : E → R≥0.
Output: A matching M .
1: S ← ∅
2: ∀u ∈ V , w(u) ← 0
3: for edge e = (u, v) in the stream do
4: if w(u) + w(v) < w(e) then
5: g(e) ← w(e) − w(u) − w(v)

6: w(u) ← w(u) + g(e)
7: w(v) ← w(v) + g(e)
8: S ← S ∪ {e}
9: end if
10: end for
11: return a maximum weight matching M among the edges stored on the stack S

For a better intuition of the algorithm, consider the example depicted on the top
of Fig. 1. The stream consists of four edges e1, e2, e3, e4 with weights w(e1) = 1
and w(e2) = w(e3) = w(e4) = 2. At each time step i , we depict the arriving edge
ei in thick along with its weight; the vertex potentials before the algorithm considers
this edge is written on the vertices, and the updated vertex potentials (if any) after
considering ei are depicted next to the incident vertices. The edges that are added to
S are solid and those that are not added to S are dashed.

At the arrival of the first edge of weight w(e1) = 1, both incident vertices have
potential 0 and so the algorithm adds this edge to S and increases the incident vertex
potentials with the gain g(e1) = 1. For the second edge of weight w(e2) = 2, the
sum of incident vertex potentials is 1 and so the gain of e2 is g(e2) = 2 − 1, which
in turn causes the algorithm to add this edge to S and to increase the incident vertex
potentials by 1. The third time step is similar to the second. At the last time step, edge

123



Semi-streaming algorithms for submodular matroid…

Fig. 1 The top part shows an example execution of the local ratio technique for weighted matchings
(Algorithm 1). The bottom part shows how to adapt this (bipartite) example to the language of weighted
matroid intersection (Algorithm 2)

e4 arrives of weight w(e4) = 2. As the incident vertex potentials sum up to 2 the gain
of e4 is not strictly positive and so this edge is not added to S and no vertex potentials
are updated. Finally, the algorithm returns the maximum weight matching in S which
in this case consists of edges {e1, e3} and has weight 3. Note that the optimal matching
of this instance had weight 4 and we thus found a 4/3-approximate solution.

In general, the algorithm has an approximation guarantee of 2. This is proved using
a common framework to analyze algorithms based on the local ratio technique: We
ignore the weights and greedily construct a matching M by inspecting the edges in S
in reverse order, i.e., we first consider the edges that were added last. An easy proof
(see e.g. [9]) then shows that the matching M constructed in this way has weight at
least half the optimum weight.

In the next section, we adapt the above described algorithm to the context ofmatroid
intersections. We also give an example that the above framework for the analysis fails
to give any constant-factor approximation guarantee. Our alternative (tight) analysis
of this algorithm is then given in Sect. 3.3.

3.2 Adaptation to weightedmatroid intersection

When adapting Algorithm 1 to matroid intersection to obtain Algorithm 2, the first
problem we encounter is the fact that matroids do not have a notion of vertices, so
we cannot keep a weight/potential for each vertex. To describe how we overcome
this issue, it is helpful to consider the case of bipartite matching and in particular the
example depicted in Fig. 1. It is well known that the weighted matching problem on a
bipartite graph with edge set E and bipartition V1, V2 can be modelled as a weighted
matroid intersection problem on matroids M1 = (E, I1) and M2 = (E, I2) where for
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Algorithm 2 Local ratio for matroid intersection
Input: A stream of the elements of the common ground set of matroids M1 = (E, I1), M2 = (E, I2).
Output: A set X ⊆ E that is independent in both matroids.
S ← ∅
for element e in the stream do

calculate w∗
i (e) = max

(
{0} ∪ {θ : e ∈ spanMi

({ f ∈ S | wi ( f ) ≥ θ})}
)
for i ∈ {1, 2}.

if w(e) > w∗
1(e) + w∗

2(e) then
g(e) ← w(e) − w∗

1(e) − w∗
2(e)

w1(e) ← w∗
1(e) + g(e)

w2(e) ← w∗
2(e) + g(e)

S ← S ∪ {e}
end if

end for
return a maximum weight set T ⊆ S that is independent in M1 and M2

i ∈ {1, 2}

Ii = {E ′ ⊆ E | each vertex v ∈ Vi is incident to at most one vertex in E ′} .

Instead of keeping a weight for each vertex, we will maintain two weight functions
w1 and w2, one for each matroid. These weight functions will be set so that the
following holds in the special case of bipartite matching: on the arrival of a new edge
e, let Ti ⊆ S be an independent set in Ii of selected edges that maximizes the weight
function wi . Then we have that

min
f ∈Ti :Ti\{ f }∪{e}∈Ii

wi ( f ) if Ti ∪ {e} /∈ Ii and 0 otherwise (1)

equals the vertex potential of the incident vertex Vi when running Algorithm 1. It
is well-known (e.g. by the optimality of the greedy algorithm for matroids) that the
cheapest element f to remove from Ti to make Ti\{ f }∪{e} an independent set equals
the largest weight θ so that the elements of weight at least θ spans e. We thus have
that (1) equals

max
({0} ∪ {θ : e ∈ spanMi

({ f ∈ S | wi ( f ) ≥ θ})})

and it follows that the quantities w∗
1(e) and w∗

2(e) in Algorithm 2 equal the incident
vertex potentials in V1 and V2 of Algorithm 1 in the special case of bipartite matching.
To see this, let us return to our example in Fig. 1 and let V1 be the two vertices on
the left and V2 be the two vertices on the right. In the bottom part of the figure, the
weight functions w1 and w2 are depicted (at the corresponding side of the edge) after
the arrival of each edge. At time step 1, e1 does not need to replace any elements in
any of the matroids and so w∗

1(e1) = w∗
1(e2) = 0. We therefore have that its gain is

g(e1) = 1 and the algorithm setsw1(e1) = w2(e1) = 1. At time 2, edge e2 of weight 2
arrives. It is not spanned in the first matroid whereas it is spanned by edge e1 of weight
1 in the second matroid. It follows that w∗

1(e2) = 0 and w∗
2(e2) = w2(e1) = 1 and so

e2 has positive gain g(e2) = 1 and it sets w1(e2) = 1 and w2(e2) = w2(e1) + 1 = 2.
The third time step is similar to the second. At the last time step, e4 of weight 2 arrives.
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However, since it is spanned by e1 with w1(e1) = 1 in the first matroid and by e3 with
w2(e3) = 1 in the second matroid, its gain is 0 and it is thus not added to the set S.
Note that throughout this example, and in general for bipartite graphs, Algorithm 2 is
identical to Algorithm 1. One may therefore expect that the analysis of Algorithm 1
also generalizes to Algorithm 2. We explain next that this is not the case for general
matroids.

3.2.1 Counter example to same approach in analysis

We give a simple example showing that the greedy selection (as done in the analysis
for Algorithm 1 for weighted matching) does not work for matroid intersection. Still,
it turns out that the set S generated by Algorithm 2 always contains a 2-approximation
but the selection process is more involved.

Lemma 1 There exist two matroids M1 = (E, I1) and M2 = (E, I2) on a common
ground set E and a weight function w : E → R≥0 such that a greedy algorithm that
considers the elements in the set S in the reverse order of when they were added by
Algorithm 2 does not provide any constant-factor approximation.

Proof The example consists of the ground set E = {a, b, c, d} with weights w(a) =
1, w(b) = 1 + ε,w(c) = 2ε,w(d) = 3ε for a small ε > 0 (the approximation
guarantee will be at least Ω(1/ε)). The matroids M1 = (E, I1) and M2 = (E, I2) are
defined by

– a subset of E is in I1 if and only if it does not contain {a, b}; and
– a subset of E is in I2 if and only if it contains at most two elements.

To see that M1 and M2 are matroids, note that M1 is a partition matroid with
partitions {a, b}, {c}, {d}, and M2 is the 2-uniform matroid (alternatively, one can
easily check that M1 and M2 satisfy the definition of a matroid).

Now consider the execution of Algorithm 2 when given the elements of E in the
order a, b, c, d:

– Element a has weight 1, and {a} is independent both in M1 and M2, so we set
w1(a) = w2(a) = g(a) = 1 and a is added to S.

– Element b is spanned by a in M1 and not spanned by any element in M2. So we
get g(b) = w(b) − w∗

1(b) − w∗
2(b) = 1 + ε − 1 − 0 = ε. As ε > 0, we add b to

S, and set w1(b) = w1(a) + ε = 1 + ε and w2(b) = ε.
– Element c is not spanned by any element in M1 but is spanned by {a, b} in M2.
As b has the smallest w2 weight, w∗

2(c) = w2(b) = ε. So we have g(c) =
2ε−w∗

1(c)−w∗
2(c) = 2ε−0−ε = ε > 0, and we setw1(c) = ε andw2(c) = 2ε

and add c to S.
– Element d is similar to c. We have g(d) = 3ε − 0 − 2ε = ε > 0 and so we set

w1(d) = ε and w2(d) = 3ε and add d to S.

As the algorithm selected all the elements, we have S = E . It follows that the greedy
algorithm on S (in the reverse order of when elements were added) will select d and
c, after which the set is a maximal independent set in M2. This gives a weight of 5ε,
even though a and b both have weight at least 1, which shows that this algorithm does
not guarantee any constant factor approximation. ��
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3.3 Analysis of Algorithm 2

We prove that Algorithm 2 has an approximation guarantee of 2.

Theorem 1 Let S be the subset generated by Algorithm 2 on a stream E of elements,
matroids M1 = (E, I1), M2 = (E, I2) and weight functionw : E → R≥0. Then there
exists a subset T ⊆ S independent in M1 and in M2 whose weight w(T ) is at least
w(S∗)/2, where S∗ denotes an optimal solution to the weighted matroid intersection
problem.

Throughout the analysis we fix the input matroids M1 = (E, I1), M2 = (E, I2),
the weight function w : R → R≥0, and the order of the elements in the stream. While
Algorithm 2 only defines the weight functions w1 and w2 for the elements added to
the set S, we extend them in the analysis by, for i ∈ {1, 2}, letting wi (e) = w∗

i (e) for
the elements e not added to S.

We now prove Theorem 1 by showing that g(S) ≥ w(S∗)/2 ((Lemma 3) and that
there is a solution T ⊆ S such that w(T ) ≥ g(S) ((Lemma 4). In the proof of both
these lemmas, we use the following properties of the computed set S.

Lemma 2 Let S be the set generated by Algorithm 2 and S′ ⊆ S any subset. Consider
one of the matroids Mi with i ∈ {1, 2}. There exists a subset T ′ ⊆ S′ that is inde-
pendent in Mi , i.e., T ′ ∈ Ii , and wi (T ′) ≥ g(S′). Furthermore, the maximum weight
independent set in Mi with respect to wi over the whole ground set E can be selected
to be a subset of S, i.e. Ti ⊆ S, and it satisfies wi (Ti ) = g(S).

Proof Consider matroid M1 (the proof is identical for M2) and fix S′ ⊆ S. The set
T ′
1 ⊆ S′ that is independent in M1 and that maximizes w1(T ′

1) satisfies

w1(T
′
1) =

∫ ∞

0
rank({e ∈ T ′

1 | w1(e) ≥ θ}) dθ =
∫ ∞

0
rank({e ∈ S′ | w1(e) ≥ θ}) dθ .

The second equality follows from the fact that the greedy algorithm that considers
the elements in decreasing order of weight is optimal for matroids and thus we have
rank({e ∈ T ′

1 | w1(e) ≥ θ}) = rank({e ∈ S′ | w1(e) ≥ θ}) for any θ ∈ R.
Now index the elements of S′ = {e1, e2, . . . , e�} in the order they were added to S

by Algorithm 2 and let S′
j = {e1, . . . , e j } for j = 0, 1, . . . , � (where S′

0 = ∅). By the
above equalities and by telescoping,

w1(T
′
1) =

�∑

i=1

∫ ∞

0

(
rank({e ∈ S′

i | w1(e) ≥ θ}) − rank({e ∈ S′
i−1 | w1(e) ≥ θ})) dθ .

We have that rank({e ∈ S′
i | w1(e) ≥ θ}) − rank({e ∈ S′

i−1 | w1(e) ≥ θ}) equals
1 if w(ei ) ≥ θ and ei /∈ span({e ∈ S′

i−1 | w1(e) ≥ θ}) and it equals 0 otherwise.
Therefore, by the definition of w∗

1(·), the gain g(·) and w1(ei ) = w∗
1(ei ) + g(ei ) in

Algorithm 2 we have
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w1(T
′
1) =

�∑

i=1

[
w1(ei ) − max

({0} ∪ {θ : ei ∈ span
({ f ∈ S′

i−1 | wi ( f ) ≥ θ})})]

≥
�∑

i=1

g(ei ) = g(S′) .

The inequality holds because S′
i−1 is a subset of the set S at the time when Algorithm 2

considers element ei .Moreover, if S′ = S, then S′
i−1 equals the set S at that point and so

we then havew∗
1(ei ) = max

({0} ∪ {θ : ei ∈ span
({ f ∈ S′

i−1 | wi ( f ) ≥ θ})}), which
implies that the above inequality holds with equality in that case. We can thus also
conclude that a maximum weight independent set T1 ⊆ S satisfies w1(T1) = g(S).
Finally, we can observe that T1 is also a maximum weight independent set over the
whole ground set since we have rank({e ∈ S | w1(e) ≥ θ}) = rank({e ∈ E | w1(e) ≥
θ}) for every θ > 0, which holds because, by the extension of w1, an element e /∈ S
satisfies e ∈ span({ f ∈ S : w1( f ) ≥ w1(e)}). ��

We can now relate the gain of the elements in S with the weight of an optimal
solution.

Lemma 3 Let S be the subset generated by Algorithm 2. Then g(S) ≥ w(S∗)/2.

Proof We first observe that w1(e) + w2(e) ≥ w(e) for every element e ∈ E . Indeed,
for an element e ∈ S, we have by definition w(e) = g(e) + w∗

1(e) + w∗
2(e), and

wi (e) = g(e)+w∗
i (e), sow1(e)+w2(e) = 2g(e)+w∗

1(e)+w∗
2(e) = w(e)+g(e) >

w(e). In the other case, when e /∈ S then w∗
1(e)+w∗

2(e) ≥ w(e), and wi (e) = w∗
i (e),

so automatically, w1(e) + w2(e) ≥ w(e).
The above implies thatw1(S∗)+w2(S∗) ≥ w(S∗). On the other hand, by Lemma 2,

we havewi (Ti ) ≥ wi (S∗) (since Ti is a maxweight independent set inMi with respect
to wi ) and wi (Ti ) = g(S), thus g(S) ≥ wi (S∗) for i = 1, 2. ��

We finish the Proof of Theorem 1 by proving that there is a T ⊆ S independent in
both M1 and M2 such thatw(T ) ≥ g(S). As described in Sect. 3.2.1, we cannot select
T using the greedy method. Instead, we select T using the concept of kernels studied
in [8].

Lemma 4 Let S be the subset generated by Algorithm 2. Then for any subset S′ ⊆ S,
there exists a subset T ⊆ S′ independent in M1 and in M2 such that w(T ) ≥ g(S′).

Proof Consider one of the matroids Mi with i ∈ {1, 2} and define a total order <i on
E such that e <i f if wi (e) > wi ( f ) or if wi (e) = wi ( f ) and e appeared later in the
stream than f . The pair (Mi ,<i ) is known as an ordered matroid. We further say that
a subset E ′ of E dominates element e of E if e ∈ E ′ or there is a subset Ce ⊆ E ′ such
that e ∈ span(Ce) and c < e for all elements c of Ce. The set of elements dominated
by E ′ is denoted by DMi (E

′). Note that if E ′ is an independent set, then the greedy
algorithm that considers the elements of DMi (E

′) in the order <i selects exactly the
elements E ′.

Theorem 2 in [8] says that for two ordered matroids (M1,<1), (M2,<2) there
always is a set K ⊆ E , which is referred to as a M1M2-kernel, such that
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– K is independent in both M1 and in M2; and
– DM1(K ) ∪ DM2(K ) = E .

We use the above result on M1 and M2 restricted to the elements in S′. Specifically
we select T ⊆ S′ to be the kernel such that DM1(T ) ∪ DM2(T ) = S′. Let S1 =
DM1(T ) and S2 = DM2(T ). By Lemma 2, there exists a set T ′ ⊆ S1 independent in
M1 such that w1(T ′) ≥ g(S1). As noted above, the greedy algorithm that considers
the element of S1 in the order <i (decreasing weights) selects exactly the elements
in T . It follows by the optimality of the greedy algorithm for matroids that T is a
maximum weight independent set in S1 for M1 with weight function w1, which in
turn implies w1(T ) ≥ g(S1). In the same way, we also have w2(T ) ≥ g(S2). By
definition, for any e ∈ S′, we have w(e) = w1(e) + w2(e) − g(e). Together, we have
w(T ) = w1(T ) + w2(T ) − g(T ) ≥ g(S1) + g(S2) − g(T ). As elements from T
are in both S1 and S2, and all other elements are in at least one of both sets, we have
g(S1) + g(S2) ≥ g(S′) + g(T ), and thus w(T ) ≥ g(S′). ��

4 Making the algorithmmemory efficient

We now modify Algorithm 2 to only select elements with a significant gain,
parametrized by α > 1, and delete elements if we have too many in memory,
parametrized by a real number y. If α is close enough to 1 and y is large enough,
then Algorithm 3 is very close to Algorithm 2, and allows for a similar analysis. This
method is very similar to the one used in [14] and [9], but our analysis is quite different.

More precisely, we take an element e only if w(e) > α(w∗
1(e) + w∗

2(e)) instead of
w(e) > w∗

1(e) + w∗
2(e), and we delete elements if the ratio between two g weights

becomes larger than y ( g(e)g(e′) > y). For technical purposes, we also need to keep inde-
pendent sets T1 and T2 which maximize the weight functions w1 and w2 respectively.
If an element with small g weight is in T1 or T2, we do not delete it, as this would
modify the wi -weights and selection of coming elements. We show that this algo-
rithm is a semi-streaming algorithm with an approximation guarantee of (2 + ε) for
an appropriate selection of the parameters (see Lemma 6 for the space requirement
and Theorem 2 for the approximation guarantee).

Lemma 5 Let S be the subset generated by Algorithm 3 with α ≥ 1 and y = ∞. Then
w(S∗) ≤ 2αg(S).

Proof Wedefinewα : E → R bywα(e) = w(e) if e ∈ S andwα(e) = w(e)
α

otherwise.
By construction, Algorithms 2 and 3 give the same set S, and the sameweight function
g for thismodifiedweight function. ByLemma 3,wα(S∗) ≤ 2g(S). On the other hand,
w(S∗) ≤ αwα(S∗). ��
Lemma 6 Let S be the subset generated by Algorithm 3 with α = 1 + ε and y =
min(r1,r2)

ε2
and S∗ be a maximum weight independent set, where r1 and r2 are the ranks

of M1 and M2 respectively. Then w(S∗) ≤ 2(1 + 2ε + o(ε))g(S). Furthermore, at
any point of time, the size of S is at most r1 + r2 + min(r1, r2) logα(

αy
ε

).
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Proof Wefirst prove that the generated set S satisfiesw(S∗) ≤ 2(1+2ε+o(ε))g(S) and
we then verify the space requirement of the algorithm, i.e., that it is a semi-streaming
algorithm.

Let us call S′ the set of elements selected by Algorithm 3, including the elements
deleted later. By Lemma 5, we have 2αg(S′) ≥ w(S∗), so if we prove that g(S′) −
g(S) ≤ αεg(S) = (ε + o(ε))g(S), we are done. We set i ∈ {1, 2} to be the index of
the matroid with smaller rank.

In our analysis, it will be convenient to think that the algorithm maintains the
maximum weight independent set Ti of Mi throughout the stream. At the arrival of an
element e that is added to S, we have that the set Ti is updated as follows. If Ti∪{e} ∈ Ii
then e is simply added to Ti . Otherwise, before updating Ti , there is an element e∗ ∈ Ti
such that wi (e∗) = w∗

i (e) and Ti\{e∗} ∪ {e} is maximum weight independent set in
Mi with respect to wi . Thus we can speak of elements which are replaced be another
element in Ti . By construction, if e replaces f in Ti , then wi (e) > αwi ( f ).

We can now divide the elements of S′ into stacks in the following way: If e replaces
an element f in Ti , then we add e on top of the stack containing f , otherwise we create
a new stack containing only e. At the end of the stream, each element e ∈ Ti is in a
different stack, and each stack contains exactly one element of Ti , so let us call S′

e the
stack containing e whenever e ∈ Ti . We define Se to be the restriction of S′

e to S. In
particular, each element from S′ is in exactly one S′

e stack, and each element from S is in
exactly one Se stack. For each stack S′

e, we set edel(S
′
e) to be the highest weight element

of S′
e which was removed from S. By construction, g(S′

e) − g(Se) ≤ wi (edel(S′
e)).

On the other hand, wi ( f ) < 1+ε
ε
g( f ) for any element f ∈ S′ (otherwise we would

not have selected it), so g(S′
e) − g(Se) < 1+ε

ε
g(edel(S′

e)). As edel(S
′
e) was removed

from S, we have g(edel(S′
e)) <

gmax
y where gmax = max

e∈S g(e). As there are exactly ri

stacks, we get g(S′) − g(S) < ri
gmax ε

2(1+ε)
ri ε

= ε(1 + ε)gmax ≤ (ε + o(ε))g(S).
We now have to prove that the algorithm fits the semi-streaming criteria. In fact,

the size of S never exceeds r1 + r2 + ri logα(
αy
ε

). By the pigeonhole principle, if
S has at least ri logα(

αy
ε

) elements, then there is at least one stack Se which has at
least logα(

αy
ε

) elements. By construction, the wi weight increases by a factor of at
least α each time we add an element on the same stack, so the wi weight difference
between the lowest and highest element on the biggest stack would be at least αy

ε
. As

wi ( f ) < 1+ε
ε
g( f ), the g weight difference would be at least y, and we would remove

the lowest element, unless it was in T1 or T2. ��
Theorem 2 Let S be the subset generated by running Algorithm 3 with α = 1 + ε

and y = min(r1,r2)
ε2

. Then there exists a subset T ⊆ S independent in M1 and in M2
such that w(T ) ≥ g(S). Furthermore, T is a 2(1+ 2ε + o(ε))-approximation for the
intersection of two matroids.

Proof Let S∗ be a maximum weight independent set. By Lemma 6, we have 2(1 +
2ε + o(ε)g(S) ≥ w(S∗). Let S′ be the set of elements selected by Algorithm 3,
including the elements deleted later. As long as we do not delete elements from T1 or
T2, Algorithm 2 restricted to S′ will select the same elements, with the same weights,
so we can consider S′ to be generated by Algorithm 2. Since S ⊆ S′, we now observe
that by Lemma 4, we can find an independent set T ⊆ S such that w(T ) ≥ g(S). ��
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Fig. 2 Consider the example on
a bipartite graph where edges
arrive in the order ea , eb, ec . It is
easy to see that the set S formed
by Algorithm 3 contains only the
edge ea of weight 1 whereas the
optimal matching consists of
taking edges eb, ec of combined
weight 2α

Remark 1 It is easy to construct examples where the set S only contains a 2α-
approximation (for an example, see Fig. 2 involving a bipartite graph), so our analysis
is tight up to ε.

Remark 2 The techniques of this section can also be used in the case when the ranks of
the matroids are unknown. Specifically, the algorithm can maintain the stacks created
in the Proof of Lemma 6 and allow for an error ε/2 in the first two stacks created, an
error of ε/4 in the next 4 stacks, and in general an error of ε/2i in the next 2i stacks
by having a y value specific to each stack. The idea of constructing such a geometric
sequence is to have a total error of at most ε. We explain this in detail in Appendix A.

Algorithm 3 Semi-streaming adaptation of Algorithm 2
Input: A stream of the elements and 2 matroids (which we call M1, M2) on the same ground set E , a real
number α > 1 and a real number y.

Output: A set X ⊆ E that is independent in both matroids.
Whenever we write an assignment of a variable with subscript i , it means we do it for i = 1, 2.
S ← ∅
for element e in the stream do

calculate w∗
i (e) = max

(
{0} ∪ {θ : e ∈ spanMi

({ f ∈ S | wi ( f ) ≥ θ})}
)
.

if w(e) > α(w∗
1(e) + w∗

2(e)) then
g(e) ← w(e) − w∗

1(e) − w∗
2(e)

S ← S ∪ {e}
wi (e) ← g(e) + w∗

i (e)
Let Ti be a maximum weight independent set of Mi with respect to wi .
Let gmax = max

e∈S g(e)
Remove all elements e′ ∈ S, such that y · g(e′) < gmax and e′ /∈ T1 ∪ T2 from S.

end if
end for
return a maximum weight set T ⊆ S that is independent in M1 and M2
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5 Extension to submodular functions

In this section, we consider the problem of submodular matroid intersection in the
semi-streaming model. We first give the definition of a submodular function and then
formally define our problem.

Definition 1 (Submodular function) A set function f : 2E → R is submodular if it
satisfies that for any two sets A, B ⊆ E , f (A) + f (B) ≥ f (A∪ B) + f (A∩ B). For
any two sets A, B ⊆ E , let f (A | B) := f (A ∪ B) − f (B). For any element e and
set A ⊆ E , let f (e | A) := f (A ∪ {e} | A). Now, an equivalent and more intuitive
definition for f to be submodular is that for any two sets A ⊆ B ⊆ E , and e ∈ E\B, it
holds that f (e | A) ≥ f (e | B). The function f is called monotone if for any element
e ∈ E and set A ⊆ E , it holds that f (e | A) ≥ 0.

Given the above definition, we can formally define our problem now. Here, we are
given an oracle access to two matroids M1 = (E, I1), M2 = (E, I2) on a common
ground set E and an oracle access to non-negative submodular function f : 2E → R≥0
on the powerset of the elements of the ground set. The goal is to find a subset X ⊆ E
that is independent in both matroids, i.e., X ∈ I1 and X ∈ I2, and whose weight f (X)

is maximized.
Our Algorithm 4 is a straightforward generalization of Algorithms 1 and 2 of [11].

Since, the weight of an element e now depends on the underlying set that it would be
added to, we (naturally) define the weight of e to be the additional value e provides
after adding it to set S, i.e. w(e) = f (e | S). If e provides S a good enough value,
i.e, f (e | S) ≥ α(w∗

1(e) + w∗
2(e)), we add it to set S but with a probability q now.

This probability q is the most important difference between Algorithms 3 and 4. This
is a trick that we borrow from the Algorithm 1 of [11] which is useful when f is
non-monotone because of the following Lemma 2.2 of [1].

Lemma 7 (Lemma 2.2 in [1]) Let h : 2E → R≥0 be a non-negative submodular
function, and let S be a a random subset of E containing every element of M with
probability at most q(not necessarily independently), then E[h(S)] ≥ (1 − q)h(∅).

In our proof, we can relate theweight of the set thatwe pick and the value f (S∗∪S f )

where S f denotes the elements in the stackwhen algorithm stops and S∗ denotes the set
of optimum elements. If the function f is monotone, this is sufficient as f (S∗ ∪ S f ) ≥
f (S∗). This, however, is not true if function f is non-monotone. Here, one can use
the Lemma 7 with the function h(T ) = f (T ∪ S∗). This enables us to conclude that
E[ f (S∗ ∪ S f )] ≥ (1 − q) f (S∗).

5.1 Analysis of Algorithm 4

We extend the analysis of Sect. 4 by using ideas from [11] to analyze our algorithm.
Before going into the technical details, we give a brief overview of our analysis. For
sake of intuition, we assume that the Algorithm 4 does not delete elements and also
does not skip elements with probability 1 − q. Then, due to the fact that the weight
of an element e is the additional value it provides to the current set S, one can relate
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Algorithm 4 Extension of Algorithm 3 to submodular functions
Input: A stream of the elements and 2 matroids (which we call M1, M2) on the same ground set E , a
submodular function f : 2E �→ R, a real number α ≥ 1, a real number q such that 0 ≤ q ≤ 1 and a real
number y.

Output: A set X ⊆ E that is independent in both matroids.
Whenever we write an assignment of a variable with subscript i , it means we do it for i = 1, 2.
S ← ∅
for element e in the stream do

calculate w∗
i (e) = max

(
{0} ∪ {θ : e ∈ spanMi

({ f ∈ S | wi ( f ) ≥ θ})}
)
.

if f (e | S) > α(w∗
1(e) + w∗

2(e)) then
with probability 1 − q, continue; {//skip e with probability 1 − q.}
g(e) ← f (e | S) − w∗

1(e) − w∗
2(e)

S ← S ∪ {e}
wi (e) ← g(e) + w∗

i (e)
Let Ti be a maximum weight independent set of Mi with respect to wi .
Let gmax = max

e∈S g(e)
Remove all elements e′ ∈ S, such that y · g(e′) < gmax and e′ /∈ T1 ∪ T2 from S.

end if
end for
return a maximum weight set T ⊆ S that is independent in M1 and M2

the weight of the independent set picked with the weight of the optimal solution given
the set S f i.e., f (S∗ | S f ) by basically using the analysis of the previous section.
However, this is not enough as the weight of the optimal solution is f (S∗). But, we
can still relate the gain of S f to f (S f ) similar to [11], which helps us relate f (S∗∪S f )

and weight of our solution. In order to extend it to the case when elements are skipped
with probability 1−q, we show the above to hold in expectation similar to [11], which
is helpful for dealing with non-monotone functions because of Lemma 7. Finally, we
remark that one can use an analysis similar to Sect. 4, to show that the effect of deleting
elements does not affect the weight of solution by a lot.

Let S f denote the set S generated when the algorithm stops and S′
f denote the

union of S f and the elements that were deleted by the algorithm. For sake of analysis,
we define the weight function w : E → R of an element e to be the additional value
it provided to the set S when it appeared in the stream, i.e., w(e) = f (e | S). Like
before, we extend the definition of weight functions w1 and w2 for an element e that
is not added to S as wi (e) = w∗

i (e) for i ∈ {1, 2}. We note here that all the functions
defined above are random variables which depend on the internal randomness of the
algorithm. Unless we explicitly mention it, we generally talk about statements with
respect to any fixed realization of the internal random choices of the algorithm.

In our analysis, wewill prove properties about our algorithm that are already proven
for Algorithms 2 and 3 in the previous sections. Our proof strategy will be simply
running Algorithm 2 or 3 with the appropriate weight function which will mimick
running our original algorithm. Hence, we will prove these statements in a black-box
fashion. A weight function that we will use repeatedly in our proofs is w′ : E → R≥0
where w′(e) = w(e) if e ∈ S′

f , otherwise w′(e) = 0. This basically has the effect of
discarding elements not in S′

f i.e, elements that were never picked by the algorithm
either because they did not provide a good enough value or because they did but were
still skipped.
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Lemma 8 Consider the set S′
f which is the union of S f generated by the Algorithm 4

and the elements it deletes. Thenamaximumweight independent set in Mi for i ∈ {1, 2}
over the whole ground set E can be selected to be a subset of S′

f , i.e. Ti ⊆ S′
f and it

satisfies wi (Ti ) = g(S′
f ).

Proof Consider running the Algorithm 2 with weight function w′. Notice that doing
this generates a stack containing exactly the elements in the set S′

f and exactly the
same functions w1, w2 and g. Now by applying Lemma 2, we get our result. ��

We prove the following lemma similar to [11] which relates the gain of elements
in S′

f to the weight of the optimal solution given the set S′
f i.e, f (S∗ | S′

f ). Notice
that the lemma below holds only in expectation for q �= 1.

Lemma 9 Denote the set S′
f which is the union of S f generated by the Algorithm 4with

q ∈ {1/(2α + 1), 1} and the elements it deletes. Then, E[ f (S∗ | S′
f )] ≤ 2αE[g(S′

f )].
Proof We first prove the lemma for q = 1 as the proof is easier than that for q =
1/(2α + 1). Consider running the Algorithm 2 with weight function w′′ : E → R≥0
defined as follows. If e ∈ S′

f , w
′′(e) = w(e), else w′′(e) = w(e)/α. Notice that doing

this generates a stack containing exactly the elements in the set S′
f and exactly the same

functions w1, w2 and g. Now by applying Lemma 3, we get that w(S∗) ≤ 2αg(S′
f ).

By submodularity, we get f (S∗ | S′
f ) ≤ 2αg(S′

f ).
Now, we prove the lemma for q = 1/(2α + 1). We first define λ : E → R for

an element e ∈ E as λ(e) = f (e | S′
f ). Notice that, by submodularity of f and

definition of λ, we have f (S∗ | S′
f ) ≤ λ(S∗). Hence, it suffices to prove E[λ(S∗)] ≤

2αE[g(S′
f )]. We prove this below.

Let the event that the element e ∈ E does not give us a good enough value i.e, it
satisfies α(w∗

1(e) + w∗
2(e)) ≥ w(e) be Re. We have two cases to consider now.

1. The first is when Re is true. Then, for any fixed choice of randomness of the
algorithm for which Re is true, we argue as follows. By definition, wi (e) = w∗

i (e).
Hence,α(w1(e)+w2(e)) ≥ w(e). Also,w(e) = f (e | S)where S is the stackwhen
e appeared in the stream. As S ⊆ S′

f , by submodularity and definition of λ, we get
that w(e) ≥ λ(e). Hence, we also get that αE[w1(e) + w2(e)|Re] ≥ E[λ(e)|Re].

2. The second is when Re is false. Then, for any fixed choice of randomness of
the algorithm for which Re is false, we argue as follows. Here, e is picked with
probability q given the set S at the time e appeared in the stream. If we pick e,
then w1(e) + w2(e) = g(e) + w∗

1(e) + g(e) + w∗
2(e) = 2w(e) − w∗

1(e) − w∗
2(e).

Otherwise, if we do not pick e, then w1(e) + w2(e) = w∗
1(e) + w∗

2(e). Hence, the
expected value of w1(e) + w2(e) satisfies,

E[w1(e) + w2(e)|¬Re, S] = 2qw(e) + (1 − 2q)(w∗
1(e) + w∗

2(e)) ≥ 2qw(e).

The last inequality follows as we have q = 1/(2α + 1) ≤ 1/2. By the choice
of q and submodularity, we get that αE[w1(e) + w2(e)|¬Re, S] ≥ 2qαw(e) =
(1−q)w(e) ≥ (1−q)λ(e). By law of total expectation and conditioned on Re not
taking place we get, αE[w1(e) + w2(e)|¬Re] ≥ E[λ(e)|¬Re].
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Finally by the lawof total expectation and the points 1 and 2,we obtain thatαE[w1(e)+
w2(e)] ≥ E[λ(e)] holds for any element e ∈ E . Applying this to elements of S∗, we
get that αE[w1(S∗) + w2(S∗)] ≥ E[λ(S∗)]. On the other hand, by Lemma 8, we
have wi (Ti ) ≥ wi (S∗) (since Ti is a max weight independent set in Mi with respect
to wi ) and wi (Ti ) = g(S′

f ), thus g(S
′
f ) ≥ wi (S∗) for i = 1, 2. Hence, we get that

E[λ(S∗)] ≤ 2αE[g(S′
f )]. ��

Since, we would like the relate the gain of elements in S′
f to the optimal solution

we bound the value of f (S′
f ) in terms of the gain below similar to [11].

Lemma 10 Consider the set S′
f which is the union of S f generated by the Algorithm 4

and the elements it deletes. Then, g(S′
f ) ≥ (1 − 1/α) f (S′

f ).

Proof By definition, any element e ∈ S′
f , should have satisfied w(e) ≥ α(w∗

1(e) +
w∗
2(e)). Hence, g(e) ≥ w(e) − w(e)/α. Summing over all elements in S′

f , we get
g(S′

f ) ≥ (1 − 1/α)w(S′
f ) ≥ f (S′

f ) where last inequality (not an equality as S′
f also

contains deleted elements) follows by definition of w and submodularity of f . ��
Our algorithm only has the set S f and not S′

f which also includes the deleted
elements. Hence, in our next lemma, we prove that the gain of elements in these two
sets is roughly the same.

Lemma 11 Consider the set S′
f which is the union of S f generated by running the

Algorithm 4 with α > 1, y = min(r1, r2)/δ2 for any δ, such that 0 < δ ≤ α − 1
and the elements it deletes. Here, ri is the rank of Mi for i ∈ {1, 2}. Then, g(S′

f ) −
g(S f ) ≤ δαg(S f ). Moreover, at any point during the execution, S contains at most
r1 + r2 + min(r1, r2) logα(

αy
α−1 ) elements.

Proof Consider running the Algorithm 3 with weight function w′. Notice that doing
this generates a stack containing exactly the elements as in the set S f , exactly the same
set of deleted elements and exactly the same functions w1, w2 and g. Moreover, this
generates the exact same stacks as the Algorithm 4 at every point of execution. Now
by the Proof of Lemma 6, we get our result. ��

Lastly, we prove that there exists a set T that is independent in both matroids and
has a weight at least the gain of the elements in S f .

Lemma 12 Let S f be the subset generated by Algorithm 4. Then there exists a subset
T ⊆ S independent in M1 and in M2 such that w(T ) ≥ g(S f ).

Proof Consider running the Algorithm 3 with weight function w′. Recall that for any
element e ∈ S′

f , w
′(e) = w(e), otherwise w′(e) = 0. Notice that doing this generates

a stack containing exactly the elements as in the set S f and exactly the same functions
w1, w2 and g. The result follows by Theorem 2. ��

Now, we have all the lemmas to prove our main theorem which we state below.
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Theorem 3 The subset S f generated by Algorithm 4 with α > 1, q ∈ {1/(2α + 1), 1}
and y = min(r1, r2)/δ2 for any δ, such that 0 < δ ≤ α − 1 contains a (4α2 −
1)/(2α −2)+O(δ) approximation in expectation for the intersection of two matroids
with respect to anon-monotone submodular function f . This is optimizedby takingα =
1+√

3/2, resulting in an approximation ratio of 4+2
√
3+O(δ) ∼ 7.464. Moreover,

the same algorithm run with q = 1 and y = min(r1, r2)/δ2 is (2α+α/(α−1))+O(δ)

approximate if f is monotone. This is optimized by taking α = 1+1/
√
2, which yields

a 3 + 2
√
2 + O(δ) ∼ 5.828 approximation.

Proof By Lemmas 9 and 10, we have that 2αE[g(S′
f )] ≥ E[ f (S∗ | S′

f )] and
g(S′

f )(α/(α − 1)) ≥ f (S′
f ). Combining them, we get,

(2α + α/(α − 1))E[g(S′
f )] ≥ E[ f (S′

f ) + f (S∗ | S′
f )] = E[ f (S∗ ∪ S′

f )].

By Lemma 11, we also get that g(S′
f ) − g(S f ) ≤ δαg(S f ). This gives us that

(2α + α/(α − 1))(1 + δα)E[g(S f )] ≥ E[ f (S∗ ∪ S′
f )].

Now, by Lemma 12, there exists a subset T ⊆ S f independent in M1 and M2
such that w(T ) ≥ g(S f ). By definition of w, and submodularity of f , we get that
f (T ) ≥ w(T ). This in turn implies, f (T ) ≥ g(S f ). This gives us that

(2α + α/(α − 1))(1 + δα)E[ f (T )] ≥ E[ f (S∗ ∪ S′
f )].

Notice that the above inequality also holds if q = 1 as all the above arguments also
work if q = 1. Hence, if f is monotone, we get f (S∗ ∪ S f ) ≥ f (S∗) which gives us
our desired inequality by rearranging terms. However, if f is non-monotone one has
to work a little more which we show below.

To deal with the case when f is non-monotone, we use Lemma 7 and take h(T ) =
f (S∗ ∪ T ) for any T ⊆ E within the lemma statement, to get that E[ f (S∗ ∪ S′

f )] ≥
(1− q) f (S∗) as every element of E appears in S′

f with probability at most q. Putting
everything together, we get that

(2α + α/(α − 1))(1 + δα)E[ f (T )] ≥ (1 − q) f (S∗).

Now, substituting the value of q = 1/(2α + 1) and rearranging terms, we get the
desired inequality. ��

Remark 3 We can exactly match the approximation ratios in [11] i.e, without the
extra additive factor of O(δ) by not deleting elements. Moreover, S stores at most
O(min(r1, r2) logα |E |) elements at any point if we assume that values of f are poly-
nomially bounded in |E |, an assumption that the authors in [11] make.
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6 More than twomatroids

We can easily extend Algorithm 3 to the intersection of k matroids (see Algorithm 5
for details). Most results remain true, in particular, we can have kg(S) ≥ (1+ε)w(S∗)
by carefully selecting α and y. The only part which does not work is the selection of
the independent set from S. Indeed, matroid kernels are very specific to two matroids.
We now prove that a similar approach fails, by proving that the logical generalization
of kernels to 3 matroids where one tries to define the order given by the wi weights is
wrong and that a counter-example can arise from Algorithm 5. Thus, any attempt to
find a k + ε approximation using our techniques must bring some fundamentally new
idea. Still, we conjecture that the generated set S contains such an approximation.

Proposition 1 There exists a set S and 3 matroids (S, I1), (S, I2), (S, I3) such that
there does not exist a set T ⊆ S such that S = DM1(T ) ∪ DM2(T ) ∪ DM3(T ) (see
Lemma 4 for a definition of DMi (T )) and T is independent in M1, M2 and M3 where
<i is given by wi generated by Algorithm 5 (for α sufficiently small).

Proof We set S = {a, x, y, z, b}, which are given in this order to Algorithm 5. We
now define I1, I2, I3 in the following way. A set of 2 elements is in Ii if and only if:

– In I1 if it is not {a, x}
– In I2 if it is not {a, y}
– In I3 if it is not {a, z}

A set of 3 elements is in Ii if and only if each of its subsets of 2 elements is in Ii
and:

– In I1 if it contains z
– In I2 if it contains x
– In I3 if it contains y

A set of 4 elements is not in Ii .
Let us verify that these constraints correspond to matroids. As the problem is sym-

metrical, it is sufficient to verify that M1 is a matroid. The 3 element independent sets
inM1 are exactly {y, z, b}, {x, z, b}, {x, y, z}, {a, z, b} and {a, y, z}. Nowwe consider
X ,Y ∈ I1 with |X | < |Y |. We should find e ∈ Y\X such that X ∪ {e} ∈ I1. If X = ∅,
take any element from Y . If X is a singleton, then there are two cases: either it is one
of X ⊆ {a, x}, or it is not. In any case, Y contains at most one element from {a, x}.
As it contains at least two elements, Y has to contain an element from {y, z, b}. In
the first case, we can add any of these to X to get an independent set. In the second
case, X ⊆ {y, z, b}, so we can add any element to X and it will remain independent,
so just pick any element from Y\X . If X contains two elements, then Y is one of the
sets from the list above. In particular, it contains z. If z /∈ X , then we can add z to X .
Otherwise, either X ⊆ {y, z, b}, in which case we can add any element, or X is {a, z}
or {x, z}. In either case, Y must contain an element from {y, b}, which we can add to
X .

We now set the weights w(a) = 1, w(x) = w(y) = w(z) = 3 and w(b) = 8 and
run Algorithm 5.
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Algorithm 5 Extension of Algorithm 3 to k matroids
Input: A stream of the elements and k matroids (which we call M1, . . . , Mk ) on the same ground set E , a
real number α > 1 and a real number y.

Output: A set S ⊆ E of “saved” elements.
When we write an assignment of a variable with subscript i , it means we do it for i = 1, . . . , k.
S ← ∅
for element e in the stream do

calculate w∗
i (e) = max

(
{0} ∪ {θ : e ∈ spanMi

({ f ∈ S | wi ( f ) ≥ θ})}
)
.

if w(e) > α
∑k

i=1 w∗
i (e) then

g(e) ← w(e) − ∑k
i=1 w∗

i (e)
S ← S ∪ {e}
wi (e) ← g(e) + w∗

i (e)
Let Ti be a maximum weight independent set of Mi with respect to wi .
Let gmax = max

e∈S g(e)

Remove all elements e′ ∈ S, such that y · g(e′) < gmax and e′ /∈ ⋃k
i=1 Ti from S.

end if
end for

– Element a has weight 1, and {a} is independent in M1, M2 and M3, so we set
w1(a) = w2(a) = w3(a) = g(a) = 1 and a is added to S.

– Element x is spanned by a in M1, and not spanned by any element in M2 and M3,
so we get g(x) = w(x) − w∗

1(x) − w∗
2(x) − w∗

3(x) = 3 − 1 − 0 − 0 = 2. As
2 > 0, we add x to S. We also set w1(x) = 3 and w2(x) = w3(x) = 2.

– Element y and z are very similar to x .
– Element b is spanned in all three matroids by the elements of wi weight at least 2.
On the other hand, b is not spanned in any matroid by the elements of wi weight
strictly bigger than 2, sow∗

i (b) = 2 for i = 1, 2, 3, thus g(b) = 8−2−2−2 = 2
and wi (b) = 2 + 2 = 4 for every i .

To recapitulate, we have w1(a) = 1, w1(x) = 3, w1(y) = w1(z) = 2, w1(b) = 4
and the w2 and w3 weights are similar, with y respectively z being heavier.

Let us assume for a contradiction that T is a solution to the problem.
T must contain b, as it is the heaviest element in every matroid.
If T contains a, then it cannot contain any of x, y, z, otherwise it would not be

independent in one of the matroids, so we would have T ⊆ {a, b}. But x has to be
in at least one DMi (T ), and the set {x, b} is independent in every matroid, and has a
bigger weight than {a, b}, so x would not be in DMi (T ). Thus T cannot contain a.

As the problem is symmetrical for {x, y, z}, it is sufficient to test T = {z, b}, T =
{y, z, b} and T = {x, y, z, b}. The last two are not in I2, so the only remaining possi-
bility is T = {z, b}. But then y is not in DM1 or DM3 because {z, b, y} is independent
in M1 and M3, and it is not in DM2 because w2(y) > w2(z) ⇔ y <2 z and {y, b} is
independent in M2. As y is not in any DMi , this concludes the proof. ��
Remark 4 In the example of Proposition 1, we have g(S) = w(a) + w(b), and {a, b}
is independent in all 3 matroids, so this does not contradict Conjecture 1.

Conjecture 1 The stack S generated by Algorithm 2 contains a k approximation for
any k.
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In the case k = 2, this corresponds to Theorem 1. For any k, one can easily find
examples were S does not contain more than a k approximation, but we were unable
to find an example were it does not contain a k approximation.
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A Extending Algorithm 3whenmatroid ranks are unknown

In this section, we extend the Algorithm 3 to the case where the the matroid ranks i.e,
ri are unknown. Since ri is not known, we can not set y = min(r1,r2)

ε2
. The idea is to

guess the rank of one of the matroids, say M1 and adapt the y value that would be
assigned to newly added elements as we update our guess. The y values are set in a
way that the errors arising from deleting elements specific to a single y value form a
geometrically decreasing sequence.

More concretely, we set a y value specific to each element e ∈ S using the notion
of stacks introduced in the Proof of Lemma 6. To recap, on the arrival of element e
that is added to our set S initially (may be deleted later), the following two things
might happen to the maximum weight independent set with respect to w1 i.e, T1.
Either it replaces an element e′ in T1, or it is added to T1. In the former case, we say
that e is added to the stack that contains e′. In the latter, we say that we create a new
stack and add e to it. In Algorithm 6, we use s to denote the number of stacks at any
point during the execution. The y value of an element is decided based on the stack
it belongs to. Specifically, the y value of the elements in the first two stacks is set

to 4
ε2
, the next four stacks to 16

ε2
and in general a value of 4i

ε2
for the next 2i stacks.

This is done in Algorithm 6 by the function z : N �→ R where z(1) = z(2) = 4
ε2
,

z(3) = z(4) = z(5) = z(6) = 16
ε2

and in general a value of 4i

ε2
for the next 2i numbers.

The values are set in such a way so that the error introduced in each bundle of stacks
forms a geometrically decreasing sequence. Using arguments used in the Proof of
Lemma 6, the error introduced in the i th bundle of stacks that contains 2i stacks is at
most 2i gmax ε

2(1+ε)

4i ε
= gmax ε(1+ε)

2i
. Summing this over all i gives us that the error is at

most gmaxε(1+ ε) giving us the same error we obtained in the Proof of Lemma 6. By
an analysis similar to the one in Proof of Lemma 6, we can prove that the size of S
never exceeds r1 +r2 +max(r1, r2) logα(

αy f
ε

)where y f is the value in the last bundle

of stacks formed. By simple calculation, y f is at most max(r1,r2)2

ε2
.
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Algorithm 6 Extension of Algorithm 3 to unknown ri
Input: A stream of the elements and 2 matroids (which we call M1, M2) on the same ground set E , a real
number α > 1 and a function z : N �→ R.

Output: A set X ⊆ E that is independent in both matroids.
Whenever we write an assignment of a variable with subscript i , it means we do it for i = 1, 2.
S ← ∅, Ti ← ∅
s = 0 {//initialize no. of stacks to zero.}
for element e in the stream do

calculate w∗
i (e) = max

(
{0} ∪ {θ : e ∈ spanMi

({ f ∈ S | wi ( f ) ≥ θ})}
)
.

if w(e) > α(w∗
1(e) + w∗

2(e)) then
g(e) ← w(e) − w∗

1(e) − w∗
2(e)

S ← S ∪ {e}
wi (e) ← g(e) + w∗

i (e)
Let Hi be a maximum weight independent set of Mi with respect to wi .
if {e} ∪ T1 = H1 then

s = s + 1
y(e) = z(s) {//H1 is formed by adding e to T1}

else
{e′} = T1\(H1\{e}) {//H1 is formed by replacing e′ with e in T1}
y(e) = y(e′)

end if
Ti = Hi
Let gmax = max

e∈S g(e)
Remove all elements e′ ∈ S, such that y(e′) · g(e′) < gmax and e′ /∈ T1 ∪ T2 from S.

end if
end for
return a maximum weight set T ⊆ S that is independent in M1 and M2
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