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Abstract We focus on rational solutions or nearly-feasible rational solutions that
serve as certificates of feasibility for polynomial optimization problems. We show
that, under some separability conditions, certain cubic polynomially constrained
sets admit rational solutions. However, we show in other cases that it is NP Hard
to detect if rational solutions exist or if they exist of any reasonable size. We extend
this idea to various settings including near feasible, but super optimal solutions and
detecting rational rays on which a cubic function is unbounded. Lastly, we show
that in fixed dimension, the feasibility problem over a set defined by polynomial
inequalities is in NP by providing a simple certificate to verify feasibility. We
conclude with several related examples of irrationality and encoding size issues in
QCQPs and SOCPs.
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1 Introduction

This paper addresses basic questions of precise certification of feasibility and opti-
mality, for optimization problems with polynomial constraints, in polynomial time,
under the Turing model of computation. Recent progress in polynomial optimiza-
tion and mixed-integer nonlinear programming has produced elegant methodolo-
gies and effective implementations; however such implementations may produce
imprecise solutions whose actual quality can be difficult to rigorously certify, even
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2 Bienstock et al.

approximately. The work we address is motivated by these issues, and can be
summarized as follows:

Question: given a polynomially constrained problem, what can be said about the
existence of feasible or approximately feasible rational solutions of polynomial size
(bit encoding length)1, and more generally the existence of rational, feasible or
approximately-feasible solutions that are also approximately-optimal for a given
polynomial objective?

As is well-known, Linear Programming is polynomially solvable [18, 20], and,
moreover, every face of a rational polyhedron contains a point of polynomial size
[32]. If we instead optimize a quadratic function over linear constraints, the prob-
lem becomes NP-Hard [24], but perhaps surprisingly, Vavasis [34] proved that a
feasible system consisting of linear inequalities and just one quadratic inequality,
all with rational coefficients, always has a rational feasible solution of polynomial
size. This was extended by Del Pia, Dey, and Molinaro [12] to show that the same
result holds in the mixed-integer setting. See also [17] discussion of mixed-integer
nonlinear optimization problems with linear constraints.

On the negative side, there are classical examples of SOCPs all of whose feasible
solutions require exponential size [2], [27], [22]. Adding to this, in Example 6.3, we
provide an SOCP where all feasible solutions are irrational (likely, a folklore result).
Recent results of Pataki and Touzov [25] actually show that many SDP’s have large
encoding size issues. Their work hinges on earlier examples from Khachiyan. In the
nonconvex setting, there are examples of quadratically constrained, linear objec-
tive problems, on n bounded variables, and with coefficients of magnitude Op1q,

that admit solutions with maximum additive infeasibility Op2´2Θpnq
q but mul-

tiplicative (or additive) superoptimality Θp1q. O’Donnell [23] questions whether
SDPs associated with fixed-rank iterates of sums-of-squares hierarchies (which re-
lax nonconvex polynomially constrained problem) can be solved in polynomial
time, because optimization certificates might require exponential size. The issue
of accuracy in solutions is not just of theoretical interest. As an example, [36] de-
scribes instances of SDPs (again, in the sums-of-squares setting) where a solution
is very nearly certified as optimal, and yet proves substantially suboptimal.

Vavasis’ result suggests looking at systems of two or more quadratic constraints,
or (to some extent equivalently) optimization problems where the objective is
quadratic, and at least one constraint is quadratic, with all other constraints lin-
ear. The problem of optimizing a quadratic subject to one quadratic constraint
(and no linear constraints) can be solved in polynomial time using semidefinite-
programming techniques [26], to positive tolerance. When the constraint is positive
definite (i.e. a ball constraint) the problem can be solved to tolerance ε in time

log log ε´1 [37], [19] (in other words Opkq computations guarantee accuracy 2´2k).
Vavasis [33] proved, on the other hand, that exact feasibility of a system of two
quadratics can be tested in polynomial time.

With regards to systems of more than two quadratic constraints, Barvinok [4]
proved a fundamental result: for each fixed integer m there is an algorithm that,
given nˆ n rational matrices Ai (1 ď i ď m) tests, in polynomial time, feasibility

1 Throughout we will use the concept of size, or bit encoding length, of rational numbers,
vectors, linear inequalities, and formulations. For these standard definitions we refer the reader
to Section 2.1 in [32]
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of the system of equations

xTAix “ 0 for 1 ď i ď m, x P Rn, }x}2 “ 1.

A feature of this algorithm is that certification does not rely on producing a feasible
vector; indeed, all feasible solutions may be irrational. As a corollary of this result,
[9] proves that, for each fixed integer m there is an algorithm that solves, in
polynomial time, an optimization problem of the form

min f0pxq, s.t. fipxq ď 0 for 1 ď i ď m

where for 0 ď i ď m, fipxq is an n-variate quadratic polynomial, and we assume
that the quadratic part of f1pxq positive-definite; moreover a rational vector that
is (additively) both ε-feasible and -optimal can be computed in time polynomial
in the size of the formulation and log ε´1. An important point with regards to [4]
and [9] is that the analyses do not apply to systems of arbitrarily many linear
inequalities and just two quadratic inequalities.

De Loera et. al. [11] use the Nullstellensatz to provide feasibility and infeasi-
bility certificates to systems of polynomial equations through solving a sequence
of large linear equations. Bounds on the size of the certificates are obtained [15].
This technique does not seem amenable to systems with a large number of linear
inequalities due to the necessary transformation into equations and then blow up
of the number of variables used. Another approach is to use the Positivestellen-
satz and compute an infeasibility certificate using sums of squares hierarchies. As
mentioned above, see [23] for a discussion if exactness and size of these hierarchies
needed for a certificate.

Renegar [28] shows that the problem of deciding whether a system of polyno-
mial inequalities is feasible can be decided in polynomial time provided that the
dimension is considered fixed. This is a landmark result, however, the algorithm
and techniques are quite complicated. Renegar [29] then shows how to provide
approximate solutions that are near feasible solution. Another technique to ob-
tain a similar result is Cylindrical Algebraic Decomposition. See, e.g., [6]. These
techniques can admit a rational univariate representation [31], encoding feasible
solutions as roots of univariate polynomials. See [5] for more recent results and
improvements. In our work, we aim to avoid these techniques and provide an
extremely simple certificate that shows the feasibility question is in NP.

Our Results. The main topic we address in this paper is whether a system of
polynomial inequalities admits rational, feasible or near-feasible solutions of poly-
nomial size. We show that it is strongly NP-hard to test if a system of quadratic
inequalities that has feasible rational solutions, admits feasible rational solutions
of polynomial size (Theorem 2.6). And it is also hard to test if a feasible system of
a linear inequalities and a single cubic inequality has a rational solution (Theorem
2.8). Next we show that these effects can be seen largely when we consider nearly
feasible solutions. We show that a point that is slightly infeasible can have a far
superior objective function than any feasible point (Theorem 2.10). We then con-
sider unbounded problems. We establish that it is NP-hard to determine whether
or not the ray is irrational (Theorem 2.12). In the next section, we show that,
given a system of polynomial inequalities on n variables that was known to have
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a bounded, nonempty feasible region, we can produce as a certificate of feasibil-
ity a rational, near-feasible vector that has polynomial size, for fixed n (Theorem
3.6). This certificate yields a direct proof that, in fixed dimension, the feasibility
problem over a system of polynomial inequalities is in NP.

Next we consider the lower boundaries of Theorem 2.8. We show that in di-
mension 2, with one separable cubic inequality and linear inequalities, there exists
a rational solution of polynomial size (Theorem 4.5). We then provide background
theory maximizing a cubic function over a polyhedron. We conclude with several
related examples of simple sets with complicated solutions.

2 NP-Hardness of determining existence of rational feasible solutions

In this section we show a number of hardness results concerning systems of poly-
nomial inequalities. In particular we prove that given a 3-SAT formula F there is a
polynomial-size system S of polynomial inequalities that always admits a feasible
rational solution, and with the property that if F is not satisfiable then every feasi-
ble rational solution to S has exponential size, whereas if F is satisfiable then S has
a feasible rational solution of linear size (Theorem 2.6). As a result, colloquially,
it is strongly NP-hard to test whether a system of quadratic inequalities which
is known to have feasible rational solutions, admits feasible rational solutions of
polynomial size. The same proof technique shows that it is hard to test whether
a feasible system of quadratic inequalities has a rational solution (Theorem 2.8).
Finally we show that it is NP-hard to decide if a nearly-feasible solution to a poly-
nomial optimization problem is also ’very’ superoptimal – a precise statement is
given in Theorem 2.10.

Basic notation. We denote by Zrx1, . . . , xns the set of all polynomial functions
from Rn to R with integer coefficients. For ease of notation, we write a polynomial
g P Zrx1, . . . , xns of degree d in the form gpxq “

ř

IPNn,‖I‖1ďd
cIx

I , where each

cI P Z and xI :“
śn
i“1 x

Ii
i .

Two important constructions. Examples 2.1 and 2.3 will be used throughout our
proofs. They were, to the best of our knowledge, previously unknown.

Example 2.1 (Feasible system with no rational feasible vector) Define

hpyq :“ 2y31 ` y
3
2 ´ 6y1y2 ` 4, Rγ :“ r1.259 ´ γ, 1.26s ˆ r1.587, 1.59s. (1)

See Figure 1 for an illustration. Then ty P R0 : hpyq ď 0u “ ty˚u where

y˚ :“ p2
1
3 , 2

2
3 q « p1.2599, 1.5874q. (2)

˛

Observation 2.2 (1) The point y˚ P Rγ for all γ ě 0. (2) y˚ is the unique
minimizer of hpyq for y P R2

`. (3) For y P R4, hpyq ą ´12. (4) The point ȳ “
p´2.74, 1.588q P R4 attains hpȳq ă ´7. (5) hpy˚q “ 0.
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a.) 1.25980 1.26
1.58730

1.58735

1.58740

1.58745

1.58750

b.) -2 -1 0 1 2
1.58730

1.58735

1.58740

1.58745

1.58750

Fig. 1 The function hpyq on the left on the domain Rγ , and on the right the set of feasible
pints satisfying y P Rγ , hpyq ď 0. Row a.) has γ “ 0 and row b.) has γ “ 4.

Proof (1) is clear. (2) On the curve defined by y2 “ y21 –which includes the point

y˚– we have that hpyq “ y61 ´ 4y31 ` 4 whose sole minimizer is at y1 “ 21{3
“ y˚1 .

Moreover, Bh
By1

“ 6py21 ´ y2q. These two facts imply that, for any y P R2
`, hpyq ě

hpy
1{2
2 , y2q ě hpy˚q, with at least one of the two inequalities strict unless y “ y˚as

desired. (3) By (2), if y P R2
` then hpyq ě hpy˚q “ 0. Otherwise, y1 ă 0. Then

Bh
By1

“ 6py21 ´ y2q and so either (when y21 ă y2) hpyq ě hp0, y2q ą 0, or (when

y21 ě y2) hpyq ě hp1.259 ´ 4, y2q ą ´12 ` y32 ą ´12. (4), (5) are clear. [\

Note that the proof of Observation 2.2 shows that for R0, the only zero of h is
y˚, and h takes negative values in R4. In the next example we consider a special
system of quadratic inequalities.

Example 2.3 Let D Ď RˆRn be the set of s P R and d P Rn such that the following
inequalities are satisfied:

0 ď d1 ď
1
2

0 ď dk ď d2k´1, k “ 2, . . . , n
0 ď s ď d2n.

(3)

Observation 2.4 In any feasible solution to system (3) we either have s “ 0,
or 0 ă s ď 2´2n and in this case if s is rational then we need at least 2n bits
to represent it using the standard bit encoding scheme. Further, there are rational
solutions to system (3) with s ą 0.
We remark that the literature abounds with examples of SOCPs all of whose so-
lutions are doubly exponentially large, see e.g. [2], [27]. Our example is similar,
however it is non-convex. ˛

2.1 NP-hardness construction.

Here we provide our NP-hardness constructions. The main reduction is from the
problem 3SAT. An instance of this problem is defined by n literals w1, . . . , wn as
well as their negations w̄1, . . . , w̄n, and a set of m clauses C1, . . . Cm where each
clause Ci is of the form pui1_ui2_ui3q. Here, each uij is a literal or its negation,
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and _ means ‘or’. The problem is to find ‘true’ or ‘false’ values for each literal,
and corresponding values for their negations, so that the formula

C1 ^ C2 . . . ^ Cm (4)

is true, where ^ means ‘and’.
Given an instance of 3SAT as above, we construct a system of quadratic in-

equalities on the following 3n ` 5 variables:

– For each literal wj we have a variable xj ; for w̄j we use variable xn`j .
– Additional variables γ,∆, y1, y2, s, and d1, . . . , dn.

We describe the constraints in our quadratically constrained problem2. For
each clause Ci “ pui1 _ ui2 _ ui3q we denote by xik the variable associated with
the literal uik for 1 ď k ď 3. In the constraints below, the function hpyq and the
region Rγ are as in Example 2.1, and the set D is as in Example 2.3.

´1 ď xj ď 1 for j P r2ns, (5a)

xj ` xn`j “ 0, for j P rns, (5b)

xi1 ` xi2 ` xi3 ě ´1 ´∆, for each clause Ci “ pui1 _ ui2 _ ui3q (5c)

0 ď γ, 0 ď ∆ ď 2, ∆ `
γ

2
ď 2, (5d)

py1, y2q P Rγ , (5e)

ps, dq P D, (5f)

´n5 řn
j“1 x

2
j ` hpyq ´ s ď ´n6. (5g)

As a remark on this system, we note that the feasible region is contained in a
bounded region – in fact, in every feasible solution the absolute value of every
variable is at most 4. The following observation will be used below.

Observation 2.5 Suppose px, γ,∆, y, d, sq is feasible for (5). Then

|xj | ě 1 ´
12

n5
´

2´2n

n5
for 1 ď j ď 2n.

Proof Let σ2
– minjtx

2
ju. Since ´1 ď xj ď 1, we have 1 ě |xj | ě |xj |

2
ě σ2 for

all j “ 1, . . . , n. Hence by (5g) ´n5
pn ´ 1q ´ n5σ2

` hpyq ´ s ď n6, and so

σ2
ě 1 `

hpyq ´ s

n5
.

Note that hpyq ě ´12 follows from γ ď 4 (due to (5d)) and part 3 of Observation

2.2 and that(5f) implies s ď 2´2n . Thus

σ2
ě 1 ´

12

n5
´

2´2n

n5
. [\

[\

2 Constraint (5g) as written is cubic, but is equivalent to three quadratic constraints by
defining new variables y12 “ y21 , y22 “ y22 , and rewriting the constraint as ´n5

řn
j“1 x

2
j `

y12y1 ` y22y2 ´ 6y1y2 ` 4 ´ s ď ´n6
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Theorem 2.6 Let n ě 3. Consider an instance (4) of 3-SAT and the correspond-
ing system (5).

(a) System (5) has a rational feasible solution.
(b) Suppose formula (4) is satisfiable. Then (5) has a rational feasible solution of

size at 4n ` L, where L is a fixed constant independent of n.
(c) Suppose formula (4) is not satisfiable. Then every rational feasible solution to

(5) has size at least 2n.

Proof

(a) Set x˚j “ 1 “ ´x˚n`j for j P rns, ∆˚ “ 2, γ˚ “ 0, d˚k “ 2´2k´1

for k P rns and

s˚ “ 2´2n . By inspection these rational values satisfy (5a), (5b), (5c), (5d), and

(5f). Further, let y˚ “ p2
1
3 , 2

2
3 q. Since (Observation 2.2)

1. y˚ is in the interior of R0,
2. y˚ is the unique local minimizer of h,
3. hpy˚q “ 0 and s˚ ą 0,
4. h is continuous, and
5. the set Q2 is dense in R2,

there exists rational ŷ P R0 such that hpŷq ď s˚. Hence, (5e) and (5g) are also
satisfied by px˚, γ˚,∆˚, ŷ, d˚, s˚q P Q3n`5.

(b) Let w̃ denote a truth assignment that satisfies (4). For 1 ď j ď n set
x̃j “ 1 “ ´x̃n`j if w̃j is true, else set x̃j “ ´1 “ ´x̃n`j . Set ∆̃ “ 0, γ̃ “ 4,
and d̃1 “ . . . “ d̃n “ s̃ “ 0. Finally set pỹ1, ỹ2q “ p´2.74, 1.588q. By inspection,
and Observation 2.2(4) vector px̃, γ̃, ∆̃, ỹ, d̃, s̃q is feasible for (5). Its size is 4n`L,
where L is the size of the encoding of the rational numbers 0, 4, 0, ´2.74 and 1.588.

(c) Let px, γ,∆, y, d, sq be rational feasible. For 1 ď j ď n set wj to be true if xj ą 0
and false otherwise. It follows that there is at least one clause Ci “ pui1_ui2_ui3q
such that every uik (for 1 ď k ď 3) is false, i.e. each xik ă 0. Using constraint (5c)
and Observation 2.5, we obtain

´3 `
36

n5
` 3

2´2n

n5
ě ´1 ´∆, and by (5d) γ ď

72

n5
` 6

2´2n

n5
ă 1.

This fact has two implications. First, since py1, y2q P Rγ Ă R2
`, Observation 2.2

implies hpyq ą 0 (because y is rational). Second, constraint (5g), i.e. ´n5 řn
j“1 x

2
j `

hpyq ´ s ď ´n6 implies hpyq ď s because
řn
j“1 x

2
j ď

řn
j“1 1 “ n. So s ą 0 and

since s ď 2´2n (by constraint (5f) or see Observation (2.4)) the proof is complete.
[\

As a summary, we have:

Corollary 2.7 System (5) always has rational feasible solutions. Either it has a
rational feasible solution of linear size, or every rational feasible solution has size
ě 2n, and it is strongly NP-Hard to decide which is the case.

As an (easy) adaptation of Theorem 2.6 and Corollary 2.7 we have the following
theorem.
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Theorem 2.8 It is strongly NP-hard to test if there exists a rational solution to
a system of the form

fpxq ď 0, Ax ď b,

where f P Zrx1, . . . , xns is of degree 3, and A P Qmˆn, b P Qm.

Proof sketch. We proceed with a transformation from 3SAT just as above, except
that we dispense with the variables d1, . . . , dn and s and constraint (5f) and, rather
than constraint (5g) we impose

´ n5
n
ÿ

j“1

x2j ` hpyq ď ´n6. (6)

After these changes we are left with a system consisting the linear inequalities
(5a)-(5e) plus one inequality of degree three, namely (6). Parts (a) and (b) of
Theorem 2.6 have identical counterparts: namely, the system of inequalities has a
rational solution, and if formula (4) is satisfiable then the system has a rational
solution. Instead of part (c) we argue that if formula (4) is not satisfiable, then
in any feasible solution px, γ,∆, yq we have y “ y˚ (and thus, the solution is not
rational). To do so we proceed as in (c) of Theorem 2.6 to conclude that y P R2

`

while also hpyq ď 0 (no term ´s in (6)) which yields that y “ y˚. [\

2.2 Infeasibility vs superoptimality

Our next result addresses the interplay between infeasibility and superoptimality.
Consider a polynomial optimization problem

max gpxq, subject to (7a)

fipxq ď 0, 1 ď i ď m, x P Rn, (7b)

where g and the fi are polynomials. Many popular methods for addressing (7) focus
on numerical algorithms for obtaining (empirically) good solutions, sometimes
(often, perhaps) without a quality guarantee; for example IPOPT [35] and Knitro
[10]. One could also include the method of ‘rounding’ a solution to e.g. a sum-of-
squares or Lasserre relaxation, to the nearest rank-one solution.

Suppose that x̃ is such a candidate solution to (7), and suppose that gU is a
known upper -bound3 for (7) such that gU ´ gpx̃q is small. In such a case we are
likely to characterize x̃ as ‘near-optimal’ or even ‘optimal’ (if the objective value
gap is small enough). This paradigm is often found in the literature.

However, the nature of the numerical algorithms cited above is such that the
vector x̃ may be slightly infeasible; we further stress that the high-quality algo-
rithms described above often produce very small infeasibilities. Nevertheless, the
nonconvex nature of (7) gives rise to another possibility, namely that the slightly
infeasible point x̃ is super -optimal, in fact the superoptimality of x̃ could poten-
tially be very large.

In light of the examples given in previous sections, it is not surprising that
cases of (7) where a vector with very small infeasibility but very large superopti-
mality can be easily constructed. Below we prove a stronger result; namely that

3 We stress that (7) is a maximization problem.
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Fig. 2 Red represents feasible region of system (8). Top: σ “ 0. Bottom: σ “ 1.

it is (strongly) NP-hard to decide, given a rational vector x̃ with very small infea-
sibility, whether the vector attains very large superoptimality or is near-optimal.
Our formal result is given in Theorem 2.10 below. We will first make precise the
meaning of ‘small’ infeasibilities and ‘large’ superoptimality.

Definition. Consider an instance of problem (7) and let x P Rn. Let 0 ă ε, 0 ă λ.

– We say that x is ε-feasible if maxi fipxq ď ε. The quantity maxi fipxq is the
infeasibility of x.

– We say that x is λ-superoptimal if gpxq ě λ ` max tgpxq : s.t. (7b)u.

Comment. As defined, infeasibility and superoptimality are additive quantities.
As such, they can be misleading if, for example, the coefficients defining the fi are
very small (understating infeasibilities) or those defining g are very large (overstat-
ing the superoptimality), or if the entries in x can be very large. In the example
discussed below and in Theorem 2.10 all coefficients are small integers (or can be
rescaled so that is the case) and the feasible region is contained in a cube with
sides of small integral magnitude.

Now we turn to the construction. We first consider the system in variables
z1, z2

pz1 ´ 1q2 ` z22 ě 5 ` σ (8a)

pz1 ` 1q2 ` z22 ě 5 (8b)

z21
10
` z22 ď 4 (8c)

z2 ě 0 (8d)

where 0 ď σ ď 1 is a parameter. See Figure 2.

Lemma 2.9 (i) System (8) has no solutions with 0 ă z1 ă 2. (ii) System (8) has
no solutions with ´2 ă z1 ă 0. (iii) If σ “ 0 then pz1, z2q “ p0, 2q is feasible. (iv)
If σ ą 0 there is no feasible solution with z1 “ 0; further z22 ď 4 ´ 4{10 in every
feasible solution.

Proof (i) Inequalities (8a) and (8c) imply that 9{10z21 ´ 2z1 ´ σ ě 0 which has no
solutions with 0 ă z1 ă 2. (ii) Similar to (i). (iii) Clear by inspection. (iv) (8a)
and (8c) imply that z1 ‰ 0 when σ ą 0. The rest follows from (i)-(ii) and (8c). [\
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Our complexity result concerns the following optimization problem which is
constructed from a 3SAT instance C1 ^C2 . . .^Cm using the recipe given by (5);
this is combined with a system (8):

Z˚2 :“ max z2

s.t. pz1 ´ 1q2 ` z22 ě 5 ` s (9a)

pz1 ` 1q2 ` z22 ě 5 (9b)

z21
10
` z22 ď 4 (9c)

z2 ě 0 (9d)

px1, . . . , x2n, γ,∆, y1, y2, d1, . . . , dn, sq feasible for (5) (9e)

Constraints (9a)-(9d) are a copy of system (8) using the variable s instead of σ;
we stress that s also appears in (9e).

We now present a number of results regarding this system. Let 0 ă ε ă 1 be given,
and let ypεq be a rational approximation to the vector y˚ in Example 2.1 such that
(a) hpypεqq ă ε, (b) ypεq P R0 and (c) ypεq has size polynomial in log ε´1. The fact
that such a vector exists follows from the fact that h is cubic a polynomial and
therefore is Lipschitz-continuous on the bounded domain R0.

The next statements focus on the vector ωpεq given by xj “ 1 “ ´xn`j for

j P rns, ∆ “ 2, γ “ 0, dk “ 0 for k P n, y “ ypεq, s “ 0, z1 “ 0, and z2 “ 2.

Statement 1. The vector ωpεq is ε-feasible for (9).
Proof. Following the proof of Claim 1 in the proof of Theorem 2.6, it is clear that
this vector satisfies constraints (5a)-(5d) as well as (5f). Moreover, the vector is

also ε-feasible for (5g) by construction of ypεq. Finally the vector is feasible for
(9a)-(9d) by Lemma 2.9 (ii). [\

Statement 2. Suppose the formula C1 ^C2 . . .^Cm is satisfiable. Then Z˚2 “ 2.
As a result, ωε attains the optimal value for the corresponding instance of problem
(9).
Proof. By Claim 3, system (5) has a feasible solution with s “ 0. Then Lemma
(2.9)(iii) completes the proof. [\

Statement 3. Suppose the formula C1 ^ C2 . . . ^ Cm is not satisfiable. Then
Z˚2 ď

a

4 ´ 4{10 ă 1.9. As a result, ωε is 0.2-superoptimal for (9).
Proof. Consider any feasible solution to (9). By Claim 4 (a) s ą 0. Thus by Lemma
2.9(iv) we have z22 ď 4 ´ 4{10 which completes the proof. [\

As a summary of the above discussion, we have:

Theorem 2.10 Consider an instance of problem (9). Let 0 ă ε ă 1 and let

ṽ “ px̃1, . . . , x̃2n, γ̃, ∆̃, ỹ1, ỹ2, d̃1, . . . , d̃n, s̃q

be ε-feasible and of size polynomial in the size of the instance and log ε´1. It is
strongly NP-hard to decide if s̃ ě 2

1.9Z
˚
2 , even when it is known that either s̃ ě

2
1.9Z

˚
2 or s̃ “ Z˚2 .
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It is useful to contrast the situation described above with that arising in linear
mixed-integer optimization. Consider a standard (linear) MIP:

MX: max cTx ` dT y

s.t. Ax `By ď b

x P Rn, y P t0, 1um

Typically, solvers for MIP will produce vectors that are be slightly infeasible due
to round off errors in floating point arithmetic. However, we can argue that the
linear MIP case is not as problematic as the general nonlinear case (as exemplified
in Theorem 2.10). To see this, suppose that px˚, y˚q is a candidate solution for
MX with y˚ binary4, and suppose that this solution exhibits small infeasibilities
– could it be the case that this solution is far from any feasible solution for MX,
or that it has a large superoptimality relative to MX?

Let us provide a precise argument that shows that we can answer this question,
in polynomial time. Consider the linear program

MXfpy˚q : max cTx

s.t. Ax ď b ´By˚

x P Rn,

(a) If MXfpy˚q is infeasible, then we can diagnose this fact in polynomial time,
and conclude that the vector px˚, y˚q is ‘far’ from any feasible solution for the
MX, namely its L8-distance to any feasible point for MX is at least 15

(b) Suppose next that MXfpy˚q is feasible. In this case we can show that the
superoptimality of px˚, y˚q is upper bounded by a linear function of its in-
feasibility. First, if x˚ is feasible for MXfpy˚q then, certainly, px˚, y˚q is not
superoptimal for MX. Suppose, on the other hand, that x˚ has infeasibility
δ ą 0 for MXfpy˚q. Since MXfpy˚q is feasible, its dual is bounded. Let ŷ ě 0
be an extreme point optimal solution to the dual of MXfpy˚q. Then

cTx˚ “ ŷTAx˚ ď ŷT pb ´By˚ ` δeq “ ŷT pb ´By˚q ` }ŷ}1δ

where e is the vector of 1s. In other words the superoptimality of x˚ for
MXfpy˚q –and thus, the superoptimality of px˚, y˚q for MX– is upper bounded
by an expression of the form κpA, cqδ where κpA, cq is a constant dependent
on A and c which can furthermore be computed in polynomial time. This up-
per bound on superoptimality amounts to a condition number bound, and is
completely missing from the general, nonlinear setting.

2.3 Cubics and unbounded rays

A ray of a polyhedron P Ď Rn is a set of the form Rpx, dq :“ tx` λd | λ ě 0u, for
some x P P and some nonzero d in recP , where recP denotes the recession cone
of P (see, e.g., [32]). By definition of recession cone, every ray of a polyhedron P

4 A numerical solver might yield a vector y˚ that is near-binary, i.e. within a small tolerance.
The analysis below is easily adjusted to handle such an eventuality.

5 Recall that y˚ is binary.
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is contained in P . Next, we show that there can be a rational polyhedron P and
a cubic polynomial that is unbounded on some rays of P , but is bounded on all
rational rays of P . This is in contrast with the linear and quadratic case, where
a rational unbounded ray is always guaranteed to exist. Formally, we say that a
function f : Rn Ñ R is bounded on a set P Ď Rn if there exists φ P R such that
fpxq ď φ for every x P P . Otherwise, for every φ P R there exists a vector x P P
with fpxq ě φ; in other words supxPP fpxq “ `8. In the latter case we say that f
is unbounded on P .

Proposition 2.11 There exists a rational polyhedron P Ď R3 and a cubic poly-
nomial f : R3

Ñ R that is unbounded on some rays of P , but for every ray Rpy, dq
of P such that f is unbounded on Rpy, dq, the vector d is not rational.

Proof We define the following three polynomial functions from R3 to R

cpyq :“ ´2y31 ´ y
3
2 ` 6y1y2y3 ´ 4y33 ,

qpyq :“ y1y3,

fpyq :“ cpyq ` qpyq.

The function cpyq is a homogeneous cubic, while qpyq is a homogeneous quadratic.
We also define the following two rational polyhedra

Q :“ ty P R3
| py1, y2q P r1.25, 1.26s ˆ r1.58, 1.59s, y3 “ 1u,

P :“ coneQ.

Note that ´cpy1, y2, 1q coincides with the cubic function considered in Example 2.1.
Hence the maximum of cpyq on Q is zero and it is achieved only at the irrational

vector d̃ :“ p2
1
3 , 2

2
3 , 1q « p1.2599, 1.5874, 1q.

We first check that f is unbounded on the ray of P given by Rp0, d̃q “ tλd̃ |
λ ě 0u. We obtain

cpλd̃q “ λ3cpd̃q “ 0,

qpλd̃q “ λ2qpd̃q,

fpλd̃q “ cpλd̃q ` qpλd̃q “ λ3cpd̃q ` λ2qpd̃q “ λ2qpd̃q.

We observe that fpλd̃q is a quadratic univariate function in λ and the leading

coefficient is qpd̃q “ d̃1d̃3 “ 2
1
3 « 1.2599 ą 0. Thus f Ñ `8 along the ray Rp0, d̃q.

Since the vector d̃ is irrational (and cannot be scaled to be rational), we now
only need to consider rays of P of the form Rpȳ, d̄q, for some ȳ P P and some
d̄ P Qztd̃u. We fix ȳ P P and d̄ P Qztd̃u and evaluate the functions c, q, f on
Rpȳ, d̄q:

cpȳ ` λd̄q “ λ3cpd̄q `Opλ2q,

qpȳ ` λd̄q “ Opλ2q,

fpȳ ` λd̄q “ cpȳ ` λd̄q ` qpȳ ` λd̄q “ λ3cpd̄q `Opλ2q.

We observe that fpȳ ` λd̄q is a cubic univariate function in λ and the leading
coefficient is cpd̄q. From Example 2.1, for every d̄ P Qztd̃u we have cpd̄q ă 0, thus
f Ñ ´8 along the ray Rpȳ, d̄q. [\

Note that the cubic function in the proof of Proposition 2.11 grows only
quadratically along the presented irrational unbounded ray.
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2.4 NP-Hard to determine if there is a rational unbounded ray

The main result of this section is the following theorem.

Theorem 2.12 Consider unbounded optimization problems of the form

maxtπpxq : Ax ď bu,

where π P Zrx1, . . . , xns is a polynomial of degree three, and A P Zmˆn, b P Zm.
It is strongly NP-hard to test if there exists a rational ray on which the problem is
unbounded.

The main reduction is from the problem 3SAT. We use the same notation to
describe an instance of 3SAT as above.

Let N ě 1 be an integer. For now N is generic; below we will discuss particular
choices. Given an instance of 3SAT as above, we construct a system of quadratic
inequalities on the following 2n `N ` 7 variables:

– For each literal wj we have a variable xj ; for w̄j we use variable xn`j .
– Additional variables γ,∆, y1, y2, s, and d1, . . . , dN .

Consider the polyhedral cone K given by

´y3 ď xj ď y3 j P r2ns (12a)

xj ` xn`j “ 0 j P rns (12b)

0 ď y3 (12c)

xi1 ` xi2 ` xi3 ě ´y3 ´∆ @Ci “ pxi1 _ xi2 _ xi3q (12d)

0 ď γ (12e)

0 ď ∆ ď 2y3 (12f)

∆ `
γ

2
ď 2y3 (12g)

1.259y3 ´ γ ď y1 ď 1.26y3 (12h)

1.587y3 ď y2 ď 1.59y3. (12i)

Now consider the optimization problem

max´n6y33 ` n
5y3

n
ÿ

j“1

x2j ` fpyq s.t. py, x,∆, γq P K. (13)

Let πpy, x,∆, γq be the objective function. Let d̃ “

¨

˚

˝

21{3

22{3

1

˛

‹

‚
.

Theorem 2.13 Let n ě 3. Consider an instance (4) of 3-SAT and the corre-
sponding optimization problem (13) with feasibility region K in (12).

(a) The objective function π Ñ `8 along the ray given by y “ d̃y3, xj “ y3,
xn`j “ 0 for all j P rns, ∆ “ 2y3, γ “ 0 where we let y3 P r0,`8q.

(b) Suppose formula (4) is satisfiable. Then there is a rational, feasible ray (i.e.,
contained in K) over which π Ñ `8. The ray has of bit encoding size 4n`L,
where L is a fixed constant independent of n.
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(c) Suppose formula (4) is not satisfiable. If π Ñ `8 along some ray, then this
ray is irrational.

Proof
(a) This statement is clear.

(b) Define the ray as follows. First, set ∆̄ “ 0, γ̄ “ 4, and for each j P rns, let
x̄j “ ˘1 if literal j is true or false and x̄n`j “ 0. Finally, let ȳ1,ȳ2 be rational such
that 1.259 ´ 4 ď ȳ1 ď 1.26 and 1.587 ď ȳ2 ď 1.59 and ´2ȳ31 ´ ȳ

3
2 ` 6ȳ1ȳ2 ´ 4 ą

0. Such values pȳ1, ȳ2q exist (see Observation 2.2). Then along the ray given by
¨

˚

˚

˝

y
x
∆
γ

˛

‹

‹

‚

“

¨

˚

˚

˝

ȳ
x̄
∆̄
γ̄

˛

‹

‹

‚

y3, we have π “ fpyq Ñ `8 (cubically).

(c) First, y3 Ñ `8 along this ray (else every variable is bounded). So we can
write this ray as

α0
`

¨

˚

˚

˝

ŷ
x̂

∆̂
γ̂

˛

‹

‹

‚

y3

where ŷ3 “ 1 and for some α0
P R2n`5. Since ∆̂ ě 0 and ∆̂` γ̂

2 ď 2, we have γ̂ ď 4.

Hence, along this ray, fpyq ď 12y33 `Opy23q. This follows from Observation 2.2.
It follows that ´n6

` n5 řn
j“1 x̂

2
j ě ´12, else π Ñ ´8 cubically in y3 along

this ray. Thus x̂2j ě 1 ´Op 1
n5 q@j.

Consider the truth assignment where literal j P rns is true if and only if x̂j ą 0.
So there exists a clause i such that x̂i1 ` x̂i2 ` x̂i3 ď ´3 ` Op 1

n5 q, and thus

∆̂ ě 2 ´Op 1
n5 q. and so γ̂ ď Op 1

n5 q. In that case,

#

1.259y3 ´ γ ď y1 ď 1.26y3

1.587y3 ď y2 ď 1.59y3
ñ

#

1.259y3 ´Op 1
n5 q ď y1 ď 1.26y3

1.587y3 ď y2 ď 1.59y3,
(14)

and so fpyq Ñ ´8 cubically in y3 unless ŷ “

¨

˚

˝

21{3

22{3

1

˛

‹

‚
and also ´n6y33`n

5y3
řn
j“1 x

2
j

either goes to ´8 or is equal to 0. So we must have ŷ “

¨

˚

˝

21{3

22{3

1

˛

‹

‚
. [\

The proof of Theorem 2.12 follows directly from the above result.

3 Short certificate of feasibility: an almost feasible point

In this section we are interested in the existence of short certificates of feasibility
for systems of polynomial inequalities, i.e., certificates of feasibility of size bounded
by a polynomial in the size of the system.

First, for completeness, we present a result on Lipschitz continuity of a poly-
nomail on a box.
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Lemma 3.1 (Lipschitz continuity of a polynomial on a box) Let g P

Zrx1, . . . , xns be a polynomial of degree at most d with coefficients of absolute
value at most H. Let y, z P r´M,M sn for some M ą 0. Then

|gpyq ´ gpzq| ď L}y ´ z}8 (15)

where L :“ ndHMd´1
pn ` dqd´1.

Proof Let gpxq “
ř

IPNn,‖I‖1ďd
cIx

I . By the fundamental theorem of calculus,

gpzq “ gpyq `

ż λ“1

λ“0
∇gpy ` λpz ´ yqqJpz ´ yq dλ.

Therefore, an upper bound on |gpyq ´ gpzq| can be obtained by bounding the
quantity |∇gpy ` λpz ´ yqqJpz ´ yq| with λ P r0, 1s. In the remainder of the proof
we derive such a bound.

Note that, for every i “ 1, . . . , n, we can write

p∇gpxqqi “
ÿ

IPNn,‖I‖1ďd´1

c̃I,ix
I , (16)

where |c̃I,i| ď dH. Hence, for any I P Nn with ‖I‖1 ď d´ 1 and x P r´M,M sn, we

have |c̃I,ix
I
| ď dHMd´1.

Next we bound the number of terms in the summation in (16). A weak compo-
sition of an integer q into p parts is a sequence of p non-negative integers that sum
up to q. Two sequences that differ in the order of their terms define different weak
compositions. It is well-known that the number of weak compositions of a number
q into p parts is

`q`p´1
p´1

˘

“
`q`p´1

q

˘

. (For more details on weak compositions see,

for example, [16].) We obtain that the number of terms in the summation in (16)
is bounded by

d´1
ÿ

i“0

˜

i ` n ´ 1

i

¸

ď

d´1
ÿ

i“0

˜

d ` n ´ 2

i

¸

ď pd ` n ´ 1qd´1
ď pn ` dqd´1,

where in the second inequality we used the binomial theorem.
We obtain that for every x P r´M,M sn,

}∇gpxq}8 ď dHMd´1
pn ` dqd´1.

Therefore, for any λ P r0, 1s,

|∇gpy ` λpz ´ yqqJpz ´ yq| ď n ¨ }∇gpy ` λpz ´ yqq}8 ¨ }y ´ z}8
ď n ¨ dHMd´1

pn ` dqd´1
¨ }y ´ z}8.

[\

Our first result relies on a boundedness assumption, which seems to be common
in results of this type. It is not clear if that assumption can be removed. We refer
the reader to Figure 3 for an illustration of the sets considered in the next result.
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a.) b.)

Fig. 3 Structure of sets in Proposition 3.2 where we define sets R̂ :“ tx P Rn | gjpxq ď 0, j P

r`su, Ŝ :“ tx P Rn | `δgjpxq ď 1, j P r`su. Hence R “ P X R̂ and S “ P X Ŝ. a.) Example where
R is feasible. b.) Example where R is infeasible.

Proposition 3.2 Let fi P Zrx1, . . . , xns, for i P rms, of degree one. Let gj P
Zrx1, . . . , xns, for j P r`s, of degree bounded by an integer d. Assume that the
absolute value of the coefficients of fi, i P rms, and of gj, j P r`s, is at most H. Let
δ be a positive integer. Let P :“ tx P Rn | fipxq ď 0, i P rmsu and consider the sets

R :“ tx P P | gjpxq ď 0, j P r`su, S :“ tx P P | `δgjpxq ď 1, j P r`su.

Assume that P is bounded. If R is nonempty, then there exists a rational vector
in S of size bounded by a polynomial in n, d, log `, logH, log δ.

Proof Since P is bounded, it follows from Lemma 8.2 in [8] that P Ď r´M,M sn,
where M “ pnHqn. Let L be defined as in Lemma 3.1, i.e.,

L :“ ndHMd´1
pn ` dqd´1

“ ndHpnHqnpd´1q
pn ` dqd´1.

Note that logL is bounded by a polynomial in n, d, logH. Let ϕ :“ rLM`δs.
Therefore logϕ is bounded by a polynomial in n, d, log `, logH, log δ.

We define the following p2ϕqn boxes in Rn with j1, . . . , jn P t´ϕ, . . . , ϕ ´ 1u:

Cj1,...,jn :“

"

x P Rn | M
ϕ
ji ď xi ď

M

ϕ
pji ` 1q, i P rns

*

. (17)

Note that the union of these p2ϕqn boxes is the polytope r´M,M sn which contains
the polytope P . Furthermore, each of the 2n inequalities defining a box (17) has
size polynomial in n, d, log `, logH, log δ.

Let x̃ be a vector in R, which exists because R is assumed nonempty. Since
x̃ P P , there exists a box among (17), say C̃, that contains x̃. Let x̄ be a vertex
of the polytope P X C̃. Since each inequality defining P or C̃ has size polynomial
in n, d, log `, logH, log δ, it follows from Theorem 10.2 in [32] that also x̄ has size
polynomial in n, d, log `, logH, log δ.

To conclude the proof of the theorem we only need to show x̄ P S. Since x̄, x̃ P C̃,
we have }x̄ ´ x̃}8 ď

M
ϕ . Then, from Lemma 3.1 we obtain that for each j P r`s,

|gjpx̄q ´ gjpx̃q| ď L}x̄ ´ x̃}8 ď
LM

ϕ
ď

1

`δ
.

If gjpx̄q ď 0 we directly obtain gjpx̄q ď
1
`δ since 1

`δ ą 0. Otherwise we have
gjpx̄q ą 0. Since gjpx̃q ď 0, we obtain gjpx̄q ď |gjpx̄q ´ gjpx̃q| ď

1
`δ . We have shown

that x̄ P S, and this concludes the proof of the theorem. [\
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We will be using several times the functions ε and δ defined as follows:

εpn,m, d,Hq :“ p24´n
2 maxtH, 2n ` 2mudnq´n2

ndn ,

δpn,m, d,Hq :“ r2ε´1
pn,m, d,Hqs “ r2p24´n

2 maxtH, 2n ` 2mudnqn2
ndn

s.

A fundamental ingredient in our arguments is the following result by Geronimo,
Perrucci, and Tsigaridas, which follows from Theorem 1 in [14].

Theorem 3.3 Let n ě 2. Let g, fi P Zrx1, . . . , xns, for i P rms, of degree bounded
by an even integer d. Assume that the absolute value of the coefficients of g, fi,
i P rms, is at most H. Let T :“ tx P Rn | fipxq ď 0, i P rmsu, and let C be a
compact connected component of T . Then, the minimum value that g takes over
C, is either zero, or its absolute value is greater than or equal to εpn,m, d,Hq.

Using Theorem 3.3 we obtain the following lemma.

Lemma 3.4 Let n ě 2. Let g, fi P Zrx1, . . . , xns, for i P rms, of degree bounded
by an even integer d. Assume that the absolute value of the coefficients of g, fi,
i P rms, is at most H. Let δ :“ δpn,m, d,Hq. Let T :“ tx | fipxq ď 0, i P rmsu and
consider the sets

R :“ tx P T | gpxq ď 0u, S :“ tx P T | δgpxq ď 1u.

Assume that T is bounded. Then R is nonempty if and only if S is nonempty.

Proof Since δ ą 0 we have R Ď S, therefore if R is nonempty also S is nonempty.
Hence we assume that S is nonempty and we show that R is nonempty.

Since S is nonempty, there exists a vector x̄ P T with gpx̄q ď 1{δ ă εpn,m, d,Hq.
Let C be a connected component of T containing x̄. Since T is compact, we have
that C is compact as well. In particular, the minimum value that g takes over
C is less than εpn,m, d,Hq. The contrapositive of Theorem 3.3 implies that the
minimum value that g takes over C is less than or equal to zero. Thus there exists
x̃ P C with gpx̃q ď 0. Hence the set R is nonempty. [\

From Lemma 3.4 we obtain the following result.

Proposition 3.5 Let n ě 2. Let fi, gj P Zrx1, . . . , xns, for i P rms, j P r`s,
of degree bounded by an even integer d. Assume that the absolute value of the
coefficients of fi, i P rms, and of gj, j P r`s, is at most H. Let δ :“ δpn,m `

`, 2d, `H2
q. Let T :“ tx | fipxq ď 0, i P rmsu and consider the sets

R :“ tx P T | gjpxq ď 0, j P r`su, S :“ tx P T | `δgjpxq ď 1, j P r`su.

Assume that T is bounded. Then R is nonempty if and only if S is nonempty.

Proof Since `δ ą 0 we have R Ď S, therefore if R is nonempty also S is nonempty.
Hence we assume that S is nonempty and we show that R is nonempty.

Let x̄ P S, and define the index set J :“ tj P r`s : gjpx̄q ą 0u. We introduce the
polynomial function g P Zrx1, . . . , xns defined by gpxq :“

ř

jPJ g
2
j pxq. Note that

the degree of g is bounded by 2d. The absolute value of the coefficients of each



18 Bienstock et al.

g2j is at most H2, hence the absolute value of the coefficients of g is at most `H2.
Next, let T 1 :“ tx P T | gjpxq ď 0, j P r`szJu and

R1 :“ tx P T 1 | gpxq ď 0u, S1 :“ tx P T 1 | δgpxq ď 1u.

First, we show that the vector x̄ is in the set S1, implying that S1 is nonempty.
Clearly x̄ P T , and for every j P r`szJ we have that gjpx̄q ď 0, thus we have x̄ P T 1.
For every j P J , we have 0 ă gjpx̄q ď

1
`δ , and since `δ ě 1, we have 0 ă g2j px̄q ď

1
`δ .

Thus, we obtain gpx̄q ď `
`δ “

1
δ . We have thus proved x̄ P S1, and so S1 is nonempty.

Next, we show that the set R1 is nonempty. To do so, we apply Lemma 3.4 to
the sets T 1, R1, S1. The number of inequalities that define T 1 is a number m1 with
m ď m1 ď m ` `. The degree of fi, gj , g, for i P rms, j P r`szJ , is bounded by 2d.
The absolute value of the coefficients of fi, gj , g, for i P rms, j P r`szJ , is at most
`H2. Since the function δpn,m, d,Hq is increasing in m and m1 ď m` `, we obtain
from Lemma 3.4 that R1 is nonempty if and only if S1 is nonempty. Since S1 is
nonempty, we obtain that R1 is nonempty.

Finally, we show that the set R is nonempty. Since R1 is nonempty, let x̃ P R1.
From the definition of R1 we then know x̃ P T , gjpx̃q ď 0, for j P r`szJ , and
gpx̃q ď 0. Since g is a sum of squares, gpx̃q ď 0 implies gpx̃q “ 0, and this in turn
implies gjpx̃q “ 0 for every j P J . Hence x̃ P R, and R is nonempty. [\

Proposition 3.5 and Proposition 3.2 directly yield our following main result.

Theorem 3.6 (Certificate of polynomial size) Let n ě 2. Let fi P Zrx1, . . . , xns,
for i P rms, of degree one. Let gj P Zrx1, . . . , xns, for j P r`s, of degree bounded
by an even integer d. Assume that the absolute value of the coefficients of fi,
i P rms, and of gj, j P r`s, is at most H. Let δ :“ δpn,m ` `, 2d, `H2

q. Let
P :“ tx P Rn | fipxq ď 0, i P rmsu and consider the sets

R :“ tx P P | gjpxq ď 0, j P r`su, S :“ tx P P | `δgjpxq ď 1, j P r`s.

Assume that P is bounded. Denote by s the maximum number of terms of gj,
j P r`s, with nonzero coefficients. If R is nonempty, then there exists a rational
vector in S of size bounded by a polynomial in d, logm, log `, logH, for n fixed.
This vector is a certificate of feasibility for R that can be checked in a number of
operations that is bounded by a polynomial in s, d,m, `, logH, for n fixed.

Proof From the definition of δ, we have that log δ is bounded by a polynomial in
d, logm, log `, logH, for n fixed. From Proposition 3.2, there exists a vector x̄ P S
of size bounded by a polynomial in d, logm, log `, logH, for n fixed. Such a vector
is our certificate of feasibility. In fact, from Proposition 3.5 (applied to the sets
T “ P,R, S), we know that S nonempty implies R nonempty.

To conclude the proof we bound the number of operations needed to check if
the vector x̄ is in S by substituting x̄ in the m ` ` inequalities defining S.

The absolute value of the coefficients of fipxq ď 0, i P rms, is at most H. Thus,
it can be checked that x̄ satisfies these m inequalities in a number of operations
that is bounded by a polynomial in d,m, log `, logH, for n fixed.

Next, we focus on the inequalities `δgjpxq ď 1, j P r`s. Note that the total num-
ber of terms of `δgj , j P r`s, with nonzero coefficients is bounded by s`. The loga-
rithm of the absolute value of each nonzero coefficient of `δgjpxq, j P r`s, is bounded
by logp`δHq, which in turn is bounded by a polynomial in d, logm, log `, logH, for
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n fixed. Therefore, it can be checked that x̄ satisfies these ` inequalities in a num-
ber of operations that is bounded by a polynomial in s, d, `, logm, logH, for n
fixed. [\

In particular, Theorem 3.6 implies that polynomial optimization is in NP,
provided that we fix the number of variables.As mentioned in the introduction,
this fact is not new. In fact, it follows from Theorem 1.1 in Renegar [28] that the
problem of deciding whether the set R, as defined in Theorem 3.6, is nonempty
can be solved in a number of operations that is bounded by a polynomial in
s, d,m, `, logH, for n fixed. Therefore, Renegar’s algorithm, together with its proof,
provides a certificate of feasibility of size bounded by a polynomial in the size of
the system, which in turns implies that the decision problem is in NP.

The main advantages of Theorem 3.6 over Renegar’s result are that (i) our
certificate of feasibility is simply a vector in S of polynomial size, and (ii) the
feasibility of the system can be checked by simply plugging the vector into the
system of inequalities defining S. The advantages of Renegar’s result over our
Theorem 3.6 are: (iii) Renegar does not need to assume that the feasible region
is bounded, while we do need that assumption, and (iv) Renegar shows that the
decision problem is in P, while we show that it is in the larger class NP. Note that
in [29], Renegar shows how to produce points that are within some distance from
a feasible solution.

4 Existence of rational feasible solutions

In this section we present a set of results that will be used to argue that rational
solutions exist to certain feasibility problems. We begin with a number of auxiliary
results that we will rely on.

The first was known by Nicolò Fontana Tartaglia. It shows that in a univariate
cubic polynomial, shifting by a constant allows us to assume that the x2 term has
a zero coefficient.

Lemma 4.1 (Rational shift of cubic) Let fpxq “ ax3 ` bx2 ` cx ` d. Then

fpy ´ b
3a q “ ay3 ` c̃y ` d̃ where c̃ “ 27a2c´9ab2

27a2 and d̃ “ 27a2d´9abc`2b3

27a2 .

Proof Consider an assignment of variables x “ y´s where y is a new variable and
s is the shift.

fpy ´ sq “ apy ´ sq3 ` bpy ´ sq2 ` cpy ´ sq ` d (18)

“ ay3 ` pb ´ 3asqy2 `
´

3as2 ´ 2bs ` c
¯

y ´ as3 ` bs2 ´ cs ` d (19)

Hence, setting s “ b
3a , we have

f

ˆ

y ´
b

3a

˙

“ ay3 `
27a2c ´ 9ab2

27a2
y `

27a2d ´ 9abc ` 2b3

27a2
. (20)

[\

The next lemma provides bounds on the roots of a univariate polynomial. We
attribute this result to Cauchy; a proof can be found in Theorem 10.2 of [6].

https://scholarship.richmond.edu/cgi/viewcontent.cgi?article=1113&context=masters-theses
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Lemma 4.2 (Cauchy - size of roots) Let fpxq “ anx
n
` ¨ ¨ ¨ ` a1x` a0, where

an, a0 ‰ 0. Let x̄ ‰ 0 such that fpx̄q “ 0. Then 1
δ ď |x̄| ďM , where

M “ 1 `max
!ˇ

ˇ

ˇ

a0

an

ˇ

ˇ

ˇ
, . . . ,

ˇ

ˇ

ˇ

an´1

an

ˇ

ˇ

ˇ

)

, δ “ 1 `max
!ˇ

ˇ

ˇ

a1

a0

ˇ

ˇ

ˇ
, . . . ,

ˇ

ˇ

ˇ

an
a0

ˇ

ˇ

ˇ

)

.

Furthermore, if ai P Z for i “ 0, 1, . . . , n, then rM s and rδs are integers of size
polynomial in the sizes of a0, a1, , . . . , an.

The next lemma is a special case of Theorem 2.9 in [1].

Lemma 4.3 Let n ě 1. Let ri P Q` for i “ 0, 1, . . . , n, qi P Q` for i “ 1, . . . , n.
If

řn
i“1 ri

?
qi “ r0, then

?
qi P Q for all i “ 1, . . . , n. Furthermore, the size of

?
qi

is polynomial in the size of qi.

Next we show that local minimizers of separable cubic polynomials are rational
provided that the function value is rational.

Theorem 4.4 (Rational local minimum) Let fpxq “
řn
i“1 fipxiq where fipxiq “

aix
3
i ` bix

2
i ` cixi ` di P Zrxis and ai ‰ 0 for all i P rns. Assume that the absolute

value of the coefficients of f is at most H. Suppose x˚ is the unique local mini-
mum of f and γ˚ :“ fpx˚q is rational. Then x˚ is rational and has size that is
polynomial in logH and in the size of γ˚.

Proof For every i P rns, Let c̃i, d̃i be defined as in Lemma 4.1, let gipyiq :“ aiy
3
i `

c̃iyi, and define gpyq “
řn
i“1 gipyiq. Then y˚ P Rn defined by y˚i :“ x˚i `

bi
3ai

,

i P rns, is the unique local minimum of gpyq and gpy˚q “ γ˚ ´
řn
i“1 d̃i.

We now work with the gradient. Since y˚ is a local minimum of g, we have
∇gpy˚q “ 0. Since gpyq is separable, we obtain that for every i P rns,

g1ipy
˚
i q “ 0 ñ y˚i “ ˘

d

´c̃i
3ai

. (21)

Furthermore, we will need to look at the second derivative. Since y˚ is a local
minimizer, then ∇2gpy˚q ě 0. Again, since gpyq is separable, this implies that
g2i pyiq ě 0 for every i P rns. Hence we have

g2i pyiq ě 0 ñ 6aiy
˚
i ě 0 ñ ai

˜

˘

d

´c̃i
3ai

¸

ě 0. (22)

Also, notice that we must have ´c̃i
3ai

ě 0 for
b

´c̃i
3ai

to be a real number. Thus,

signp´c̃iq “ signpaiq “ sign

˜

˘

d

´c̃i
3ai

¸

. (23)

Finally, we relate this to gpy˚q.

γ˚ ´
n
ÿ

i“1

d̃i “ gpy˚q “
n
ÿ

i“1

´

aip
´c̃i
3ai
q

´

˘

b

´c̃i
3ai

¯

` c̃i
´

˘

b

´c̃i
3ai

¯¯

“ ´
2
3

n
ÿ

i“1

|c̃i|

d

´c̃i
3ai

,

(24)
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where the last equality comes from comparing the signs of the data from (23).
Hence, we have

n
ÿ

i“1

|c̃i|

d

´c̃i
3ai

“ ´
3
2 pγ

˚
´

n
ÿ

i“1

d̃iq. (25)

By Lemma 4.3, for every i P rns,
b

´c̃i
3ai

is rational and has size polynomial in logH

and in the size of γ˚. From (21), so does y˚, and hence x˚. [\

We are now ready to prove our main result of this section.

Theorem 4.5 Let n P t1, 2u. Let fi P Zrx1, . . . , xns, for i P rms, of degree one.
Let gpxq “

řn
i“1paix

3
i ` bix

2
i ` cixi ` diq P Zrx1, . . . , xns with ai ‰ 0 for i P rns.

Assume that the absolute value of the coefficients of g, fi, i P rms, is at most H.
Consider the set

R :“ tx P Rn | gpxq ď 0, fipxq ď 0, i P rmsu.

If R is nonempty, then it contains a rational vector of size bounded by a polynomial
in logH. This vector provides a certificate of feasibility for R that can be checked
in a number of operations that is bounded by a polynomial in m, logH.

Proof Define P :“ tx P Rn | fipxq ď 0, i P rmsu, let x˚ be a vector in P minimizing
gpxq, and let γ˚ :“ gpx˚q.

Since R is nonempty, we have γ˚ ď 0. If γ˚ “ 0, then Theorem 4.4 implies
that the size of x˚ is bounded by a polynomial in logH, thus the result holds.
Therefore, in the remainder of the proof we assume γ˚ ă 0.

Without loss of generality, we assume that that x˚ is in the interior of P .
Otherwise, if x˚ is contained in a lower dimensional face of P , we can project into
that face. In particular, we assume that x˚ is the unique local minimum of g.

Note that if x˚ is in a 0-dimensional face of P , then since P is a rational
polyhedron, x˚ rational and of size bounded by a polynomial in logH.

Claim: There exits an integer δ of polynomial size bounded by a polynomial in
logH such that |γ˚| ă 1

δ . We prove separately the cases n “ 1, 2.

Claim proof. Case pn “ 1q. Let c̃, d̃ be defined as in Lemma 4.1. Following the

calculation of Theorem 4.4, (25) γ˚´d̃ “ ´2
3 |c̃|

´

˘

b

´c̃
3a

¯

. Hence, pγ˚´d̃q2 “ ´ 4c̃3

27a ,

that is, γ˚ is a non-zero root of the above quadratic equation. From Lemma 4.2,
we have that |γ˚| ě 1

δ , where δ is an integer and log δ is bounded by a polynomial
in logH.

Case pn “ 2q. For every i P rns, let c̃i, d̃i be defined as in Lemma 4.1. Following

the calculation of Theorem 4.4, (25)
ř2
i“1 |c̃i|

b

´c̃i
3ai

“ ´
3
2 pγ

˚
´
ř2
i“1 d̃iq. Squaring

both sides we obtain

2
ÿ

i“1

´c̃3i
3ai

` 2|c̃1||c̃2|

d

c̃1c̃2
9a1a2

“
9
4 pγ

˚
´

2
ÿ

i“1

d̃iq
2.

If we isolate the square root, and then square again both sides of the equation, we
obtain that γ˚ is a non-zero root of a quartic equation with rational coefficients.
From Lemma 4.2, we have that |γ˚| ě 1

δ , where δ is an integer and log δ is bounded
by a polynomial in logH. This concludes the proof of the claim. ˛
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Since γ˚ ă 0, we have thereby shown that x˚ is a vector in P satisfying
gpx˚q ď ´1

δ .
Since x˚ is on the interior of P , it must satisfy ∇gpx˚q “ 0. Hence, for i P rns,

x˚i is a root of the quadratic equation

paix
3
i ` bix

2
i ` cixi ` diq

1
“ 3aix

2
i ` 2bixi ` ci “ 0,

thus using again Lemma 4.2 we obtain that ´M ď x˚i ďM , where M is an integer
and logM is bounded by a polynomial in logH. We apply Proposition 3.2 to the
polytope tx P R2

| fipxq ď 0, i P rms, ´M ď xi ď M, i P rnsu, with ` :“ 1, and
with g1pxq :“ gpxq ` 1

δ . Proposition 3.2 then implies that there exists a vector
x̄ P P with g1px̄q ď

1
δ , or equivalently gpx̄q ď 0, of size bounded by a polynomial

in logH. Such a vector is our certificate of feasibility.

To conclude the proof for both cases n “ 1 and n “ 2, we bound the number of
operations needed to check if x̄ is in R by substituting x̄ in the m` 1 inequalities
defining R. It is simple to check that x̄ satisfies these m`1 inequalities in a number
of operations that is bounded by a polynomial in m, logH. [\

Example 2.1 shows that Theorem 4.5 cannot be generalized to non-separable
bi-variate cubics. Furthermore, that example can be easily be lifted to a separable
cubic in three dimensions. To see this, let y3 “ y2 ´ y1. Then

3y23 ´ 3y21 ´ 3y22 “ ´6y1y2.

Thus, we can replace the mixed term with separable terms, provided we lift this
to three dimensions and add an extra equation.

5 Unbounded rays for cubic objectives

In this section we present conditions on the existence of rays of a polyhedron,
along which a polynomial function is unbounded. As in the remainder of the paper,
special attention is given to the rationality of these rays. In this section we denote
by ‖¨‖ the 2-norm, although any norm would suffice.

We will use the following standard lemma. For a proof (and a more general
statement) we refer the reader to [3], [21, Lemma 2.1].

Lemma 5.1 Let the set P Ă Rn be nonempty and closed, let f : P Ñ R be con-
tinuous on P and suppose that f is unbounded on P . Then there exists a sequence
txjujPN of vectors in P such that

(i) fpxj´1
q ă fpxjq Ñ `8,

(ii)
∥∥xj´1

∥∥ ă ∥∥xj∥∥Ñ `8, and

(iii) @x P P , ‖x‖ ă
∥∥xj∥∥ñ fpxq ă fpxjq.

We are now ready to prove the first result of this section, which discusses un-
bounded functions on polyhedra and on its rays. The proof technique is essentially
the one used in classic proofs of Frank-Wolfe type theorems in cubic optimization,
see [3], [7], [21], and most closely follows that in [21].

Theorem 5.2 Let P Ď Rn be a polyhedron and let f : Rn Ñ R be a polynomial
of degree at most three. If f is unbounded on P , then there exists a ray of P over
which f is unbounded.
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Proof The proof is by contradiction. Thus we assume that there exists a counterex-
ample to the theorem, which consists of a polyhedron P Ď Rn and a polynomial
f : Rn Ñ R of degree at most three such that f is unbounded on P but is bounded
over each ray Rpx, dq of P . Among all counterexamples, we consider one where the
polyhedron P has minimal dimension. Clearly, we have dimP ě 1. Using an affine
function that maps the affine hull of P onto RdimP , we can assume without loss
of generality that n “ dimP , i.e., that P is full-dimensional.

By Lemma 5.1, there exists a sequence txjujPN of vectors in P such that

fpxj´1
q ă fpxjq Ñ `8, (26)∥∥∥xj´1
∥∥∥ ă ∥∥∥xj∥∥∥Ñ `8, (27)

@x P P, ‖x‖ ă
∥∥∥xj∥∥∥ñ fpxq ă fpxjq. (28)

For every j P N we define the scalar τj :“
∥∥xj∥∥ and the direction vector dj :“

xj{τj P Rn. We can then rewrite (27) in the form

0 ă τj´1 ă τj Ñ `8. (29)

Clearly we have
∥∥dj∥∥ “ 1, thus the vectors dj lie on the unit sphere, which is a

compact set. The Bolzano-Weierstrass Theorem implies that the sequence tdjujPN
has a convergent subsequence whose limit is in the unit sphere. We denote by d
this limit, and from now on we only consider without loss of generality such a
subsequence, thus we can write dj Ñ d.

Next we show d P recP. Let Ax ď b be a system of linear inequalities defining
P , i.e., P “ tx | Ax ď bu. The definition of dj and xj P P imply that Adj “
Axj{τj ď b{τj . By taking the limits and using dj Ñ d and (29), we obtain Ad ď 0,
i.e., d P recP .

We now show that there exists an index s1 P N such that

@j ě s1, xj P intP, (30)

where intP denotes the interior of P . In order to prove this, it suffices to show
that only finitely many vectors xj are in P z intP . We prove this latter statement
by contradiction, and so we assume that infinitely many vectors xj are in P z intP .
We note that the set P z intP is the union of the finitely many faces F of P with
dimF ă n. Hence, there exists a face F of P with dimF ă n that contains
infinitely many vectors xj , which implies that the function f is unbounded on F .
The minimality of our counterexample implies that the theorem is true for the
polyhedron F and the polynomial f , and so there exists a ray of F over which f
is unbounded. This is a contradiction because each ray of F is also a ray of P .
Hence, (30) is shown.

Next, we show that that there exists an index s2 P N such that

@j ě s2 and @µ P p0, 1s,
∥∥∥xj ´ µd∥∥∥ ă ∥∥∥xj∥∥∥ . (31)

To prove (31), we first observe that there exists an index s2 P N such that

@j ě s2, τj ą 1 and
∥∥∥dj∥∥∥ ´ ∥∥∥dj ´ d∥∥∥ ą 0.
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This follows from τj Ñ `8 in (29), dj Ñ d and
∥∥dj∥∥ “ 1. Using the triangle

inequality we then obtain∥∥∥xj ´ µd∥∥∥ “ ∥∥∥τjdj ´ µd∥∥∥ ď ∥∥∥τjdj ´ µdj∥∥∥ ` ∥∥∥µdj ´ µd∥∥∥ “
“ τj

∥∥∥dj∥∥∥ ´ µ ∥∥∥dj∥∥∥ ` µ ∥∥∥dj ´ d∥∥∥ ă τj

∥∥∥dj∥∥∥ “ ∥∥∥xj∥∥∥ .
This completes the proof of (31).

We now set s :“ maxts1, s2u and prove the following two properties:

Dµs P p0, 1s : fpxs ´ µsdq ă fpxsq, (32)

Dλs ą 0 : fpxs ` λsdq ă fpxsq. (33)

We start by proving (32). From (30), xs P intP , which implies that there exists
µs P p0, 1s such that xs ´ µsd P P . From (31) we have ‖xs ´ µsd‖ ă ‖xs‖ and so
(28) implies (32). Next we show (33). Since xs P P and d P recP , we can consider
the ray Rpxs, dq of P . On the ray Rpxs, dq, the polynomial fpxq is not constant,
due to (32), and it is bounded by assumption. Hence limλÑ`8 fpx

s
` λdq “ ´8

which implies (33).
Now we define for each j ą s the vector vj :“ pxj ´ xsq{

∥∥xj ´ xs∥∥ and the

restriction Fjpλq : R Ñ R of fpxq to the line txs ` λvj | λ P Ru, i.e., Fjpλq :“
fpxs ` λvjq. Next we show that vj Ñ d. We can write vj as follows

vj “
xj ´ xs

‖xj ´ xs‖ “
xj

‖xj ´ xs‖ ´
xs

‖xj ´ xs‖ “

“
τjd

j

‖τjdj ´ τsds‖
´

xs

‖xj ´ xs‖ “
dj

‖dj ´ pτs{τjqds‖
´

xs

‖xj ´ xs‖ .

The first addend goes to d since dj Ñ d,
∥∥dj∥∥ “ 1, and τj Ñ `8 from (29). The

second addend goes to zero since
∥∥xj∥∥Ñ `8 in (27) implies

∥∥xj ´ xs∥∥Ñ `8 for
j Ñ 8.

Next, we show that there exists s1 ą s such that, for all j ě s1,

Fjp´µsq ă Fjp0q, (34)

Fjpλsq ă Fjp0q, (35)

Dλj ą λs : Fjpλjq ą Fjp0q. (36)

To prove inequalities (34) and (35), we only need to notice that since f is contin-
uous and vj Ñ d, there exists s1 ą s such that for all j ě s1, d in (32) and (33)
can be replaced by vj :

Fjp´µsq “ fpxs ´ µsv
j
q ă fpxsq “ Fjp0q,

Fjpλsq “ fpxs ` λsv
j
q ă fpxsq “ Fjp0q.

Without loss of generality we can assume that s1 is large enough such that, for every
j ě s1, we have λs ă

∥∥xj ´ xs∥∥. This is because λs is fixed and
∥∥xj ´ xs∥∥ Ñ `8

for j Ñ 8. We let λj :“
∥∥xj ´ xs∥∥ and obtain λj ą λs. Inequality (36) is then

obtained by applying (26) and j ą s:

Dλj ą λs : Fjpλjq “ fpxjq ą fpxsq “ Fjp0q.
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Thus, for j ě s1, (34), (35), and (36) imply that Fjpλq increases somewhere
in the interval r´µs, 0s, then decreases somewhere in r0, λss, and again increases
somewhere in rλs, λjs. In particular, Fjpλq cannot be a linear or quadratic func-
tion. Since fpxq is a cubic polynomial, we obtain that Fjpλq is a genuinely cubic
polynomial. Hence Fjpλq must increase on the interval rλj ,`8q, i.e., Fjpλq is un-
bounded on the half-line Lj :“ txs ` λpxj ´ xsq | λ ě 0u. Since by assumption f
is bounded over each ray of P , then each half-line Lj , for j ě s1, has to leave the
polyhedron P at some vector yj P P z intP with fpyjq ą fpxjq.

Now consider the sequence of vectors tyjujěs1 . Then, there exists a face F of
P with dimF ă n that contains infinitely many vectors yj with j ě s1. This in
particular implies that f is unbounded on F . The minimality of our counterexam-
ple implies that the theorem is true for the polyhedron F and the polynomial f ,
and so there exists a ray of F over which f is unbounded. This is a contradiction
because each ray of F is also a ray of P . [\

It should be noted that analogues of Theorem 5.2 are known to hold for linear
and quadratic functions [12,32,34].

Next, we discuss the tightness of Theorem 5.2 with respect to the degree of
the polynomial function. Namely, we show that Theorem 5.2 does not hold if the
polynomial f of degree at most three is replaced with a quartic polynomial. The
example given in the next proposition is inspired by a similar example by Frank
and Wolfe [13] (see also [21]).

Proposition 5.3 There exists a quartic polynomial f : R2
Ñ R unbounded on R2

such that f is bounded over every ray of R2.

Proof We define the following quartic polynomial function from R2 to R

fpy1, y2q :“ y2 ´ py2 ´ y
2
1q

2.

To check that f is unbounded on R2, it suffices to consider the vectors that satisfy
y2 “ y21 as y1 Ñ `8.

Hence, to prove the proposition we only need to check that f is bounded over
every ray of R2. Hence, we let ȳ P R2, d̄ P R2

zt0u and we evaluate the function f
on the ray Rpȳ, d̄q:

fpȳ ` λd̄q “ ȳ2 ` λd̄2 ´ pȳ2 ` λd̄2 ´ pȳ1 ` λd̄1q
2
q
2

“ ȳ2 ` λd̄2 ´ p´λ
2d̄21 ` λpd̄2 ´ 2ȳ1d̄1q ` ȳ2 ´ ȳ

2
1q

2

“ ´λ4d̄41 ` 2λ3d̄21pd̄2 ´ 2ȳ1d̄1q ` λ
2
p2d̄21pȳ2 ´ ȳ

2
1q ´ pd̄2 ´ 2ȳ1d̄1q

2
q `Opλq.

We observe that fpȳ ` λd̄q is a quartic univariate function in λ. If d̄1 ‰ 0, then
the leading term is ´λ4d̄41. In this case, since d̄41 ą 0, we obtain f Ñ ´8 along the
ray Rpȳ, d̄q. We now consider the remaining case d̄1 “ 0. In this case the leading
term is λ2p2d̄21pȳ2 ´ ȳ

2
1q ´ pd̄2 ´ 2ȳ1d̄1q

2
q “ ´λ2d̄22. Since d̄ is nonzero and d̄1 “ 0,

we obtain d̄2 ‰ 0. Thus d̄22 ą 0, and f Ñ ´8 along the ray Rpȳ, d̄q. [\

Proposition 2.11 shows that in Theorem 5.2 there might not exist any rational
ray along which the cubic is unbounded, even if we further assume that P is
rational. In particular, one might wonder if it is possible to construct an example
similar to the one given in the proof of Proposition 2.11, but where the cubic
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function grows cubically along an unbounded ray. The next proposition implies
that this is not possible. In fact, in Proposition 5.4 we show that, if there exists
an unbounded ray along which a cubic grows cubically, then there exists also a
rational unbounded ray.

Proposition 5.4 (Rational cubically unbounded ray) Let P be a rational
polyhedron and let x̄ P P and v̄ P recP . Suppose that fpx̄` λv̄q Ñ `8 as λÑ `8

with fpx̄ ` λv̄q “ Θpλ3q. Then, for any ε ą 0 there exist x̃, ṽ P Qn with x̃ P P ,
ṽ P recP such that ‖x̄ ´ x̃‖ ă ε, ‖v̄ ´ ṽ‖ ă ε and fpx̃`λṽq Ñ `8 as λÑ `8 with
fpx̃ ` λṽq “ Θpλ3q.

Proof Suppose that v̄ is not rational. Since v̄ is not rational, but P is a rational
polyhedron, then dimprecP q ą 0. Let ∆ P Rn and consider

fpx̄ ` λpv̄ `∆qq “ λ3f3p∆q ` λ
2f2p∆q ` λf1p∆q ` f0p∆q

where fi : Rn Ñ R is of degree i. By assumption, f3p0q ą 0. By continuity of f3,
there exists a δ ą 0 such that f3p∆q ą 0 for any ‖∆‖ ă ε. Since recP X pRnzQnq
is dense in recP X Rn, there exists a (many) perturbations ∆ from v̄ such that
ṽ :“ v̄`∆ P Qn and ‖∆‖ ă ε. Since fip∆q ą 0, then fpx̄` λṽq Ñ `8 as λÑ `8.

A similar argument applies to x̄. [\

We remark that, if the dimension is considered fixed, then in polynomial time
we can determine if there exists a ray that is unbounded cubically. This follows
from Renegar’s work [30], bounds on minimum values of polynomial [14], and
optimizing the cubic term of the objective function over the boundary of a ball
intersected with the recession cone of the feasible region.

To conclude this section, we observe that every cubic function has a direction
in Rn that grows cubically.

Observation 5.5 (All cubics have a direction that grows cubically) Suppose
f : Rn Ñ R is a degree-3 polynomial. Then there exists x̄, v̄ P Rn such that
fpx̄ ` λv̄q “ Θpλ3q.

Proof Let f “ f0` f1` f2` f3 where fi is a homogeneous polynomial of degree-i.
Since f is degree 3, there exists some v̄ P Rn such that f3pv̄q ‰ 0. Since f3 is

cubic, it is symmetric about the origin, so we can assume that f3pv̄q ą 0. Since f3
is homogeneous of degree 3, f3pλv̄q “ λ3f3pv̄q.

Hence, fpλv̄q “ λ3f3pv̄q `Opλ
2
q. The lemma follows with x̄ “ 0. [\

6 Examples

We conclude with a few related examples of irrationality and exponential size of
solutions that can arise in seemingly innocent types of sets.

Example 6.1 (System of convex quadratics all of whose feasible solutions are large)
Consider the system of inequalities y1 ě 2, yi`1 ´ y2i ě 0 for i “ 1, . . . , n ´ 1.

Then each feasible vector satisfies yn ě 22n´1

. Attributed to Ramana [27] and
Khachiyan, see [22], [2]. ˛
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Example 6.2 (A bounded feasible region QCQP whose solution requires exponen-
tially many bits)

Consider the optimization problem

max x2

s.t. px1 ´ 1q2 ` x22 ´ d2N ě 3 (37a)

px1 ` 1q2 ` x22 ě 3 (37b)

x21
10
` x22 ď 2 (37c)

d1 ` dN “
1

2
, 0 ď d1, d2i ď di`1 p1 ď i ď N ´ 1q (37d)

Suppose we allow for ε-feasible solutions, in the additive sense. We will show

that unless ε ă 2´2N , there is an ε-feasible solution to problem (37) that attains
value

?
2, whereas the true value of the problem is less than 1.23.

We begin with the latter statement. First, it is clear that (37d) implies that
dN ą 0. Armed with this fact, we will show that (37a)-(37c) imply that x2 ă 1.3.
To see this, note that (37b) and (37c) together imply that

3 ď px1 ` 1q2 ` 2 ´
x21
10
,

or 0 ď x1p
9
10x1 ` 2q. Hence, if x1 ă 0 then x1 ď ´20{9 and so by (37c), x2 ă

a

2 ´ p20{9q2{10 « 1.228. Likewise, (37a) and (37c) together imply that

3 ` d2N ď px1 ´ 1q2 ` 2 ´
x21
10
,

or d2N ď x1p
9
10x1 ´ 2q. Hence, if x1 ě 0, then x1 ą 0 (because dN ą 0) and

x1 ě 20{9, and as above by (37c), x2 ă
a

2 ´ p20{9q2{10 « 1.228. Thus, in any
case, x2 ď 1.228.

At the same time, the vector given by x1 “ 0, x2 “
?

2, d1 “
1
2 , di “

1

22i

(2 ď i ď N ´ 1) and dN “ 0 satisfies (exactly) all constraints (37a)-(37d), except

for d2N´1 ď dN , which it violates by 2´2N . This concludes the proof. ˛

Example 6.3 (An SOCP all of whose feasible solutions are irrational)

Let pa, b, c, dq be a Pythagorean quadruple, i.e., a2 ` b2 ` c2 “ d2, and all are
integers. Consider the system

b

x21 ` x
2
2 ď x0 (38a)

b

x20 ` x
2
3 ď d (38b)

a ď x1, b ď x2, c ď x3, (38c)

In any feasible solution we have

a2 ` b2 ď x21 ` x
2
2 ď x20 ď d2 ´ x23 ď d2 ´ c2 “ a2 ` b2.

Hence, in any feasible solution, x0 “
?
a2 ` b2. Choosing pa, b, c, dq “ p1, 2, 2, 3q,

we have x0 “
?

5.
Likely, examples of this type are already known. ˛
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