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Abstract
We consider the sum-of-squares hierarchy of approximations for the problem of min-
imizing a polynomial f over the boolean hypercube B

n = {0, 1}n . This hierarchy
provides for each integer r ∈ N a lower bound f(r) on the minimum fmin of f , given
by the largest scalar λ for which the polynomial f −λ is a sum-of-squares on Bn with
degree at most 2r . We analyze the quality of these bounds by estimating the worst-
case error fmin − f(r) in terms of the least roots of the Krawtchouk polynomials. As
a consequence, for fixed t ∈ [0, 1/2], we can show that this worst-case error in the
regime r ≈ t · n is of the order 1/2−√t(1− t) as n tends to∞. Our proof combines
classical Fourier analysis on B

n with the polynomial kernel technique and existing
results on the extremal roots of Krawtchouk polynomials. This link to roots of orthog-
onal polynomials relies on a connection between the hierarchy of lower bounds f(r)
and another hierarchy of upper bounds f (r), for which we are also able to establish the
same error analysis. Our analysis extends to the minimization of a polynomial over
the q-ary cube (Z/qZ)n . Furthermore, our results apply to the setting of matrix-valued
polynomials.
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1 Introduction

We consider the problem of minimizing a polynomial f ∈ R[x] of degree d ≤ n over
the n-dimensional boolean hypercube Bn = {0, 1}n , i.e., of computing

fmin := min
x∈Bn

f (x). (1)

This optimization problem is NP-hard in general. Indeed, as is well-known, one can
model an instance of max- cut on the complete graph Kn with edge weights w =
(wi j ) as a problem of the form (1) by setting:

f (x) = −
∑

1≤i< j≤n
wi j (xi − x j )

2.

Asanother example one can compute the stability numberα(G)of a graphG = (V , E)

via the program

α(G) = max
x∈B|V |

∑

i∈V
xi −

∑

{i, j}∈E
xi x j .

One may replace the boolean cube Bn = {0, 1}n by the discrete cube {±1}n , in which
case maximizing a quadratic polynomial x�Ax has many other applications, e.g., to
max- cut [13], to the cut norm [1], or to correlation clustering [4]. Approximation
algorithms are known depending on the structure of the matrix A (see [1,6,13]), but
the problem is known to be NP-hard to approximate within any factor less than 13/11
[2].

Problem (1) also permits to capture polynomial optimization over a general region
of the formB

n∩P where P is a polyhedron [17] and thus a broad rangeof combinatorial
optimization problems. The general intractability of problem (1) motivates the search
for tractable bounds on theminimum value in (1). In particular, several lift-and-project
methods have been proposed, based on lifting the problem to higher dimension by
introducing new variables modelling higher degree monomials. Such methods also
apply to constrained problems onBn where the constraints can be linear or polynomial;
see, e.g., [3,18,27,35,39,44]. In [21] it is shown that the sums-of-squares hierarchy
of Lasserre [18] in fact refines the other proposed hierarchies. As a consequence the
sum-of-squares approach for polynomial optimization over Bn has received a great
deal of attention in the recent years and there is a vast literature on this topic. Among
many other results, let us just mention its use to show lower bounds on the size of
semidefinite programming relaxations for combinatorial problems such as max-cut,
maximum stable sets and TSP in [25], and the links to the Unique Game Conjecture
in [5]. For background about the sum-of-squares hierarchy applied to polynomial
optimization over general semialgebraic sets we refer to [16,19,24,32] and further
references therein.

This motivates the interest in gaining a better understanding of the quality of the
bounds produced by the sum-of-squares hierarchy. Our objective in this paper is to
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investigate such an error analysis for this hierarchy applied to binary polynomial
optimization as in (1).

1.1 The sum-of-squares hierarchy on the boolean cube

The sum-of-squares hierarchy was introduced by Lasserre [16,18] and Parrilo [32] as
a tool to produce tractable lower bounds for polynomial optimization problems.When
applied to problem (1) it provides for any integer r ∈ N a lower bound f(r) ≤ fmin on
fmin, given by:

f(r) := sup
λ∈R

{
f (x)− λ is a sum-of-squares of degree at most 2r on Bn} . (2)

The condition ‘ f (x)− λ is a sum-of-squares of degree at most 2r on Bn’ means that
there exists a sum-of-squares polynomial s ∈ Σr such that f (x) − λ = s(x) for all
x ∈ B

n , or, equivalently, the polynomial f −λ−s belongs to the ideal generated by the
polynomials x1− x21 , . . . , xn − x2n . Throughout, Σr denotes the set of sum-of-squares
polynomials with degree at most 2r , i.e., of the form

∑
i p

2
i with pi ∈ R[x]r .

As sums of squares of polynomials can be modelled using semidefinite program-
ming, problem (2) can be reformulated as a semidefinite program of size polynomial in
n for fixed r [16,32], see also [23]. In the case of unconstrained boolean optimization,
the resulting semidefinite program is known to have an optimum solution with small
coefficients (see [31,33]). For fixed r , the parameter f(r) may therefore be computed
efficiently (up to any precision).

The bounds f(r) have finite convergence: f(r) = fmin for r ≥ n [18,21]. In fact, it
has been shown in [36] that the bound f(r) is exact already for 2r ≥ n + d − 1. That
is,

f(r) = fmin for r ≥ n + d − 1

2
. (3)

In addition, it is shown in [36] that the bound f(r) is exact for 2r ≥ n + d − 2 when
the polynomial f has only monomials of even degree. This extends an earlier result
of [12] shown for quadratic forms (d = 2), which applies in particular to the case of
max- cut. Furthermore, this result is tight for max- cut, since one needs to go up
to order 2r ≥ n in order to reach finite convergence (in the cardinality case when all
edge weights are 1) [22]. Similarly, the result (3) is tight when d is even and n is odd
[15].

The main contribution of this work is an analysis of the quality of the bounds f(r)
for parameters r , n ∈ N which fall outside of this regime, i.e., 2r < n + d − 1. The
following is our main result, which expresses the error of the bound f(r) in terms
of the roots of Krawtchouk polynomials, which are classical univariate orthogonal
polynomials with respect to a discrete measure on the set {0, 1, . . . , n} (see Sect. 2 for
details).

Theorem 1 Fix d ≤ n and let f ∈ R[x] be a polynomial of degree d. For r , n ∈ N,
let ξnr be the least root of the degree r Krawtchouk polynomial (19) with parameter n.
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Then, if (r + 1)/n ≤ 1/2 and d(d + 1) · ξnr+1/n ≤ 1/2, we have:

fmin − f(r)
‖ f ‖∞ ≤ 2Cd · ξnr+1/n. (4)

Here Cd > 0 is an absolute constant depending only on d and we set ‖ f ‖∞ :=
maxx∈Bn | f (x)|.

The extremal roots of Krawtchouk polynomials are well-studied in the literature.
The following result of Levenshtein [26] shows their asymptotic behaviour.

Theorem 2 ([26], Section 5) For t ∈ [0, 1/2], define the function

ϕ(t) = 1/2−√
t(1− t). (5)

Then the least root ξnr of the degree r Krawtchouk polynomial with parameter n
satisfies

ξnr /n ≤ ϕ(r/n)+ c · (r/n)−1/6 · n−2/3 (6)

for some universal constant c > 0.

Applying (6) to (4), we find that the relative error of the bound f(r) in the regime
r ≈ t · n behaves as the function ϕ(t) = 1/2−√t(1− t), up to a term in O(1/n2/3),
which vanishes as n tends to∞. As an illustration, Fig. 1 in Appendix A shows the
function ϕ(t).

1.2 A second hierarchy of bounds

In addition to the lower bound f(r), Lasserre [20] also defines an upper bound f (r) ≥
fmin on fmin as follows:

f (r) := inf
s∈Σr

{∫

Bn
f (x) · s(x)dμ(x) :

∫

Bn
s(x)dμ(x) = 1

}
, (7)

where μ is the uniform probability measure on B
n . For fixed r , similarly to f(r), one

may compute f (r) (up to any precision) efficiently by reformulating problem (7) as a
semidefinite program [20]. Furthermore, as shown in [20] the bound is exact for some
order r , and it is not difficult to see that the bound f (r) is exact at order r = n and that
this is tight (see Sect. 5).

Essentially as a side result in the proof of Theorem 1, we can show the following
analog for the upper bounds f (r), which we believe to be of independent interest.

Theorem 3 Fix d ≤ n and let f ∈ R[x] be a polynomial of degree d. Then, for any
r , n ∈ N with (r + 1)/n ≤ 1/2, we have:

f (r) − fmin

‖ f ‖∞ ≤ Cd · ξnr+1/n,
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where Cd > 0 is the constant mentioned in Theorem 1.

So we have the same estimate of the relative error for the upper bounds f (r) as for
the lower bounds f(r) (up to a constant factor 2) and indeed we will see that our proof
relies on an intimate connection between both hierarchies. Note that the above analysis
of f (r) does not require any condition on the size of ξnr+1 as was necessary for the
analysis of f(r) in Theorem 1. Indeed, as will become clear later, the condition put on
ξnr+1 follows from a technical argument (see Lemma 6), which is not required in the
proof of Theorem 3.

1.3 Asymptotic analysis for both hierarchies

The results above show that the relative error of both hierarchies is bounded asymp-
totically by the function ϕ(t) from (5) in the regime r ≈ t · n. This is summarized in
the following corollary, which can be seen as an asymptotic version of Theorem 1 and
Theorem 3.

Corollary 1 Fix d ≤ n and for n, r ∈ N write

E(r)(n) := sup
f ∈R[x]d

{
fmin − f(r) : ‖ f ‖∞ = 1

}
,

E (r)(n) := sup
f ∈R[x]d

{
f (r) − fmin : ‖ f ‖∞ = 1

}
.

Let Cd be the constant of Theorem 1 and let ϕ(t) be the function from (5). Then, for
any t ∈ [0, 1/2], we have:

lim
r/n→t

E (r)(n) ≤ Cd · ϕ(t)

and, if d(d + 1) · ϕ(t) ≤ 1/2, we also have:

lim
r/n→t

E(r)(n) ≤ 2 · Cd · ϕ(t).

Here, the limit notation r/n → t means that the claimed convergence holds
for all sequences (n j ) j and (r j ) j of integers such that lim j→∞ n j = ∞ and
lim j→∞ r j/n j = t .

We close with some remarks. First, note that ϕ(1/2) = 0. Hence Corollary 1
tells us that the relative error of both hierarchies tends to 0 as r/n → 1/2. We thus
‘asymptotically’ recover the exactness result (3) of [36].

Our results in Theorems 1 and 3 and Corollary 1 extend directly to the case of
polynomial optimization over the discrete cube {±1}n instead of the boolean cube
B
n = {0, 1}n , as can easily be seen by applying a change of variables x ∈ {0, 1} �→

2x − 1 ∈ {±1}. In addition, as we show in Appendix A, our results extend to the case
of polynomial optimization over the q-ary cube {0, 1, . . . , q − 1}n for q > 2.
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After replacing f by its negation− f , one may use the lower bound f(r) on fmin in
order to obtain an upper bound on themaximum fmax of f overBn . Similarly, onemay
obtain a lower bound on fmax using the upper bound f (r) on fmin. To avoid possible
confusion, wewill also refer to f(r) as the outer Lasserre hierarchy (or simply the sum-
of-squares hierarchy), whereas we will refer to f (r) as the inner Lasserre hierarchy.
This terminology (borrowed from [7]) is motivated by the following observations.
As is well-known (and easy to see) the parameter fmin can be reformulated as an
optimization problem over the setM of Borel measures on B

n :

fmin = min
{ ∫

Bn
f (x)dν(x) : ν ∈M,

∫

Bn
dν(x) = 1

}
.

If we replace the setM by its inner approximation consisting of all measures ν(x) =
s(x)dμ(x) with polynomial density s ∈ Σr with respect to a given fixed measure μ,
then we obtain the bound f (r). On the other hand, any ν ∈M corresponds to a linear
functional Lν : p ∈ R[x]2r �→

∫
Bn p(x)dν(x) which is nonnegative on sums-of-

squares on B
n . These linear functionals thus provide an outer approximation for M

and maximizing Lν(p) over it gives the bound f(r) (in dual formulation).

1.4 Related work

As mentioned above, the bounds f(r) defined in (2) are known to be exact when
2r ≥ n + d − 1. The case d = 2 (which includes max- cut) was treated in [12],
positively answering a question posed in [22]. Extending the strategy of [12], the
general case was settled in [36]. These exactness results are best possible when d is
even and n is odd [15].

In [14], the sum-of-squares hierarchy is considered for approximating instances
of knapsack. This can be seen as a variation on the problem (1), restricting to a
linear polynomial objective with positive coefficients, but introducing a single, linear
constraint, of the form a1x1 + · · · + anxn ≤ b with ai > 0. There, the authors show
that the outer hierarchy has relative error at most 1/(r − 1) for any integer r ≥ 2.
To the best of our knowledge this is the only known case where one can analyze the
quality of the outer bounds for all orders r ≤ n.

For optimization over sets other than the boolean cube, the following results on
the quality of the outer hierarchy f(r) are available. When considering general semi-
algebraic sets (satisfying a compactness condition), it has been shown in [30] that there
exists a constant c > 0 (depending on the semi-algebraic set) such that f(r) converges
to fmin at a rate in O(1/ log(r/c)1/c) as r tends to ∞. This rate can be improved
to O(1/r1/c) if one considers a variation of the sum-of-squares hierarchy which is
stronger (based on the preordering instead of the quadratic module), but much more
computationally intensive [38]. Specializing to the hypersphere Sn−1, better rates in
O(1/r) were shown in [10,34], and recently improved to O(1/r2) in [11]. Similar
improved results exist also for the case of polynomial optimization on the simplex and
the continuous hypercube [−1, 1]n ; we refer, e.g., to [7] for an overview.

The results for semi-algebraic sets other than B
n mentioned above all apply in the

asymptotic regime where the dimension n is fixed and r →∞. This makes it difficult
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to compare them directly to our new results. Indeed, we have to consider a different
regime in the case of the boolean cube B

n , as the hierarchy always converges in at
most n steps. The regime where we are able to provide an analysis in this paper is
when r ≈ t · n with 0 < t ≤ 1/2.

Turning now to the inner hierarchy (7), as far as we are aware, nothing is known
about the behaviour of the bounds f (r) on B

n . For full-dimensional compact sets,
however, results are available. It has been shown that, on the hypersphere [8], the unit
ball and the simplex [40], and the unit box [9], the bound f (r) converges at a rate in
O(1/r2). A slightly weaker convergence rate in O(log2 r/r2) is known for general
(full-dimensional) semi-algebraic sets [40,42]. Again, these results are all asymptotic
in r , and thus hard to compare directly to our analysis on B

n .

1.5 Overview of the proof

Here, we give an overview of the main ideas that we use to show our results. Our broad
strategy follows the one employed in [11] to obtain information on the sum-of-squares
hierarchy on the hypersphere. The following four ingredients will play a key role in
our proof:

1. we use the polynomial kernel technique in order to produce low-degree sum-of-
squares representations of polynomials that are positive over Bn , thus allowing an
analysis of fmin − f(r);

2. using classical Fourier analysis on the boolean cube B
n we are able to exploit

symmetry and reduce the search for a multivariate kernel to a univariate sum-of-
squares polynomial on the discrete set [0 : n] := {0, 1, . . . , n};

3. we find this univariate sum-of-squares by applying the inner Lasserre hierarchy to
an appropriate univariate optimization problem on [0 : n];

4. finally, we exploit a known connection between the inner hierarchy and the extremal
roots of corresponding orthogonal polynomials (in our case, the Krawtchouk poly-
nomials).

Following these steps we are able to analyze the sum-of-squares hierarchy f(r) as well
as the inner hierarchy f (r). We now sketch how our proof articulates along these four
main steps.

Let f ∈ R[x]d be the polynomial with degree d for which we wish to analyze
the bounds f(r) and f (r). After rescaling, and up to a change of coordinates, we may
assume w.l.o.g. that f attains its minimum over Bn at 0 ∈ B

n and that fmin = 0
and fmax = 1. So we have ‖ f ‖∞ = 1. To simplify notation, we will make these
assumptions throughout.

The first key idea is to consider a polynomial kernel K on B
n of the form:

K (x, y) = u2(d(x, y)), (8)

where u ∈ R[t]r is a univariate polynomial of degree at most r and d(x, y) is the
Hamming distance between x and y. Such a kernel K induces an operator K, which
acts linearly on the space of polynomials on B

n by:
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p ∈ R[x] �→ Kp(x) :=
∫

Bn
p(y)K (x, y)dμ(y) = 1

2n
∑

y∈Bn

p(y)K (x, y).

Recall that μ is the uniform probability distribution on B
n . An easy but important

observation is that, if p is nonnegative on Bn , thenKp is a sum-of-squares (on Bn) of
degree at most 2r . We use this fact as follows.

Given a scalar δ ≥ 0, define the polynomial f̃ := f + δ. Assuming that the
operator K is non-singular, we can express f̃ as f̃ = K(K−1 f̃ ). Therefore, if K−1 f̃
is nonnegative on B

n , then we find that f̃ is a sum-of-squares on B
n with degree at

most 2r , which implies fmin − f(r) ≤ δ.
One way to guarantee that K−1 f̃ is indeed nonnegative on B

n is to select the
operator K in such a way that K(1) = 1 and

‖K−1 − I‖ := sup
p∈R[x]d

‖K−1 p − p‖∞
‖p‖∞ ≤ δ. (9)

We collect this as a lemma for further reference.

Lemma 1 If the kernel operator K associated to u ∈ R[t]r via relation (8) satisfies
K(1) = 1 and ‖K−1 − I‖ ≤ δ, then we have fmin − f(r) ≤ δ.

Proof With f̃ = f + δ, we have: ‖K−1 f̃ − f̃ ‖∞ = ‖K−1 f − f ‖∞ ≤ δ‖ f ‖∞ = δ,
where we use the fact thatK(1) = 1 = K−1(1) and thusK−1 f̃ − f̃ = K−1 f − f for
the first equality and (9) for the inequality. The inequality ‖K−1 f̃ − f̃ ‖∞ ≤ δ then
implies K−1 f̃ (x) ≥ f̃ (x)− δ = f (x) ≥ fmin = 0 on Bn . 
�

In other words, we want the operator K−1 (and thus K) to be ‘close to the identity
operator’ in a certain sense. As kernels of the form (8) are invariant under the symme-
tries ofBn , we are able to use classical Fourier analysis on the boolean cube to express
the eigenvalues λi of K in terms of the polynomial u. More precisely, it turns out that
these eigenvalues are given by the coefficients of the expansion of u2 in the basis of
Krawtchouk polynomials. As we show later (see (33)), inequality (9) then holds for
δ ≈ ∑

i |λ−1i − 1|.
It therefore remains to find a univariate polynomial u ∈ R[t]r for which these

coefficients, and thus the eigenvalues of K, are sufficiently close to 1. Interestingly,
this problem boils down to analyzing the quality of the inner bound g(r) (see 7) for a
particular univariate polynomial g (given in (35)).

In order to perform this analysis and conclude the proof of Theorem 1, wemake use
of a connection between the inner Lasserre hierarchy and the least roots of orthogonal
polynomials (in this case the Krawtchouk polynomials).

Finally, we generalize our analysis of the inner hierarchy (for the special case of
the selected polynomial g in Step 3 to arbitrary polynomials) to obtain Theorem 3.

1.6 Matrix-valued polynomials

As we explain in this section the results of Theorems 1 and 3 may be extended to the
setting of matrix-valued polynomials.

123



Sum-of-squares hierarchies for binary polynomial optimization

For fixed k ∈ N, let Sk ⊆ R
k×k be the space of k × k real symmetric matrices. We

writeSk[x] ⊆ R
k×k[x] for the space of n-variate polynomials whose coefficients lie in

Sk , i.e., the set of k×k symmetric polynomial matrices. The polynomial optimization
problem (1) may be generalized to polynomials F ∈ Sk[x] as:

Fmin := min
x∈Bn

λmin(F(x)), (10)

where F ∈ Sk[x] is a polynomial matrix and λmin(F(x)) denotes the smallest eigen-
value of F(x). That is, Fmin is the largest value for which F(x) − Fmin I � 0 for all
x ∈ B

n , where � is the positive semidefinite Löwner order.
TheLasserre hierarchies (2) and (7)mayalsobedefined in this setting.Apolynomial

matrix S ∈ Sk[x] is called a sum-of-squares polynomial of degree 2r if it can bewritten
as:

S(x) =
∑

i

Ui (x)Ui (x)
� (Ui ∈ R

k×m[x], deg Ui ≤ r , m ∈ N).

We write Σk×k
r for the set of all such polynomials. See, e.g., [37] for background and

results on sum-of-squares polynomialmatrices.Note that a sum-of-squares polynomial
matrix S ∈ Σk×k

r satisfies S(x) � 0 for all x ∈ B
n . For a matrix A ∈ Sk , ‖A‖ denotes

its spectral (or operator) norm, defined as the largest absolute value of an eigenvalue
of A. Then, for F ∈ Sk[x], we set

‖F‖∞ = max
x∈Bn

‖F(x)‖.

The outer hierarchy F(r) for the polynomial F is then given by:

F(r) := sup
λ∈R

{
F(x)− λ · I = S(x) on B

n for some S ∈ Σk×k
r

}
. (11)

Similarly, the inner hierarchy F (r) is defined as:

F (r) := inf
S∈Σk×k

r

{∫

Bn
Tr

(
F(x)S(x)

)
dμ(x) :

∫

Bn
Tr

(
S(x)

)
dμ(x) = 1

}
. (12)

Indeed, (2) and (7) are the special cases of the above programs when k = 1. As before,
the parameters F(r) and F (r) may be computed efficiently for fixed r (and fixed k)
using semidefinite programming, and they satisfy

F(r) ≤ F(r+1) ≤ Fmin ≤ F (r+1) ≤ F (r).

As was already noted in [11] (in the context of optimization over the unit sphere),
the proof strategy outlined in Sect. 1.5 naturally extends to the setting of polynomial
matrices. This yields the following generalizations of our main theorems.
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Theorem 4 Fix d ≤ n and let F ∈ Sk[x] (k ≥ 1) be a polynomial matrix of degree
d. For r , n ∈ N, let ξnr be the least root of the degree r Krawtchouk polynomial (19)
with parameter n. Then, if (r + 1)/n ≤ 1/2 and d(d + 1) · ξnr+1/n ≤ 1/2, we have:

Fmin − F(r)

‖F‖∞ ≤ 2Cd · ξnr+1/n, (13)

where Cd > 0 is the absolute constant depending only on d from Theorem 1.

Theorem 5 Fix d ≤ n and let F ∈ Sk[x] be a matrix-valued polynomial of degree d.
Then, for any r , n ∈ N with (r + 1)/n ≤ 1/2, we have:

F (r) − Fmin

‖F‖∞ ≤ Cd · ξnr+1/n,

where Cd > 0 is the constant of Theorem 1.

Organization

The rest of the paper is structured as follows. We review the necessary background
on Fourier analysis on the boolean cube in Sect. 2. In Sect. 3, we recall a connection
between the inner Lasserre hierarchy and the roots of orthogonal polynomials. Then,
in Sect. 4, we give a proof of Theorem 1. In Sect. 5, we discuss how to generalize
the proofs of Sect. 4 to obtain Theorem 3. We group the proofs of some technical
results needed to prove Lemma 5 in Sect. 6. In Appendix A, we indicate how our
arguments extend to the case of polynomial optimization over the q-ary hypercube
{0, 1, . . . , q − 1}n for q > 2. Finally, we give the proofs of our results in the matrix-
valued setting (Theorems 4 and 5) in Appendix B.

2 Fourier analysis on the Boolean cube

In this section, we cover some standard Fourier analysis on the boolean cube. For a
general reference on Fourier analysis on (finite, abelian) groups, see e.g. [43]. See also
Section 4 of [45] for the boolean case.

Some notation For n ∈ N, we write B
n = {0, 1}n for the boolean hypercube of

dimension n. We let μ denote the uniform probability measure on B
n , given by μ =

1
2n

∑
x∈Bn δx ,where δx is theDiracmeasure at x . Further,wewrite |x | = ∑

i xi = |{i ∈[n] : xi = 1}| for the Hamming weight of x ∈ B
n , and d(x, y) = |{i ∈ [n] : xi �= yi }|

for the Hamming distance between x, y ∈ B
n . We let Sym(n) denote the set of

permutations of the set [n] = {1, . . . , n}.
We consider polynomials p : Bn → R on Bn . The spaceR[x] of such polynomials

is given by the quotient ring of R[x] over the equivalence relation p ∼ q if p(x) =
q(x) on B

n . In other words, R[x] = R[x]/I, where I is the ideal generated by the
polynomials xi − x2i for i ∈ [n], which can also be seen as the vector space spanned
by the (multilinear) polynomials

∏
i∈I xi for I ⊆ [n].
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For a ≤ b ∈ N, we let [a : b] denote the set of integers a, a + 1, . . . , b.

The character basis Let 〈·, ·〉μ be the inner product onR[x] given by:

〈p, q〉μ =
∫

Bn
p(x)q(x)dμ(x) = 1

2n
∑

x∈Bn

p(x)q(x).

The space R[x] has an orthonormal basis w.r.t. 〈·, ·〉μ given by the characters:

χa(x) := (−1)x ·a =
∏

i :ai=1
(1− 2xi )

(
a ∈ B

n) . (14)

In other words, the set {χa : a ∈ B
n} of all characters on B

n forms a basis for R[x]
and

〈χa, χb〉μ = 1

2n
∑

x∈Bn

χa(x)χb(x) = δa,b ∀a, b ∈ B
n . (15)

Then any polynomial p ∈ R[x] can be expressed in the basis of characters, known as
its Fourier expansion:

p(x) =
∑

a∈Bn

p̂(a)χa(x) ∀x ∈ B
n (16)

with Fourier coefficients p̂(a) := 〈p, χa〉μ ∈ R.
The group Aut(Bn) of automorphisms of Bn is generated by the coordinate per-

mutations, of the form x �→ σ(x) := (xσ(1), . . . , xσ(n)) for σ ∈ Sym(n), and the
automorphisms corresponding to bit-flips, of the form x ∈ B

n �→ x ⊕ a ∈ B
n for

a ∈ B
n . If we set

Hk := span{χa : |a| = k} (0 ≤ k ≤ n),

then each Hk is an irreducible, Aut(Bn)-invariant subspace ofR[x] of dimension
(n
k

)
.

Using (16), we may then decompose R[x] as the direct sum

R[x] = H0 ⊥ H1 ⊥ · · · ⊥ Hn,

where the subspaces Hk are pairwise orthogonal w.r.t. 〈·, ·〉μ. In fact, we have that
R[x]d = H0 ⊥ H1 ⊥ · · · ⊥ Hd for all d ≤ n, and we may thus write any p ∈ R[x]d
(in a unique way) as

p = p0 + p1 + · · · + pd (pk ∈ Hk). (17)

The polynomials pk ∈ Hk (k = 0, . . . , d) are known as the harmonic components
of p and the decomposition (17) as the harmonic decomposition of p. We will make
extensive use of this decomposition throughout.
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Let St(0) ⊆ Aut(Bn) be the set of automorphisms fixing 0 ∈ B
n , which consists

of the coordinate permutations x �→ σ(x) = (xσ(1), . . . , xσ(n)) for σ ∈ Sym(n). The
subspace of functions in Hk that are invariant under St(0) is one-dimensional and it is
spanned by the function

Xk(x) :=
∑

|a|=k
χa(x). (18)

These functions Xk are known as the zonal spherical functions with pole 0 ∈ B
n .

Krawtchouk polynomials For k ∈ N, the Krawtchouk polynomial of degree k (and
with parameter n) is the univariate polynomial in t given by:

Kn
k (t) :=

k∑

i=0
(−1)i

(
t

i

)(
n − t

k − i

)
(19)

(see, e.g. [41]). The Krawtchouk polynomials form an orthogonal basis for R[t] with
respect to the inner product given by the following discrete probability measure on
the set [0 : n] = {0, 1, . . . , n}:

ω := 1

2n

n∑

t=0
w(t)δt , with w(t) :=

(
n

t

)
.

Indeed, for all k, k′ ∈ N we have:

〈Kn
k ,Kn

k′ 〉ω :=
1

2n

n∑

t=0
Kn

k (t)Kn
k′(t)w(t) = δk,k′

(
n

k

)
. (20)

The following (well-known) lemma explains the connection between the Krawtchouk
polynomials and the character basis on R[x].
Lemma 2 Let t ∈ [0 : n] and choose x, y ∈ B

n so that d(x, y) = t . Then for any
0 ≤ k ≤ n we have:

Kn
k (t) =

∑

|a|=k
χa(x)χa(y). (21)

In particular, we have:

Kn
k (t) =

∑

|a|=k
χa(1

t0n−t ) = Xk(1
t0n−t ), (22)

where 1t0n−t ∈ B
n is given by (1t0n−t )i = 1 if 1 ≤ i ≤ t and (1t0n−t )i = 0 if

t + 1 ≤ i ≤ n.
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Proof Noting that χa(x)χa(y) = χa(x + y) and |x + y| = d(x, y) = t , we have:

∑

|a|=k
χa(x)χa(y) =

k∑

i=0
(−1)i · #{|a| = k : a · (x + y) = i}

=
k∑

i=0
(−1)i

(
t

i

)(
n − t

k − i

)
= Kn

k (t).


�
From this, we see that any polynomial p ∈ R[x]d that is invariant under the action of
St(0) is of the form

∑d
i=1 λiKn

i (|x |) for some scalars λi , and thus p(x) = u(|x |) for
some univariate polynomial u ∈ R[t]d .

It will sometimes be convenient to work with a different normalization of the
Krawtchouk polynomials, given by:

K̂n
k (t) := Kn

k (t)/Kn
k (0) (k ∈ N). (23)

So K̂n
k (0) = 1. Note that for any k ∈ N, we have

‖Kn
k‖2ω := 〈Kn

k ,Kn
k 〉ω =

(
n

k

)
= Kn

k (0),

meaning that K̂n
k (t) = Kn

k (t)/‖Kn
k‖2ω.

Finally we give a short proof of two basic facts on Krawtchouk polynomials that
will be used below.

Lemma 3 We have:

K̂n
k (t) ≤ K̂n

0(t) = 1

for all 0 ≤ k ≤ n and t ∈ [0 : n].
Proof Given t ∈ [0 : n] consider an element x ∈ B

n with Hamming weight t , for
instance the element 1t0n−t from Lemma 2. By (22) we have

Kn
k (t) =

∑

|a|=k
χa(x) ≤

(
n

k

)
= Kn

k (0),

making use of the fact that |χa(x)| = 1 for all a ∈ B
n . 
�

Lemma 4 We have:

|K̂n
k (t)− K̂n

k (t + 1)| ≤ 2k

n
, (t = 0, 1, . . . , n − 1)

|K̂n
k (t)− 1| ≤ 2k

n
· t (t = 0, 1, . . . , n)

(24)
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for all 0 ≤ k ≤ n.

Proof Let t ∈ [0 : n−1] and 0 < k ≤ d. Consider the elements 1t0n−t and 1t+10n−t−1
of Bn from Lemma 2. We have:

|Kn
k (t)−Kn

k (t + 1)| (22)= |
∑

|a|=k
χa(1

t0n−t )− χa(1
t+10n−t−1)|

≤ 2 · #{a ∈ B
n : |a| = k, at+1 = 1

} = 2

(
n − 1

k − 1

)
,

where for the inequality we note that χa(1t0n−t ) = χa(1t+10n−t−1) if at+1 = 0. As
Kn

k (0) =
(n
k

)
, this implies that:

|K̂n
k (t)− K̂n

k (t + 1)| ≤ 2

(
n − 1

k − 1

)
/

(
n

k

)
= 2k

n
.

This shows the first inequality of (24). The second inequality follows using the triangle
inequality, a telescope summation argument and the fact that K̂n

k (0) = 1. 
�
Invariant kernels and the Funk–Hecke formula Given a univariate polynomial
u ∈ R[t] of degree r with 2r ≥ d, consider the kernel K : Bn × B

n → R defined by

K (x, y) := u2(d(x, y)). (25)

A kernel of the form (25) coincides with a polynomial of degree 2deg(u) in x on the
binary cube Bn , as d(x, y) = ∑

i (xi + yi − 2xi yi ) for x, y ∈ B
n . Furthermore, it is

invariant under Aut(Bn), in the sense that:

K (x, y) = K (π(x), π(y)) ∀x, y ∈ B
n, π ∈ Aut(Bn).

The kernel K acts as a linear operator K : R[x] → R[x] by:

Kp(x) :=
∫

Bn
p(y)K (x, y)dμ(y) = 1

2n
∑

y∈Bn

p(y)K (x, y). (26)

We may expand the univariate polynomial u2 ∈ R[t]2r in the basis of Krawtchouk
polynomials as:

u2(t) =
2r∑

i=0
λiKn

i (t) (λi ∈ R). (27)

As we show now, the eigenvalues of the operator K are given precisely by the coef-
ficients λi occurring in this expansion. This relation is analogous to the classical
Funk–Hecke formula for spherical harmonics (see, e.g., [11]).
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Theorem 6 (Funk–Hecke) Let p ∈ R[x]d with harmonic decomposition p = p0+ p1
+ · · · + pd . Then we have:

Kp = λ0 p0 + λ1 p1 + · · · + λd pd . (28)

Proof It suffices to show thatKχz = λ|z|χz for all z ∈ B
n . So we compute for x ∈ B

n :

Kχz(x) = 1

2n
∑

y∈Bn

χz(y)u
2(d(x, y))

(27)= 1

2n
∑

y∈Bn

χz(y)
2r∑

i=0
λiKn

i (d(x, y))

(21)=
2r∑

i=0
λi

∑

y∈Bn

χz(y)
∑

|a|=i
χa(x)χa(y)

=
2r∑

i=0
λi

∑

|a|=i

( ∑

y∈Bn

χz(y)χa(y)
)
χa(x)

(15)= 1

2n

2r∑

i=0
λi

∑

|a|=i
2nδz,aχa(x)

= λ|z|χz(x).


�

Finally, we note that since the Krawtchouk polynomials form an orthogonal basis
for R[t], we may express the coefficients λi in the decomposition (27) of u2 in the
following way:

λi = 〈Kn
i , u

2〉ω / ‖Kn
i ‖2ω = 〈K̂n

i , u
2〉ω. (29)

In addition, since in view of Lemma 3 we have K̂n
i (t) ≤ K̂n

0(t) for all t ∈ [0 : n], it
folllows that

λi ≤ λ0 for 0 ≤ i ≤ 2r . (30)

3 The inner Lasserre hierachy and orthogonal polynomials

The inner Lasserre hierachy, which we have defined for the boolean cube in (7), may
be defined more generally for the minimization of a polynomial g over a compact set
M ⊆ R

n equipped with a measure ν with support M , by setting:

g(r) := g(r)
M,ν = inf

s∈Σr

{∫

M
g · sdν :

∫

M
sdν = 1

}
(31)

123



L. Slot, M. Laurent

for any integer r ∈ N. So we have: g(r) ≥ gmin := minx∈M g(x). A crucial ingredient
of the proof of our main theorem below is an analysis of the error g(r) − gmin in this
hierarchy for a special choice of M ⊆ R, g and ν.

Here, we recall a technique which may be used to perform such an analysis in the
univariate case, which was developed in [9] and further employed for this purpose,
e.g., in [8,40].

First, we observe that we may always replace g by a suitable upper estimator ĝ
which satisfies ĝmin = gmin and ĝ(x) ≥ g(x) for all x ∈ M . Indeed, it is clear that for
such ĝ we have:

g(r) − gmin ≤ ĝ(r) − gmin = ĝ(r) − ĝmin.

Next, we consider the special case when M ⊆ R and g(t) = t . Here, the bound
g(r) may be expressed in terms of the orthogonal polynomials on M w.r.t. the measure
ν, i.e., the polynomials pi ∈ R[t]i determined by the relation:

∫

M
pi p jdν = 0 if i �= j .

Theorem 7 ([9]) Let M ⊆ R be an interval and let ν be a measure supported on M
with corresponding orthogonal polynomials pi ∈ R[t]i (i ∈ N). Then the Lasserre
inner bound g(r) (from 31) of order r for the polynomial g(t) = t equals

g(r) = ξr+1,

where ξr+1 is the smallest root of the polynomial pr+1.

Remark 1 The upshot of the above result is that, for any polynomial g : R→ Rwhich
is upper bounded on an interval M ⊆ R by a linear polynomial ĝ(t) = ct for some
c > 0, we have:

g(r) − gmin ≤ c · ξr+1, (32)

where ξr+1 is the smallest root of the corresponding orthogonal polynomial of degree
r + 1.

4 Proof of Theorem 1

Throughout, d ≤ n is a fixed integer (the degree of the polynomial f to be minimized
over Bn). Recall u ∈ R[t] is a univariate polynomial with degree r (that we need
to select) with 2r ≥ d. Consider the associated kernel K defined in (25) and the
corresponding linear operator K from (26). Recall from (9) that we are interested in
bounding the quantity:

‖K−1 − I‖ := sup
p∈R[x]d

‖K−1 p − p‖∞
‖p‖∞ .
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Our proof consists of two parts. First, we relate the coefficients λi , that appear in the
decomposition (27) of u2(t) = ∑2r

i=0 λiKn
i (t) into the basis of Krawtchouk polyno-

mials, to the quantity ‖K−1 − I‖.
Then, using this relation and the connection between the inner Lasserre hierarchy

and extremal roots of orthogonal polynomials outlined in Sect. 3, we show that u may
be chosen such that ‖K−1 − I‖ is of the order ξnr+1/n, with ξnr+1 the smallest root of
the degree r + 1 Krawtchouk polynomial (with parameter n).

Bounding ‖K−1 − I‖ in terms of the λi We need the following technical lemma,
which bounds the sup-norm ‖pk‖∞ of the harmonic components pk of a polynomial
p ∈ R[x] in terms of ‖p‖∞, the sup-norm of p itself. The key point is that this bound
is independent of the dimension n. We delay the proof which is rather technical to
Sect. 6.

Lemma 5 There exists a constant γd > 0, depending only on d, such that for any
p = p0 + p1 + . . .+ pd ∈ R[x]d , we have:

‖pk‖∞ ≤ γd‖p‖∞ for all 0 ≤ k ≤ d.

Corollary 2 Assume that λ0 = 1 and λk �= 0 for 1 ≤ k ≤ d. Then we have:

‖K−1 − I‖ ≤ γd ·Λ, where Λ :=
d∑

i=1
|λ−1i − 1|. (33)

Proof By assumption, the operatorK is invertible and, in view of Funk–Hecke relation
(28), its inverse is given byK−1 p = ∑d

i=0 λ−1i pk for any p = p0 + p1 + . . .+ pd ∈
R[x]d . Then we have:

‖K−1 p − p‖∞ = ‖
d∑

i=1
(λ−1i − 1)pi‖∞

≤
d∑

i=1
|λ−1i − 1|‖pi‖∞

≤
d∑

i=1
|λ−1i − 1| · γd‖p‖∞,

(34)

where we use Lemma 5 for the last inequality. 
�
The expression Λ in (33) is difficult to analyze. Therefore, following [11], we

consider instead the simpler expression:

Λ̃ :=
d∑

i=1
(1− λi ) = d −

d∑

i=1
λi ,
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which is linear in the λi . Under the assumption that λ0 = 1, we have λi ≤ λ0 = 1 for
all i (recall relation (30)). Thus, Λ and Λ̃ are both minimized when the λi are close
to 1. The following lemma makes this precise.

Lemma 6 Assume that λ0 = 1 and that Λ̃ ≤ 1/2. Then we have Λ ≤ 2Λ̃, and thus

‖K−1 − I‖ ≤ 2γd · Λ̃.

Proof As we assume Λ̃ ≤ 1/2, we must have 1/2 ≤ λi ≤ 1 for all i . Therefore, we
may write:

Λ =
d∑

i=1
|λ−1i − 1| =

d∑

i=1
|(1− λi )/λi | =

d∑

i=1
(1− λi )/λi ≤ 2

d∑

i=1
(1− λi ) = 2Λ̃.


�
Optimizing the choice of the univariate polynomial u In light of Lemma 6, and
recalling (29), we wish to find a univariate polynomial u ∈ R[t]r for which

λ0 = 〈1, u2〉ω = 1, and

Λ̃ = d −
d∑

i=1
λi = d −

d∑

i=1
〈K̂n

i , u
2〉ω is small.

Unpacking the definition of 〈·, ·〉ω, we thus need to solve the following optimization
problem:

inf
u∈R[t]r

{∫
g · u2dω :

∫
u2dω = 1

}
, where g(t) := d −

d∑

i=1
K̂n
i (t). (35)

(Indeed
∫
gu2dω = 〈g, u2〉ω = Λ̃ and

∫
u2dω = 〈1, u2〉ω.) We recognize this

program to be the same as the program (31) defining the inner Lasserre bound1 of
order r for the minimum gmin = g(0) = 0 of the polynomial g over [0 : n], computed
with respect to the measure dω(t) = 2−n

(n
t

)
. Hence the optimal value of (35) is equal

to g(r) and, using Lemma 6, we may conclude the following.

Theorem 8 Let g be as in (35). Assume that g(r) − gmin ≤ 1/2. Then there exists a
polynomial u ∈ R[t]r such that λ0 = 1 and

‖K−1 − I‖ ≤ 2γd · (g(r) − gmin).

Here, g(r) is the inner Lasserre bound on gmin of order r , computed on [0, n] w.r.t. ω,
via the program (35), and γd is the constant of Lemma 5.

1 Technically, the program (31) allows for the density to be a sum of squares, whereas the program (35)
requires the density to be an actual square. This is no true restriction, though, since, as a straightforward
convexity argument shows, the optimum solution to (31) can in fact always be chosen to be a square [20].
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It remains, then, to analyze the range g(r) − gmin. For this purpose, we follow the
technique outlined in Sect. 3. We first show that g can be upper bounded by its linear
approximation at t = 0.

Lemma 7 We have:

g(t) ≤ ĝ(t) := d(d + 1) · (t/n) ∀t ∈ [0 : n].

Furthermore, the minimum ĝmin of ĝ on [0 : n] clearly satisfies ĝmin = ĝ(0) = g(0) =
gmin.

Proof Using (24), we find for each k ≤ n that:

K̂n
k (t) ≥ K̂n

k (0)−
2k

n
· t = 1− 2k

n
· t ∀t ∈ [0 : n].

Therefore, we have:

g(t) := d −
d∑

k=1
K̂n

k (t) ≤
d∑

k=1

2k

n
· t = d(d + 1) · (t/n) ∀t ∈ [0 : n].


�
Lemma 8 We have:

g(r) − gmin ≤ d(d + 1) · (ξnr+1/n), (36)

where ξnr+1 is the smallest root of the Krawtchouk polynomial Kn
r+1(t).

Proof This follows immediately from Lemma 7 and Remark 1 at the end of Sect. 3,
noting that the Krawtchouk polynomials are indeed orthogonal w.r.t. the measure ω

on [0 : n] (cf. 20). 
�
Putting things together, we may prove our main result, Theorem 1.

Proof of Theorem 1 Assume that r is large enough so that d(d + 1) · (ξnr+1/n) ≤ 1/2.
By Lemma 8, we then have

g(r) − gmin ≤ d(d + 1) · (ξnr+1/n) ≤ 1/2.

By Theorem 8 we are thus able to choose a polynomial u ∈ R[t]r whose associated
operator K satisfies K(1) = 1 and

‖K−1 − I‖ ≤ 2γd · d(d + 1) · (ξnr+1/n).

We may then use Lemma 1 to obtain Theorem 1 with constant Cd := γd · d(d + 1).

�
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5 Proof of Theorem 3

We turn now to analyzing the inner hierarchy f (r) defined in (7) for a polynomial
f ∈ R[x]d on the boolean cube, whose definition is repeated for convenience:

f (r) := min
s∈Σ[x]r

{∫

Bn
f (x) · s(x)dμ :

∫

Bn
s(x)dμ = 1

}
≥ fmin. (37)

As before, we may assume w.l.o.g. that fmin = f (0) = 0 and that fmax = 1. To
facilitate the analysis of the bounds f (r), the idea is to restrict in (37) to polynomials
s(x) that are invariant under the action of St(0) ⊆ Aut(Bn), i.e., depending only on
the Hamming weight |x |. Such polynomials are of the form s(x) = u(|x |) for some
univariate polynomial u ∈ R[t]. Hence this leads to the following, weaker hierarchy,
where we now optimize over univariate sums-of-squares:

f (r)
sym := min

u∈Σ[t]r

{∫

Bn
f (x) · u(|x |)dμ(x) :

∫

Bn
u(|x |)dμ(x) = 1

}
.

By definition, we must have f (r)
sym ≥ f (r) ≥ fmin, and so an analysis of f (r)

sym extends
immediately to f (r).

The main advantage of working with the hierarchy f (r)
sym is that wemay now assume

that f is itself invariant under St(0), after replacing f by its symmetrization:

1

|St(0)|
∑

σ∈St(0)
f (σ (x)).

Indeed, for any u ∈ Σ[t]r , we have that:
∫

Bn
f (x)u(|x |)dμ(x) = 1

|St(0)|
∑

σ∈St(0)

∫

Bn
f (σ (x))u(|σ(x)|)dμ(σ(x))

=
∫

Bn

1

|St(0)|
∑

σ∈St(0)
f (σ (x))u(|x |)dμ(x).

So we now assume that f is St(0)-invariant, and thus we may write:

f (x) = F(|x |) for some polynomial F(t) ∈ R[t]d .

By the definitions of the measures μ on B
n and ω on [0 : n] we have the identities:

∫

Bn
u(|x |)dμ(x) =

∫

[0:n]
u(t)dω(t),

∫

Bn
F(|x |)u(|x |)dμ(x) =

∫

[0:n]
F(t)u(t)dω(t).
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Hence we get

f (r)
sym = min

u∈Σ[t]r

{ ∫

[0:n]
F(t) · u(t)dω(t) :

∫

[0:n]
u(t)dω(t) = 1

}
= F (r)

[0:n],ω. (38)

In otherwords, the behaviour of the symmetrized inner hierarchy f (r)
sym over the boolean

cube w.r.t. the uniform measure μ is captured by the behaviour of the univariate inner
hierarchy F (r)

[0:n],ω over [0 : n] w.r.t. the discrete measure ω.
Now, we are in a position to make use again of the technique outlined in Sect. 3.

First we find a linear upper estimator F̂ for F on [0 : n].
Lemma 9 We have

F(t) ≤ F̂(t) := d(d + 1) · γd · t/n ∀t ∈ [0 : n],

where γd is the same constant as in Lemma 5.

Proof Write F(t) = ∑d
i=0 λi K̂n

i (t) for some scalars λi . By assumption, F(0) = 0

and thus
∑d

i=0 λi = 0. We now use an analogous argument as for Lemma 7:

F(t) =
d∑

i=0
λi (K̂n

i (t)− 1) ≤
d∑

i=0
|λi ||K̂n

i (t)− 1| (24)≤ max
i
|λi | · t ·

d∑

i=0

2i

n

≤ max
i
|λi | · t · d(d + 1)

n
.

As ‖ f ‖∞ = 1, using Lemma 5, we can conclude that:

|λi | = max
t∈[0:n] |λi K̂

n
i (t)| ≤ γd

which gives the desired result. 
�
In light of Remark 1 in Sect. 3, we may now conclude that

F (r)
[0:n],ω ≤ d(d + 1)γd · ξnr+1/n.

As f (r) ≤ f (r)
sym = F (r)

[0:n],ω, we have thus shown Theorem 3 with constant
Cd = d(d + 1)γd . Note that in comparison to Lemma 8, we only have the additional
constant factor γd .

Exactness of the inner hierarchy As is the case for the outer hierarchy, the inner
hierarchy is exact when r is large enough. Whereas the outer hierarchy, however, is
exact for r ≥ (n + d − 1)/2, the inner hierarchy is exact in general if and only if
r ≥ n. We give a short proof of this fact below, for reference.

Lemma 10 Let f be a polynomial on Bn. Then f (r) = fmin for all r ≥ n.
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Proof We may assume w.l.o.g. that f (0) = fmin. Consider the interpolation polyno-
mial:

s(x) := √2n
n∏

i=1
(1− xi ) ∈ R[x]n,

which satisfies s2(0) = 2n and s2(x) = 0 for all 0 �= x ∈ B
n . Clearly, we have:

∫
f s2dμ = f (0) = fmin and

∫
s2dμ = 1,

and so f (n) = fmin. 
�
The next lemma shows that this result is tight, by giving an example of polynomial

f for which the bound f (r) is exact only at order r = n.

Lemma 11 Let f (x) = |x | = x1 + · · · + xn. Then f (r) − fmin > 0 for all r < n.

Proof Suppose not. That is, f (r) = fmin = 0 for some r ≤ n−1. As f (x) > 0 = fmin
for all 0 �= x ∈ B

n , this implies that there exists a polynomial s ∈ R[x]r such that s2

is interpolating at 0, i.e. such that s2(0) = 1 and s2(x) = 0 for all 0 �= x ∈ B
n . But

then s is itself interpolating at 0 and has degree r < n, a contradiction. 
�

6 Proof of Lemma 5

In this section we give a proof of Lemma 5, where we bound the sup-norm ‖pk‖∞
of the harmonic components pk of a polynomial p by γd‖p‖∞ for some constant γd
depending only on the degree d of p. The following definitions will be convenient.

Definition 1 For n ≥ d ≥ k ≥ 0 integers, we write:

ρ(n, d, k) := sup{‖pk‖∞ : p = p0 + p1 + · · · + pd ∈ R[x]d , ‖p‖∞ ≤ 1}, and

ρ(n, d) := max
0≤k≤d ρ(n, d, k).

We are thus interested in finding a bound γd depending only on d such that:

γd ≥ ρ(n, d) for all n ∈ N. (39)

We will now show that in the computation of the parameter ρ(n, d, k) we may restrict
to feasible solutions p having strong structural properties. First, we show that we may
assume that the sup-norm of the harmonic component pk of p is attained at 0 ∈ B

n .

Lemma 12 We have

ρ(n, d, k) = sup
p∈R[x]nd

{pk(0) : ‖p‖∞ ≤ 1} . (40)
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Proof Let p be a feasible solution for ρ(n, d, k) and let x ∈ B
n for which pk(x) =

‖pk‖∞ (after possibly replacing p by −p). Now choose σ ∈ Aut(Bn) such that
σ(0) = x and set p̂ = p ◦ σ . Clearly, p̂ is again a feasible solution for ρ(n, d, k).
Moreover, as Hk is invariant under Aut(Bn), we have:

‖ p̂k‖∞ = p̂k(0) = (p ◦ σ)k(0) = (pk ◦ σ)(0) = ‖pk‖∞,

which shows the lemma. 
�
Nextwe show thatwemay in addition restrict to polynomials that are highly symmetric.

Lemma 13 In the program (40) we may restrict the optimization to polynomials of the
form

p(x) =
d∑

i=0
λi

∑

|a|=i
χa(x) =

d∑

i=0
λiKn

i (|x |) where λi ∈ R.

Proof Let p be a feasible solution to (40). Consider the following polynomial p̂
obtained as symmetrization of p under action of St(0), the set of automorphism of Bn

corresponding to the coordinate permutations:

p̂(x) = 1

|St(0)|
∑

σ∈St(0)
(p ◦ σ)(x).

Then ‖ p̂‖∞ ≤ 1 and p̂k(0) = pk(0), so p̂ is still feasible for (40) and has the same
objective value as p. Furthermore, for each i , p̂i is invariant under St(0), which implies
that p̂i (x) = λi Xi (x) = λi

∑
|a|=i χa(x) = λiKn

i (|x |) for some λi ∈ R (see 18). 
�
A simple rescaling λi ← λi ·

(n
i

)
allows us to switch from Kn

i to K̂n
i = Kn

i /
(n
i

)
and to

obtain the following reformulation of ρ(n, d, k) as a linear program.

Lemma 14 For any n ≥ d ≥ k we have:

ρ(n, d, k) = max λk

s.t . − 1 ≤
d∑

i=0
λi K̂n

i (t) ≤ 1 (t = 0, 1, . . . , n).
(41)

Limit functions The idea now is to prove a bound on ρ(n, d, d) which holds for fixed
d and is independent of n. We will do this by considering ‘the limit’ of problem (41)
as n →∞. For each k ∈ N, we define the limit function:

K̂∞k (t) := lim
n→∞ K̂n

k (nt),

which, as shown in Lemma 15 below, is in fact a polynomial. We first present the
polynomial K̂∞k (t) for small k as an illustration.

123



L. Slot, M. Laurent

Example 1 We have:

K̂n
0(nt) = 1 �⇒ K̂∞0 (t) = 1,

K̂n
1(nt) = −2t + 1 �⇒ K̂∞1 (t) = −2t + 1,

K̂n
2(nt) =

2n2t2 − 2n2t + (n
2

)
(n
2

) �⇒ K̂∞2 (t) = 4t2 − 4t + 1 = (1− 2t)2.

Lemma 15 We have: K̂∞k (t) = (1− 2t)k for all k ∈ N.

Proof The Krawtchouk polynomials satisfy the following three-term recurrence rela-
tion (see, e.g., [28]):

(k + 1)Kn
k+1(t) = (n − 2t)Kn

k (t)− (n − k + 1)Kn
k−1(t)

for 1 ≤ k ≤ n − 1. By evaluating the polynomials at nt we obtain:

(k + 1)Kn
k+1(nt) = (n − 2nt)Kn

k (nt)− (n − k + 1)Kn
k−1(nt),

�⇒ (k + 1)

(
n

k + 1

)
K̂n

k+1(nt)

= (n − 2nt)

(
n

k

)
K̂n

k (nt)− (n − k + 1)

(
n

k − 1

)
K̂n

k−1(nt),

�⇒ K̂n
k+1(nt) =

n(1− 2t)

(n − k)
· K̂n

k (nt)−
k

n − k
· K̂n

k−1(nt),

�⇒ K̂∞k+1(t) = (1− 2t)K̂∞k (t).

As K̂∞0 (t) = 1 and K̂∞1 (t) = 1− 2t we can conclude that indeed K̂∞k (t) = (1− 2t)k

for all k ∈ N. 
�
Next, we show that solutions to (41) remain feasible after increasing the dimension n.

Lemma 16 Let λ = (λ0, λ1, . . . , λd) be a feasible solution to (41) for a certain n ∈ N.
Then it is also feasible to (41) for n + 1 (and thus for any n′ ≥ n + 1). Therefore,
ρ(n + 1, d, k) ≥ ρ(n, d, k) for all n ≥ d ≥ k and thus ρ(n + 1, d) ≥ ρ(n, d) for all
n ≥ d.

Proof We may view B
n as a subset of Bn+1 via the map a �→ (a, 0), and analogously

R[x1, . . . , xn] as a subset ofR[x1, . . . , xn, xn+1] via χa �→ χ(a,0). Now for m, i ∈ N

we consider again the zonal spherical harmonic (18):

Xm
i =

∑

|a|=i,a∈Bm

χa .

Consider the set St(0) ⊆ Aut(Bn+1) of automorphisms fixing 0 ∈ B
n+1, i.e., the

coordinate permutations arising from σ ∈ Sym(n + 1). We will use the following
identity:
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1

|St(0)|
∑

σ∈St(0)

Xn
i(n
i

) ◦ σ = Xn+1
i(n+1
i

) . (42)

To see that (42) holds note that its left hand side is equal to

1

(n + 1)!(ni
)

∑

σ∈Sym(n+1)

∑

a∈Bn ,|a|=i
χ(a,0) ◦ σ = 1

(n + 1)!(ni
)

∑

b∈Bn+1,|b|=i
Nbχb,

where Nb denotes the number of pairs (σ, a) with σ ∈ Sym(n + 1), a ∈ B
n , |a| = i

such that b = σ(a, 0). As there are
(n
i

)
choices for a and i !(n + 1− i)! choices for σ

we have Nb =
(n
i

)
i !(n + 1− i)! and thus (42) holds.

Assume λ is a feasible solution of (41) for a given value of n. Then, in view of (21),
this means

∣∣∣
d∑

i=0
λi · X

n
i (x)(n
i

)
∣∣∣ ≤ 1 for all x ∈ B

n, and thus for all x ∈ B
n+1.

Using (42) we obtain:

∣∣∣
d∑

i=0
λi

Xn+1
i (x)
(n+1

i

)
∣∣∣ =

∣∣∣
d∑

i=0
λi · 1

|St(0)|
∑

σ∈St(0)

Xn
i (σ (x))
(n
i

)
∣∣∣

=
∣∣∣
(

1

|St(0)|
∑

σ∈St(0)

( d∑

i=0
λi

Xn
i(n
i

)
) ◦ σ

)
(x)

∣∣∣ ≤ 1

for all x ∈ B
n+1. Using (21) again, this shows that λ is a feasible solution of program

(41) for n + 1. 
�
Example 2 To illustrate the identity (42), we give a small example with n = i = 2.
Consider:

X2
2 =

∑

|a|=2,a∈B2

χa = χ11.

The automorphisms in St(0) ⊆ Aut(B3) fixing 0 ∈ B
3 are the permutations of

x1, x2, x3. So we get:

1

|St(0)|
∑

σ∈St(0)
X2
2 ◦ σ = 1

6
(χ110 + χ101 + χ110 + χ011 + χ101 + χ011)

= 2

6
(χ110 + χ101 + χ011) = 1

3
X3
2,

and indeed
(2
2

)
/
(3
2

) = 1/3.
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Lemma 17 For d ≥ k ∈ N, define the program:

ρ(∞, d, k) := max λk

s.t . − 1 ≤
d∑

i=0
λi K̂∞i (t) ≤ 1 (t ∈ [0, 1]). (43)

Then, for any n ≥ d, we have: ρ(n, d, k) ≤ ρ(∞, d, k).

Proof Let λ be a feasible solution to (41) for (n, d, k). We show that λ is feasible for
(43). For this fix t ∈ [0, 1] ∩Q. Then there exists a sequence of integers (n j ) j →∞
such that n j ≥ n and tn j ∈ [0, n j ] is integer for each j ∈ N. As n j ≥ n, we know
from Lemma 16 that λ is also a feasible solution of program (41) for (n j , d, k). Hence,
since n j t ∈ [0 : n j ] we obtain

|
d∑

i=0
λi K̂n j

i (n j t)| ≤ 1 ∀ j ∈ N.

But this immediately gives:

|
d∑

i=0
λi K̂∞i (t)| = lim

j→∞ |
d∑

i=0
λi K̂n j

i (n j t)| ≤ 1. (44)

As [0, 1] ∩Q lies dense in [0, 1] (and the K̂∞i ’s are continuous) we may conclude that
(44) holds for all t ∈ [0, 1]. This shows that λ is feasible for (43) and we thus have
ρ(n, d, k) ≤ ρ(∞, d, k), as desired. 
�
It remains now to compute the optimumsolution to the program (43). In light of Lemma
15, and after a change of variables x = 1− 2t , this program may be reformulated as:

max |λk |

s.t . − 1 ≤
d∑

i=0
λi x

i ≤ 1 (x ∈ [−1, 1]). (45)

In other words, we are tasked with finding a polynomial p(x) of degree d satisfying
|p(x)| ≤ 1 for all x ∈ [−1, 1], whose k-th coefficient is as large as possible in absolute
value. This is a classical extremal problem solved by V. Markov.

Theorem 9 (see, e.g., Theorem 7, pp. 53 in [29]) For m ∈ N, let Tm(x) = ∑m
i=0 tm,i x i

be the Chebyshev polynomial of degree m. Then the optimum solution λ to (45) is given
by:

d∑

i=0
λi x

i =
{
Td(x) if k ≡ d mod 2,

Td−1(x) if k �≡ d mod 2.
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Table 1 Values of the constant
γd

d 1 2 3 4 5 6 7 8 9 10

γd 1 2 4 8 20 48 112 256 576 1280

In particular, ρ(∞, d, k) is equal to |td,k | (resp. |td−1,k |).
As the coefficients of the Chebyshev polynomials are known explicitely, Theorem 9
allows us to give exact values of the constant γd appearing in our main results (see
Table 1). Using the following identity:

d∑

i=0
|td,i | = 1

2
(1+√2)d + 1

2
(1−√2)d ≤ (1+√2)d ,

we are also able to concretely estimate:

γd ≤ max
k≤d ρ(∞, d, k) ≤ (1+√2)d .

7 Concluding remarks

SummaryWehave shown a theoretical guarantee on the quality of the sum-of-squares
hierarchy f(r) ≤ fmin for approximating the minimum of a polynomial f of degree
d over the boolean cube B

n . As far as we are aware, this is the first such analysis
that applies to values of r smaller than (n + d)/2, i.e., when the hierarchy is not
exact. Additionally, our guarantee applies to a second, measure-based hierarchy of
bounds f (r) ≥ fmin. Our result may therefore also be interpreted as bounding the
range f (r) − f(r). Our analysis also applies to polynomial optimization over the cube
{±1}n (by a simple change of variables), over the q-ary cube (see Appendix A) and
in the setting of matrix-valued polynomials (see Appendix B).

Analysis for small values of r A limitation of Theorem 1 is that the analyis of f(r)
applies only for choices of d, r , n satisfying d(d + 1)ξnr+1 ≤ 1/2. One may partially
avoid this limitation by proving a slightly sharper version of Lemma6, showing instead
that Λ ≤ Λ̃/(1 − Λ̃), assuming now only that Λ̃ ≤ 1. Indeed, Lemma 6 is a special
case of this result, assuming that Λ̃ ≤ 1/2 to obtain Λ ≤ 2Λ̃. Nevertheless, our
methods exclude values of r outside of the regime r = Ω(n).

The constant γd The strength of our results depends in large part on the size of
the constant Cd appearing in Theorem 1 and Theorem 3, where we may set Cd =
d(d + 1)γd . Recall that γd is defined in Lemma 5 as a constant for which ‖pk‖∞ ≤
γd‖p‖∞ for any polynomial p = p0 + p1 + . . .+ pd of degree d and k ≤ d on B

n ,
independently of the dimension n. In Sect. 6 we have shown the existence of such a
constant. Furthermore, we have shown there that we may choose γd ≤ (1 + √2)d ,
and have given an explicit expression for the smallest possible value of γd in terms of
the coefficients of Chebyshev polynomials. Table 1 lists these values for small d.

123



L. Slot, M. Laurent

Computing extremal roots of Krawtchouk polynomials Although Theorem 2 pro-
vides only an asymptotic bound on the least root ξnr ofKn

r , it should be noted that ξ
n
r can

be computed explicitely for small values of r , n, thus allowing for a concrete estimate
of the error of both Lasserre hierarchies via Theorems 1 and 3, respectively. Indeed, as
is well-known, the root ξnr+1 is equal to the smallest eigenvalue of the (r+1)× (r+1)
matrix A (aka Jacobi matrix), whose entries are given by Ai, j = 〈tK̂n

i (t), K̂n
j (t)〉ω for

i, j ∈ {0, 1, . . . , r}. See, e.g., [41] for more details.

Connecting the hierarchies Our analysis of the outer hierarchy f(r) on B
n relies

essentially on knowledge of the the inner hierarchy f (r). Although not explicitely
mentioned there, this is the case for the analysis on Sn−1 in [11] as well. As the
behaviour of f (r) is generally quite well understood, this suggests a potential avenue
for proving further results on f(r) in other settings.

For instance, the inner hierarchy f (r) is known to converge at a rate in O(1/r2) on
the unit ball Bn or the unit box [−1, 1]n , butmatching results on the outer hierarchy f(r)
are not available. The question is thus whether the strategy used for the hypersphere
Sn−1 in [11] and for the boolean cube B

n here might be extended to these cases as
well.

A difficulty is that the sets Bn and [−1, 1]n have a more complicated symmetric
structure than Sn−1 andBn , respectively. In particular, the group actions have uncount-
ably many orbits in these cases, and a direct analog of the Funk–Hecke formula (28)
is not available. New ideas are therefore needed to define the kernel K (x, y) (cf. 8)
and analyze its eigenvalues.

Acknowledgements Wewish to thankSvenPolak andPepijnRoosHoefgeest for several useful discussions.
We also thank the anonymous referees for their helpful comments and suggestions.

A The q-ary cube

In this section, we indicate how our results for the boolean cube Bn may be extended
to the q-ary cube (Z/qZ)n = {0, 1, . . . , q − 1}n when q > 2 is a fixed integer. Here
Z/qZ denotes the cyclic group of order q, so that (Z/qZ)n = B

n when q = 2.
The lower bound f(r) for the minimum of a polynomial f over (Z/qZ)n is defined
analogously to the case q = 2; namely we set

f(r) := sup
λ∈R

{
f (x)− λ is a sum-of-squares of degree at most 2r on (Z/qZ)n

}
,

where the condition means that f (x) − λ agrees with a sum of squares s ∈ Σ[x]2r
for all x ∈ (Z/qZ)n or, alternatively, that f − λ − s belongs to the ideal generated
by the polynomials xi (xi − 1) . . . (xi − q + 1) for i ∈ [n]. Similarly, the upper bound
f (r) is defined as in (7) after equipping (Z/qZ)n with the uniform measure μ. The
parameters f(r) and f (r) may again be computed by solving a semidefinite program
of size polynomial in n for fixed r , q ∈ N, see [23].
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As before d(x, y) denotes the Hamming distance and |x | denotes the Hamming
weight (number of nonzero components). Note that, for x, y ∈ (Z/qZ)n , d(x, y) can
again be expressed as a polynomial in x, y, with degree q − 1 in each of x and y.

We will prove Theorem 11 below, which can be seen as an analog of Corollary 1 for
(Z/qZ)n . The general structure of the proof is identical to that of the case q = 2. We
therefore only give generalizations of arguments as necessary. For reasons that will
become clear later, it is most convenient to consider the sum-of-squares bound f(r)
on the minimum fmin of a polynomial f with degree at most (q − 1)d over (Z/qZ)n ,
where d ≤ n is fixed.

Fourier analysis on (Z/qZ)n and Krawtchouk polynomials Consider the space

R[x] := C[x]/(xi (xi − 1) . . . (xi − q + 1) : i ∈ [n])
consisting of the polynomials on (Z/qZ)n with complex coefficients. We equipR[x]
with its natural inner product

〈 f , g〉μ =
∫

(Z/qZ)n
f (x)g(x)dμ(x) = 1

qn
∑

x∈(Z/qZ)n

f (x)g(x),

where μ is the uniform measure on (Z/qZ)n . The space R[x] has dimension
|(Z/qZ)n| = qn overC and it is spanned by the polynomials of degree up to (q−1)n.
The reason we now need to work with polynomials with complex coefficients is that
the characters have complex coefficients when q > 2.

Let ψ = e2π i/q be a primitive q-th root of unity. For a ∈ (Z/qZ)n , the associated
character χa ∈ R[x] is defined by:

χa(x) = ψa·x (x ∈ (Z/qZ)n).

So (14) is indeed the special case of this definitionwhen q = 2. The set of all characters
{χa : a ∈ (Z/qZ)n} forms an orthogonal basis forR[x] w.r.t. the above inner product
〈·, ·〉μ. A characterχa can bewritten as a polynomial of degree (q−1)·|a| on (Z/qZ)n ,
i.e., we have χa ∈ R[x](q−1)|a| for all a ∈ (Z/qZ)n .

As before, we have the direct sum decomposition into pairwise orthogonal sub-
spaces:

R[x] = H0 ⊥ H1 ⊥ · · · ⊥ Hn,

where Hi is spanned by the set {χa : |a| = i} and Hi ⊆ R[x](q−1)i . The components
Hi are invariant and irreducible under the action of Aut((Z/qZ)n), which is generated
by the coordinate permutations and the action of Sym(q) on individual coordinates.
Hence any p ∈ R[x] of degree at most (q − 1)d can be (uniquely) decomposed as:

p = p0 + p1 + · · · + pd (pi ∈ Hi ).

As before St(0) ⊆ Aut((Z/qZ)n) denotes the stabilizer of 0 ∈ (Z/qZ)n , which is
generated by the coordinate permutations and the permutations in Sym(q) fixing 0
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in {0, 1, . . . , q − 1} at any individual coordinate. We note for later reference that the
subspace of Hi invariant under action of St(0) is of dimension one, and is spanned by
the zonal spherical function:

Xi =
∑

|a|=i
χa ∈ Hi . (46)

The Krawtchouk polynomials introduced in Sect. 2 have the following generaliza-
tion in the q-ary setting:

Kn
k (t) = Kn

k,q(t) :=
k∑

i=0
(−1)i (q − 1)k−i

(
t

i

)(
n − t

k − i

)
.

Analogously to relation (20), the Krawtchouk polynomials Kn
k (0 ≤ k ≤ n) are

pairwise orthogonal w.r.t. the discrete measure ω on [0 : n] given by:

ω(t) = 1

qn

n∑

t=0
w(t)δt , with w(t) := (q − 1)t

(
n

t

)
. (47)

To be precise, we have:

n∑

t=0
Kn

k (t)Kn
k′(t)(q − 1)t

(
n

t

)
= δk,k′(q − 1)k

(
n

k

)
.

As Kn
k (0) = (q − 1)k

(n
k

) = ‖Kn
k‖2ω, we may normalize Kn

k by setting:

K̂n
k (t) := Kn

k (t)/Kn
k (0) = Kn

k (t)/‖Kn
k‖2ω,

so that K̂n
k satisfies maxnt=0 K̂n

k (t) = K̂n
k (0) = 1 (cf. 23).

We have the following connection (cf. 22) between the characters and the
Krawtchouk polynomials:

∑

a∈(Z/qZ)n :|a|=k
χa(x) = Kn

k (i) for x ∈ (Z/qZ)n with |x | = i . (48)

Note that for all a, x, y ∈ (Z/qZ)n , we have:

χ−1a (x) = χa(x) = χa(−x), χa(x)χa(y) = χa(x + y).

Hence, for any x, y ∈ (Z/qZ)n , we also have (cf. 21):

∑

a∈(Z/qZ)n :|a|=k
χa(x)χa(y) =

∑

a∈(Z/qZ)n :|a|=k
χa(x − y) = Kn

k (i) when d(x, y)

= |x − y| = i .
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Invariant kernels In analogy to the binary case q = 2, for a degree r univariate poly-
nomial u ∈ R[t]r we define the associated polynomial kernel K (x, y) := u2(d(x, y))
(x, y ∈ (Z/qZ)n) and the associated kernel operator:

K : p �→ Kp(x) =
∫

(Z/qZ)n
p(y)K (x, y)dμ(y)

= 1

qn
∑

y∈(Z/qZ)n

p(y)K (x, y) (p ∈ R[x]).

Note that K (x, y) is a polynomial on (Z/qZ)n with degree 2r(q−1) in each of x and
y. Let us decompose the univariate polynomial u(t)2 in the Krawtchouk basis as

u(t)2 =
2r∑

i=0
λiKn

i (t).

Then the kernel operator K acts as follows on characters: for z ∈ (Z/qZ)n ,

Kχz = λ|z|χz,

which can be seen by retracing the proof of Theorem 6, and we obtain the Funk–
Hecke formula (recall (28)): for any polynomial p ∈ R[x](q−1)d with Harmonic
decomposition p = p0 + · · · + pd ,

Kp = λ0 p0 + · · · + λd pd .

Performing the analysis It remains to find a univariate polynomial u ∈ R[t] of degree
r with u2(t) = ∑2r

i=0 λiKn
i (t) for which λ0 = 1 and the other scalars λi are close to

1. As before (cf. 29), we have:

λi = 〈Kn
i , u

2〉ω/‖Kn
i ‖2ω = 〈K̂n

i , u
2〉ω.

So we would like to minimize
∑2r

i=1(1− λi ). We are therefore interested in the inner
Lasserre hierarchy applied to theminimization of the function g(t) = d−∑d

i=0 K̂n
i (t)

on the set [0 : n] (equipped with the measure ω from (47)). We show first that this
function g again has a nice linear upper estimator.

Lemma 18 We have:

|K̂n
k (t)− K̂n

k (t + 1)| ≤ 2k

n
, (t = 0, 1, . . . , n − 1)

|K̂n
k (t)− 1| ≤ 2k

n
· t (t = 0, 1, . . . , n)

(49)

for all k ≤ n.
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Proof The proof is almost identical to that of Lemma 4. Let t ∈ [0 : n − 1] and
0 < k ≤ d. Consider the elements 1t0n−t , 1t+10n−t−1 ∈ (Z/qZ)n from Lemma 2.
Then we have:

|Kn
k (t)−Kn

k (t + 1)| (48)= |
∑

|a|=k
χa(1

t0n−t )− χa(1
t+10n−t−1)|

≤ 2 · #{a ∈ (Z/qZ)n : |a| = k, at+1 �= 0
}

= 2 · (q − 1)k ·
(
n − 1

k − 1

)
,

where for the inequality we note that χa(1t0n−t ) = χa(1t+10n−t−1) if at+1 = 0. As
Kn

k (0) = (q − 1)k
(n
k

)
, this implies that:

|K̂n
k (t)− K̂n

k (t + 1)| ≤ 2 ·
(
n − 1

k − 1

)
/

(
n

k

)
= 2k

n
.

This shows the first inequality of (49). The second inequality follows using the triangle
inequality, a telescope summation argument and the fact that K̂n

k (0) = 1. 
�
From Lemma 18 we obtain that the function g(t) = d − ∑d

i=0 K̂n
i (t) admits the

following linear upper estimator: g(t) ≤ d(d + 1) · (t/n) for t ∈ [0 : n]. Now the
same arguments as used for the case q = 2 enable us to conclude:

f ((q−1)r) − fmin ≤ Cd · ξnr+1,q/n

and, when d(d + 1)ξnr+1,q/n ≤ 1/2,

fmin − f((q−1)r) ≤ 2Cd · ξnr+1,q/n.

HereCd is a constant depending only ond and ξnr+1,q is the least root of theKrawtchouk
polynomialKn

r+1,q . Note that as the kernel K (x, y) = u2(d(x, y)) is of degree 2(q −
1)r in x (and y), we are only able to analyze the corresponding levels (q − 1)r of the
hierarchies. We come back below to the question on how to show the existence of the
above constant Cd .

But first we finish the analysis. Having shown analogs of Theorem 1 and Theorem
3 in this setting, it remains to state the following more general version of Theorem 2,
giving information about the smallest roots of the q-ary Krawtchouk polynomials.

Theorem 10 ([26], Section 5) Fix t ∈ [0, q−1
q ]. Then the smallest roots ξnr ,q of the

q-ary Krawtchouk polynomials Kn
r ,q satisfy:

lim
r/n→t

ξnr ,q/n = ϕq(t) := q − 1

q
−

(
q − 2

q
· t + 2

q

√
(q − 1)t(1− t)

)
. (50)

Here the above limit means that, for any sequences (n j ) j and (r j ) j of integers such
that lim j→∞ n j = ∞ and lim j→∞ r j/n j = t , we have lim j→∞ ξ

n j
r j ,q/n j = ϕq(t).
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Fig. 1 The function ϕq (t) for several values of q. Note that the case q = 2 corresponds to the function ϕ(t)
of (5)

Note that for q = 2we have ϕq(t) = 1
2−
√
t(1− t), which is the function ϕ(t) from

(5). To avoid technical details we only quote in Theorem 10 the asymptotic analog of
Theorem 2 (and not the exact bound on the root ξnr ,q for any n). Therefore we have
shown the following q-analog of Corollary 1.

Theorem 11 Fix d ≤ n and for n, r ∈ N write

E(r)(n) := sup
f ∈R[x](q−1)d

{
fmin − f(r) : ‖ f ‖∞ = 1

}
,

E (r)(n) := sup
f ∈R[x](q−1)d

{
f (r) − fmin : ‖ f ‖∞ = 1

}
.

There exists a constant Cd > 0 (depending also on q) such that, for any t ∈ [0, q−1
q ],

we have:

lim
r/n→t

E ((q−1)r)(n) ≤ Cd · ϕq(t)

and, if d(d + 1) · ϕq(t) ≤ 1/2, then we also have:

lim
r/n→t

E((q−1)r)(n) ≤ 2 · Cd · ϕq(t).

Here ϕq(t) is the function defined in (50). Recall that the limit notation r/n → t means
that the claimed convergence holds for any sequences (n j ) j and (r j ) j of integers such
that lim j→∞ n j = ∞ and lim j→∞ r j/n j = t .

For reference, the function ϕq(t) is shown for several values of q in Fig. 1.

A generalization of Lemma 5 The arguments above omit a generalization of Lemma
5, which is instrumental to show the existence of the constant Cd claimed above. In
other words, we still need to show that if p : (Z/qZ)n → R is a polynomial of degree
(q − 1)d on (Z/qZ)n with harmonic decomposition p = p0 + . . . + pd , there then
exists a constant γd > 0 (independent of n) such that:
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‖pi‖∞ ≤ γd‖p‖∞ for all 0 ≤ i ≤ d.

Then, as in the binary case, we may set Cd = d(d + 1)γd . The proof given in Sect. 6
for the case q = 2 applies almost directly to the general case, and we only generalize
certain steps as required. So consider again the parameters:

ρ(n, d, k) := sup{‖pk‖∞ : p= p0+ p1+. . .+ pd ∈ R[x](q−1)d , ‖p‖∞ ≤ 1}, and

ρ(n, d) := max
0≤k≤d ρ(n, d, k).

Lemmas 12 and 13, which show that the optimum solution p to ρ(n, d, k) may be
assumed to be invariant under St(0) ⊆ Aut((Z/qZ)n), clearly apply to the case q > 2
as well. That is to say, we may assume p is of the form:2

p(x) =
d∑

i=0
λi Xi (x) (λi ∈ R)

where Xi = ∑
|a|=i χa ∈ Hi is the zonal spherical function of degree (q − 1)i (cf. 46

and 18). Using (48), we obtain a reformulation of ρ(n, d, k) as an LP (cf. 41):

ρ(n, d, k) = max λk

s.t . − 1 ≤
d∑

i=0
λi K̂n

i,q(t) ≤ 1 (t = 0, 1, . . . , n).
(51)

For k ∈ N, let K̂∞k (t) := limn→∞ K̂n
k (nt) =

(
1− q

q−1 t
)k

and consider the program

(cf. 43):

ρ(∞, d, k) := max λk

s.t . − 1 ≤
d∑

i=0
λi K̂∞i (t) ≤ 1 (t ∈ [0, 1]). (52)

As before, we have ρ(n, d, k) ≤ ρ(∞, d, k), noting that (the proofs of) Lemmas 16
and 17 may be applied directly to the case q > 2. From there, it suffices to show
ρ(∞, d, k) < ∞, which can be argued in an analogous way to the case q = 2.

B Matrix-valued polynomials

In this section, we show how the arguments used for the proofs of our main results in
Theorems 1 and 3 may be applied in the setting of matrix-valued polynomials, thereby
proving Theorems 4 and 5.

2 Note that as p is assumed to be real-valued, the coefficients λi must be real. Indeed, for each a ∈ (Z/qZ)n ,
we have 〈p, χa〉μ = λ|a|‖χa‖2 = λ|a|‖χ−1a ‖2 = 〈p, χa〉μ = 〈p, χa〉μ.
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Recall thatSk is the space of k×k real symmetricmatrices andSk[x] ⊆ R
k×k[x] =

R[x]k×k is the space of n-variate polynomials whose coefficients lie in Sk . Given a
polynomial matrix F ∈ Sk[x]we consider thematrix-valued polynomial optimization
problem:

Fmin := min
x∈Bn

λmin(F(x)), (53)

for which we have the outer Lasserre hierarchy:

F(r) := sup
λ∈R

{
F(x)− λ · I = S(x) on B

n for some S ∈ Σk×k
r

}
, (54)

and the inner Lasserre hierarchy:

F (r) := inf
S∈Σk×k

r

{∫

Bn
Tr

(
F(x)S(x)

)
dμ(x) :

∫

Bn
Tr

(
S(x)

)
dμ(x) = 1

}
. (55)

Here, the set Σk×k
r consists of all sum-of-squares polynomial matrices S ∈ Sk[x], of

the form:

S(x) =
∑

i

Ui (x)Ui (x)
� (Ui ∈ R

k×m[x], deg Ui ≤ r , m ∈ N).

The outer hierarchy (proof of Theorem 4) We generalize the outline of Sect. 1.5
to the matrix-valued setting. Let F ∈ Sk[x] be the polynomial matrix of degree d to
be optimized, and assume w.l.o.g. that 0 ≤ ‖F‖∞ ≤ 1. Here, and throughout this
section, ‖F‖∞ := maxx∈Bn ‖F(x)‖ is the largest absolute value of an eigenvalue of
F(x) over Bn . A kernel K of the form K (x, y) = u2(d(x, y)) with u ∈ R[t]r (cf. 8)
induces a linear operator K on Sk[x] by:

KP(x) :=
∫

Bn
P(y)K (x, y)dμ(y) = 1

2n
∑

y∈Bn

P(y)K (x, y) (P ∈ Sk[x]).

If P(x) � 0 for all x ∈ B
n , then the polynomial KP is a sum-of-squares polynomial

matrix of degree at most 2r on B
n . Indeed, we then have:

KP(x) = 1

2n
∑

y∈Bn

Uy(x)Uy(x)
�, where Uy(x) = u(d(x, y))

√
P(y).

Given δ > 0 to be determined later, set F̃ = F + δ I . Assuming that K is non-
singular, we can write F = K(K−1 F̃). Therefore, assuming that K−1 F̃ is positive
semidefinite over Bn , we find that F + δ I is a sum-of-squares polynomial matrix of
degree 2r on B

n , and thus that Fmin − F(r) ≤ δ.
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To guarantee positive semidefiniteness of F̃ , it suffices to ensure that (cf. 9):

‖K−1 − I‖ := sup
P∈Sk [x]d

‖K−1P − P‖∞
‖P‖∞ ≤ δ.

Indeed, as the smallest eigenvalue of F̃(x) is at least δ for each x ∈ B
n , the smallest

eigenvalue of K−1F(x) must then be at least zero.
As in the case of scalar-valued polynomials, the eigenvalues of K are given by the

coefficients λi in the expansion u2(t) = ∑2r
i=0 λiKn

i (t). Indeed, if P ∈ Sk[x] is a
polynomial matrix of degree d then we may decompose it into harmonic components
entry-wise to obtain P(x) = ∑d

i=0 Pi (x) and (cf. Theorem 6):

KP(x) =
d∑

i=0
λi Pi (x).

It remains to express the quantity ‖K−1 − I‖ in terms of the eigenvalues λi of K,
after which the proof proceeds as in the case of scalar polynomials. For this, note that:

‖K−1P − P‖∞ = ‖
d∑

i=1
(λ−1i − 1)Pi‖∞ ≤

d∑

i=1
|λ−1i − 1|‖Pi‖∞

≤
d∑

i=1
|λ−1i − 1| · γd‖P‖∞.

where γd is the constant of Lemma 5 (cf. 34). The last inequality relies on the following
generalization of Lemma 5, whose proof here is essentially as given in [11].

Lemma 19 Let P(x) = ∑d
i=0 Pi (x) be a polynomial matrix of degree d, decomposed

into harmonic components. If γd is the constant of Lemma 5, we then have:

‖Pi‖∞ ≤ γd‖P‖∞ for all i ≤ d.

Proof For anymatrixM ∈ Sk , its spectral norm is ‖M‖ = maxy∈Rk {|y�My| : ‖y‖ =
1}. Therefore, we have:

‖P‖∞ = max
x∈Bn

max‖y‖=1 |y
�P(x)y| and ‖Pi‖∞ = max

x∈Bn
max‖y‖=1 |y

�Pi (x)y|.

For fixed y, the function py : x �→ y�P(x)y is a (scalar) polynomial on Bn of degree
d, whose harmonic components are given by pyi : x �→ y�Pi (x)y. Therefore, we may
invoke Lemma 5 to bound:

max
x∈Bn

|pyi (x)| ≤ γd max
x∈Bn

|py(x)| for all ‖y‖ = 1,

and conclude that ‖Pi‖∞ ≤ γd‖P‖∞. 
�

123



Sum-of-squares hierarchies for binary polynomial optimization

The inner hierarchy (proof of Theorem 5) We generalize the arguments of Sect. 5
to the matrix-valued setting. Let F again be the polynomial matrix of degree d to be
optimized, and assume w.l.o.g. that 0 ≤ ‖F‖∞ ≤ 1 and that the minimum in the
optimization problem (53) is attained at 0, i.e., that Fmin = λmin

(
F(0)

)
.

As in the scalar case, we work to reduce problem (55) to a (now matrix-valued)
instance of the inner hierachy in one variable. Note first that F (r) ≤ F (r)

sym for each

r ∈ N, where F (r)
sym is obtained by restricting the optimization in (55) to polynomial

matrices S(x) of the form S(x) = U (|x |). Writing F̂ for the univariate polynomial
matrix satisfying

F̂(|x |) = 1

|St(0)|
∑

σ∈St(0)
F ◦ σ(x) (x ∈ B

n),

we find (cf. 38):

F (r)
sym = min

U∈Σk×k
r [t]

{ ∫

[0:n]
Tr

(
F̂(t)U (t)

)
dω(t) :

∫

[0:n]
Tr

(
U (t)

)
dω(t) = 1

}
. (56)

It remains to analyze the program (56). We first give a linear upper estimator for F̂
(cf. Lemma 9).

Lemma 20 For all t ∈ [0 : n], we have:

F̂(t)  Ĝ(t) := d(d + 1) · γd · t/n · I + C,

where C = F̂(0) is a constant matrix with λmin(C) = 0.

Proof We may write F̂(t) = ∑d
i=0 Λi K̂n

i (t) for certain Λi ∈ Sk . We then have:

d∑

i=0
Λi K̂n

i (t) =
d∑

i=0
Λi

(K̂n
i (t)− 1

)+
d∑

i=0
Λi

 d
max
i=0 ‖Λi‖∞ · I ·

d∑

i=0
|1− K̂n

i (t)| +
d∑

i=0
Λi

 d(d + 1) · γd · t/n · I +
d∑

i=0
Λi ,

making use of Lemma 19 and (24) for the final inequality. It remains to note that∑d
i=0 Λi = F̂(0), and that λmin(F̂(0)) = 0 by assumption. 
�

As F̂(t)  Ĝ(t) for all t ∈ [0 : n], we have F (r)
sym ≤ Ĝ(r)

[0:n],ω, where:

Ĝ(r)
[0:n],ω = min

U∈Σk×k
r [t]

{ ∫

[0:n]
Tr

(
Ĝ(t)U (t)

)
dω(t) :

∫

[0:n]
Tr

(
U (t)

)
dω(t) = 1

}
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is the inner Lasserre hierarchy for G computed on [0 : n] w.r.t. the measure ω. To
conclude the argument, we prove the following generalization of Theorem 7 (see also
Remark 1).

Corollary 3 Let G(t) = ct · I + C be a linear matrix-valued polynomial with c > 0
and λmin(C) = 0. Then we have:

G(r)
[0:n],ω ≤ c · ξnr+1,

where ξnr+1 is the least root of the degree r + 1 Krawtchouk polynomial.

Proof Let u be a unit eigenvector for C corresponding to (one of its) zero eigenval-
ues. Then for any univariate sum-of-squares polynomial s ∈ Σr , the matrix-valued
polynomial U (t) = s(t)uu� is a sum-of-squares polynomial matrix of degree 2r .
Furthermore, for such a U we have:

∫

[0:n]
Tr

(
G(t)U (t)

)
dω(t) =

∫

[0:n]
ct · s(t)dω(t)

and
∫

[0:n]
Tr

(
U (t)

)
dω(t) =

∫

[0:n]
s(t)dω(t).

Therefore, writing g(t) = ct , and making use of Theorem 7 and Remark 1, we have:

G(r)
[0:n],ω ≤ inf

s∈Σr

{∫

[0:n]
ct · s(t)dω(t) :

∫

[0:n]
s(t)dω(t) = 1

}
= g(r)

[0:n],ω = c · ξnr+1.

This concludes the proof. 
�
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