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Abstract. Breaking symmetries is a popular way of speeding up the branch-and-bound method for
symmetric integer programs. We study fundamental domains, which are minimal and closed symmetry
breaking polyhedra. Our long-term goal is to understand the relationship between the complexity of
such polyhedra and their symmetry breaking capability.
Borrowing ideas from geometric group theory, we provide structural properties that relate the action
of the group with the geometry of the facets of fundamental domains. Inspired by these insights, we
provide a new generalized construction for fundamental domains, which we call generalized Dirichlet
domain (GDD). Our construction is recursive and exploits the coset decomposition of the subgroups
that fix given vectors in Rn. We use this construction to analyze a recently introduced set of symmetry
breaking inequalities by Salvagnin [27] and Liberti and Ostrowski [17], called Schreier-Sims inequalities.
In particular, this shows that every permutation group admits a fundamental domain with less than n

facets. We also show that this bound is tight.
Finally, we prove that the Schreier-Sims inequalities can contain an exponential number of isomorphic
binary vectors for a given permutation group G, which provides evidence of the lack of symmetry
breaking effectiveness of this fundamental domain. Conversely, a suitably constructed GDD for this G
has linearly many inequalities and contains unique representatives for isomorphic binary vectors.

Keywords: Symmetry breaking inequalities · Fundamental domains · Polyhedral theory · Orthogonal
groups.

1 Introduction

Symmetries are mappings from one object into itself that preserve its structure. Their study has proven
fruitful across a myriad of fields, including integer programming, where symmetries are commonly present. For
instance, almost 30% of mixed-integer linear programs (MILP) in the model library used by the solver CPLEX
are considerably affected by symmetry [1]. Moreover, symmetry exploitation techniques are of importance
in various situations. In particular, they help to avoid traversing symmetric branches of the tree considered
by a branch-and-bound algorithm.

Roughly speaking, the symmetry group G of an optimization problem is the set of functions in Rn that
leave the feasible region and the objective function invariant (see Section 2 for a precise definition). The
symmetry group G, or any of its subgroups, partitions Rn into G-orbits, which are sets of isomorphic solu-
tions. A natural technique for handling symmetries is to add a static set of symmetry breaking inequalities.
That is, we add extra inequalities that remove isomorphic solutions while leaving at least one representa-
tive per G-orbit. This well established approach has been studied extensively, both in general settings and
different applications; see e.g. [10,11,12,14,15,16,17,21,27,30]. In most of these works, the symmetry break-
ing inequalities select the lexicographically maximal vector in each G-orbit of binary vectors. However, this
constitutes a major drawback when dealing with general permutation groups: selecting the lexicographically
maximal vector in a G-orbit is an NP-hard problem [4]. Hence, the separation problem of the corresponding
symmetry breaking inequalities is also NP-hard. On the other hand, there is nothing preventing us to select
orbit representatives with a different criterion.

http://arxiv.org/abs/2011.09641v2


In this article, we are interested in understanding fundamental domains of a given finite groupG, which are
minimal, closed and convex symmetry breaking sets for G. Ideally, a closed symmetry breaking set F contains
a unique representative per G-orbit. However, such a set does not necessarily exist for every group. Instead,
a fundamental domain F only contains a unique representative for G-orbits that intersect F in its interior,
while it can contain one or more representatives of a G-orbit intersecting its boundary. Despite this, F is a
minimal closed symmetry breaking set, as any proper closed subset of F leaves some G-orbit unrepresented.
On the other hand, a given symmetry group can admit inherently different fundamental domains. While
all fundamental domains for finite orthogonal groups, including permutation groups (the main focus when
considering mixed integer linear programs), are polyhedral cones, their polyhedral structure and complexity
might differ greatly.

Our long term and ambitious goal is to understand the tension (and potential trade-offs) between the
symmetry breaking effectiveness and the complexity of fundamental domains. The complexity can be mea-
sured in several ways: from the sizes of the coefficients in its matrix description, the number of facets, or even
its extension complexity. On the other hand, the symmetry breaking effectiveness is related to the number of
representatives that each orbit contains. Hence, the boundary of a fundamental domain, which can contain
overrepresented G-orbits, becomes problematic, in particular if our points of interest (e.g., binary points in
a binary integer program) can lie within it.

More precisely, we contribute to the following essential questions: (i) Which groups admit fundamental
domains in Rn with poly(n) facets? (ii) What is the structure of these facets? (iii) Which algorithmic methods
can we use to construct different fundamental domains? (iv) Which fundamental domains contain unique
representatives for every orbit?

Related Work. The concept of fundamental domain traces back to the 19th century, as it corresponds to
fundamental parallelepipeds for the symmetry group of a lattice. Fundamental domains are studied in several
areas, for example crystallography, the theory of quadratic forms, and elliptic functions, among many others.
In particular Dirichlet [9] gives a construction which implies the existence of a fundamental domain in a
general context, including all groups of isometries in Rn, later known as Dirichlet domain. For a historical
overview see Ratcliffe [24] and the references therein.

Several techniques have been studied to handle symmetries in integer programming. Kaibel and Pfetsch
[15] introduce the concept of orbitopes as the convex-hull of 0−1 matrices that are lexicographically maximal
under column permutations, and give a complete description of the facets for the cyclic group and the
symmetric group. Friedman [11] considers general permutation groups. Based on the Dirichlet Domain,
he introduces the idea of a universal ordering vector, which yields a fundamental domain with unique
representatives of binary points. On the other hand, this fundamental domain has an exponential number of
facets, its defining inequalities can contain exponentially large coefficients in n, and the separation problem
is NP-hard for general permutation groups [4,20]. Liberti [16] and later Dias and Liberti [8] also consider
general permutation groups G and derive a class of symmetry breaking constraints by studying the orbits
of G acting on [n] = {1, . . . , n}. Liberti and Ostrowski [17], and independently Salvagnin [27], extend this
construction and introduce a set of symmetry breaking inequalities based on a chain of pointwise coordinate
stabilizers. We will refer to this set as the Schreier-Sims inequalities, as they are strongly related to the
Schreier-Sims table from computational group theory [29]. Hojny and Pfetsch [14] study symretopes, defined
as the convex hulls of lexicographically maximal vectors in binary orbits. They obtain a linear time algorithm
for separating the convex hull of polytopes derived by a single lexicographic order enforcing inequality and
show how to exploit this construction computationally.

For integer programming techniques, dynamic methods have been used to deal with symmetries within
the Branch-and-Bound tree. Some methods are Orbital Fixing [19], Isomorphism Pruning [18] and Orbital
Branching [22]. A more geometric approach for solving symmetric integer programs relies on the theory
of core points [5,13]. For more details on these techniques and related topics see Margot [20], Pfetsch and
Rehn [23], and Schürmann [28].

Our Contribution. In this article we focus on finite orthogonal groups in Rn, that is, groups of linear
isometries. We start by presenting basic structural results of the theory of fundamental domains for a given
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orthogonal group G. A basic observation is that each facet is related to a group element g. We also show the
following new property of the facets: for an interesting class of fundamental domains, which we call subgroup
consistent, the vector defining a facet must be orthogonal to the fixed subspace of g. This implies that each
inequality is of the form αtx ≥ αt(gx) for some vector α ∈ Rn and some element g ∈ G. In other words,
the inequalities of any subgroup consistent fundamental domain have the same structure as inequalities of
Dirichlet domains.

Inspired by these new insights, we state our main contribution: a generalized construction of fundamental
domains for any finite orthogonal group, including permutation groups. Our method is based on choosing
a vector α and finding the coset decomposition using the stabilizer subgroup Gα = {g ∈ G : gα = α}.
Next, we add inequalities to our symmetry breaking set, one for each member in the coset decomposition.
For a well-chosen α, the number of cosets can be bounded by a polynomial, yielding a polynomial number
of inequalities. By proceeding recursively on the subgroup Gα, we generate a fundamental domain after at
most n iterations. We say that a fundamental domain obtained via this method is a generalized Dirichlet
domain (GDD), as it generalizes the classical construction by Dirichlet [9]. To the best of our knowledge,
this construction generalizes all convex fundamental domains found in the literature. For the special case of
permutation groups, our algorithm can be implemented in polynomial time if the vector α is well chosen.

A natural way of breaking symmetries is to choose the lexicographically maximal element for every G-
orbit in Rn (not only binary vectors, as in the construction by Friedman [11]). However, it is not hard to
see that the obtained set is not necessarily closed. On the other hand, the set is convex. We show that the
closure of this set coincides with the Schreier-Sims inequalities studied by Salvagnin [27] and Liberti and
Ostrowski [17]. Moreover, we show that this set is a GDD, which implies that it is a fundamental domain.
Finally, we give a stronger bound on the number of facets for this fundamental domain, implying that all
permutation groups admit a fundamental domain with at most n − 1 inequalities. We also notice that any
fundamental domain for Sn, the full symmetric group of degree n, has n − 1 facets, which shows that our
bound is best possible.

Salvagnin [27] recognizes that the symmetry breaking efficiency of the Schreier-Sims inequalities might
be limited: the orbit of a binary vector can be overrepresented in the set. We give a specific example of a
permutation group in which an orbit of binary vectors can have up to 2Ω(n) many representatives. Using
the flexibility given by our GDD construction, we exhibit a fundamental domain for the same group with
a unique representative for each binary orbit, while having O(n) facets. This illustrates that exploiting the
structure of the given group can yield a relevant improvement in the way symmetries are broken. Moreover,
we show that the only groups that admit a fundamental domain with a unique representative for every orbit
are reflection groups. Finally, we propose a new way of measuring the effectiveness of fundamental domains,
which we hope will pave the road for future work in deriving fundamental domains that exploit the structure
of the groups involved.

2 Notation and Preliminaries

Throughout the whole paper, G denotes a group, and H ≤ G means that H is a subgroup of G. The element
id ∈ G denotes the identity. For a subset S of G, 〈S〉 is the smallest group containing S. The set On(R)
corresponds to the orthogonal group in Rn, that is, the group of all n×n orthogonal matrices (equivalently,
linear isometries). Hence, it holds that if g ∈ On(R) then the inverse g−1 equals the transpose gt. All groups
considered in what follows are finite subgroups of On(R). Also, G(S) denotes the pointwise stabilizer of the
set S ⊆ Rn, and the set fix(g) denotes the invariant subspace of g ∈ G, that is,

G(S) := {g ∈ G : x = gx ∀x ∈ S} and fix(g) := {x ∈ Rn : gx = x} .

If S := {x}, we write Gx := G(S). For H ≤ G, a transversal for H in G is a set of representatives from the
left cosets of H in G, the set of left cosets being {gH : g ∈ G}. Given a set of elements S ⊆ G, we denote by
S−1 := {g−1 : g ∈ S}. For x ∈ Rn, the G-orbit of x is the set OrbG(x) := {gx : g ∈ G}. We denote by [n] the
set {1, . . . , n} for all n ∈ N and Sn denotes the symmetric group, that is the group of all permutations over
[n]. For G ≤ Sn, each element g ∈ G acts on Rn by the mapping x 7→ gx :=

(
xg−1(i)

)n
i=1

. Equivalently, we
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consider G ≤ Sn as a group of isometries where each g ∈ G is interpreted as the corresponding permutation
matrix.

For an exhaustive introduction to group theory, see for instance Rotman [26]. For an exposition on
computational aspects of permutation groups, see Seress [29].

For a set S we denote by Sc its complement. For S ⊆ Rn, we write int(S) for its interior, S for its closure,
and ∂S for its boundary.

An optimization problem min{f(x) : x ∈ X} is G-invariant if for all feasible x and g ∈ G,

1. f(x) = f(gx), and
2. gx is feasible.

Given a G-invariant optimization problem, we can use the group G to restrict the search of solutions to
a subset of Rn, namely a fundamental domain.

Definition 1. A subset F of Rn is a fundamental domain for G ≤ On(R) if

1. the set F is closed and convex4,
2. the members of {int(gF ) : g ∈ G} are pairwise disjoint,
3. Rn =

⋃
g∈G gF .

Notice that for any x ∈ Rn, its G-orbit, OrbG(x), satisfies that |OrbG(x)∩F | ≥ 1. Also, |OrbG(x)∩F | = 1
if x ∈ int (F ). It is not hard to see that all fundamental domains for a finite subgroup of On(R) are full-
dimensional sets. Moreover, if F ′ ( F , then there is some OrbG(x) such that OrbG(x) ∩ F ′ = ∅, and hence
some orbit is not represented in F .

Definition 2. A subset R of Rn is a fundamental set for a group G ≤ On(R) if it contains exactly one
representative of each G-orbit in Rn.

3 The Geometric Structure of Fundamental Domains

In this section we review some basic geometric properties of fundamental domains and derive new properties.
Propositions 1 and 3 are well known; their proof can be found in [24, Ch. 6]. Proposition 2 extends a similar
result for the particular case of exact fundamental domains [24, Ch. 6]. Theorem 1 and Corollary 1 are
our main contributions of this section. To provide a self-contained presentation of the topic, we provide
alternative proofs of some of the previously known results.

The following proposition, together with the existence of a vector α whose stabilizer is trivial [24, Thm.
6.6.10.], guarantees the existence of a fundamental domain for any G ≤ On(R). We will refer to the con-
struction Fα in the proposition as a Dirichlet domain.

Proposition 1. Let G ≤ On(R) be finite and non-trivial, and let α ∈ Rn whose stabilizer Gα equals {id}.
Then the following set is a fundamental domain for G,

Fα = {x ∈ Rn : αtx ≥ αtgx, ∀g ∈ G}.

Proof. Let α ∈ Rn be a point such that Gα = 〈id〉. Consider the linear functional y 7→ αty, for all y ∈ Rn.
Note that z ∈ Fα if and only if z maximizes this linear functional over its finite G-orbit, i.e. z ∈ argmax{αty :
y ∈ OrbG(z)}.

First note that Fα is closed and convex by construction. Now, let x ∈ Rn, and suppose that z ∈
argmax{αty : y ∈ OrbG(x)}, and hence z ∈ Fα. Then there exists a g ∈ G such that z = gx, i.e.
x = g−1z. Hence x ∈ g−1Fα. Now, note that

int(Fα) = {x ∈ Rn : αtx > αtgx, ∀g ∈ G \ {id}}

= {x ∈ Rn : Gx = {id} and for all y ∈ OrbG(x) \ {x}, αtx > αty}.

4 Notice that in part of the literature, e.g. [24], convexity is not part of the definition.
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Since every g ∈ G is a linear homeomorphism, we have that int(gFα) = g int(Fα). Thus, if x ∈ int(Fα)
and x ∈ g int(Fα), for some g ∈ G non-trivial, there exists y ∈ int(Fα), such that x = gy. But this is a
contradiction since the maximum is unique and Gx is trivial. In consequence, Fα is a fundamental domain
for G. ⊓⊔

A specific kind of Dirichlet domains are k-fundamental domains. For any integer k ≥ 2, we define k :=(
kn−1, kn−2, . . . , 1

)
as the k-universal ordering vector. The set Fk is the k-fundamental domain for the

symmetry group G. Friedman [11] observes that F2 contains a unique representative per G-orbit of binary
points in Rn. This fact easily generalizes for points x ∈ {0, . . . , k− 1}n with the k-ordering vector (see [20]).

Given a fundamental domain F and g ∈ G \ {id}, let Hg be any closed half-space that separates F
and gF , that is, F ⊆ Hg and gF ⊆ Hc

g . The existence of this half-space follows from the convex separation
theorem. We say that a collection {Hg}g∈G represents F if for every g ∈ G, the set Hg is a closed half-space
that separates F and gF . Notice that representations are non unique.

Let us denote by H=
g := ∂(Hg) the hyperplane defining Hg. Notice that H=

g contains 0 as 0 ∈ F ∩ gF ,
since g is a linear isometry. We let γg 6= 0 be some defining vector for Hg, i.e., Hg = {x ∈ Rn : γt

gx ≥ 0},
and thus H=

g = {x ∈ Rn : γt
gx = 0}.

Proposition 2. Let G ≤ On(R) be finite, let F be a fundamental domain and {Hg}g∈G a collection that
represents F . Then F =

⋂
g∈G Hg. In particular, F is a polyhedral cone. Moreover, if A is the set of all

g ∈ G such that dim(F ∩ gF ) = n− 1, then A generates G.

Proof. Let H :=
⋂

g∈G Hg. Let us first show that F = H. Clearly F ⊆ H as F ⊆ Hg for every g ∈ G. For the
other inclusion, suppose by contradiction that H \ F 6= ∅. Given that H is convex, int(H) 6= ∅ (as F ⊆ H
is full-dimensional), and F c is open, we have that int(H \ F ) 6= ∅. Hence, let x ∈ int(H \ F ). As F is a
fundamental domain for G, there exists a g ∈ G such that gx ∈ F . This implies that x ∈ g−1F ⊆ Hc

g−1 . By
definition, we also have that x ∈ H ⊆ Hg−1 , thus x ∈ H=

g−1 . But this contradicts the fact that x belongs to

the interior of Hg−1 , because x belongs to the interior of H \ F .
Let us now show that A generates G. For a fixed g ∈ G, let us prove that g ∈ 〈A〉. First, take x ∈ int(F )

and y ∈ int(gF ). Now, take ǫ > 0 so that Bǫ(x) ⊆ int(F ), and choose x0 ∈ Bǫ(x) uniformly at random. For
a, b ∈ Rn, let [a, b] denote the interval {λa+(1−λ)b : λ ∈ [0, 1]}. The interval [x0, y] is partitioned in several
segments by the tessellation {hF}h∈G. More precisely, notice that

[x0, y] =
⋃

h∈G

([x0, y] ∩ hF ). (1)

As hF is closed and convex, the set [x0, y]∩hF is a (possible empty) closed interval. Let λ0 := 0 and g0 := id.
Define λ1 as the maximum value such that x1 := λ1x0 + (1 − λ1)y ∈ F . Hence, [x0, x1] ⊆ F . By (1), there
must exist an element g1 6= id such that x1 ∈ g1F . More generally, given λi ∈ (0, 1), gi 6= g, and xi ∈ giF , let
λi+1 be the maximum number such that xi+1 := λi+1x0 + (1 − λi+1)y ∈ giF . As before, there must exists
gi+1 ∈ G \ {g0, g1, . . . , gi} such that xi+1 ∈ gi+1F . The construction finishes as G is finite, when we reach
that xm ∈ gF for some m. Defining xm+1 = y and gm = g we obtain that

[x0, y] =

m+1⋃

i=1

[xi−1, xi],

where [xi−1, xi] ⊆ gi−1F for all i ∈ {1, . . . ,m+ 1}.
By construction, xi ∈ gi−1F ∩ giF for all i ∈ {1, . . . ,m}. Moreover, we have the following claim.

Claim 1: It holds almost surely (a.s.) that for all i ∈ {1, . . . ,m} the set gi−1F ∩ giF has dimension n− 1.
Let us show the claim. If the claim is not true, there must exists i such that P(dim(gi−1F ∩ giF ) = n− 1)

with non-zero probability. For h, h′ ∈ G, let E(i, h, h′) be the event that gi−1 = h and gi = h′. We will show
that if dim(hF ∩ h′F ) ≤ n− 2 then the probability of E(i, h, h′) is 0. This suffices to show the claim as G is
finite.
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In the event E(i, h, h′), xi belongs to R = hF ∩ h′F , where dim(R) ≤ n− 2. Notice now that

B′(R) := {z ∈ Bǫ(x) : [z, y] ∩R 6= ∅}

=

{
z ∈ Bǫ(x) : z =

1

t
r +

t− 1

t
y, r ∈ R, t ∈ (0, 1)

}
⊆ affine(R ∪ {y}),

where affine(S) denotes the affine span of S. Hence, dim(B′(R)) ≤ dim(affine(R∪{y})) ≤ n−1. This implies
that the probability of E(i, h, h′) is 0, and hence the claim follows.

By Claim 1 we know that for all i ∈ {1, . . . ,m} the set F ∩ g−1
i−1giF has dimension n− 1 almost surely.

Hence, we conclude the following.
Claim 2: For all i ∈ {1, . . . ,m} it holds that g−1

i−1gi ∈ A almost surely.
We now conclude the theorem from this claim. Let us pick a sequence g0, . . . , gm that satisfies Claim 2,

which exists as the claimed event has non-zero probability. Clearly, g0 = id ∈ 〈A〉. Moreover, gi = gi−1h for
some h ∈ A. Hence, if gi−1 ∈ 〈A〉, we have that gi ∈ 〈A〉 for all i. Inductively, we obtain that g = gm ∈ 〈A〉.

⊓⊔

We now introduce a new type of fundamental domain and characterize the structure of its facets.

Definition 3. A fundamental domain F is said to be subgroup consistent for the collection {Hg}g∈G rep-
resenting F if for every subgroup G′ ≤ G the set F ′ =

⋂
g∈G′ Hg is a fundamental domain for G′. We say

that F is subgroup consistent if F is subgroup consistent for some collection {Hg}g∈G.

It is not hard to see that Dirichlet domains are subgroup consistent. Moreover, subgroup consistent
fundamental domains are amenable to be constructed iteratively, either by starting the construction of a
fundamental domain for a subgroup and extending it to larger subgroups (bottom-up), or adding inequalities
for G and recurse to smaller subgroups (top-down, as our technique in Section 4).

With the help of the following lemmas, we show a close relationship between supporting hyperplanes of
a subgroup consistent fundamental domain F : all facet-defining inequalities of F are of the form αtx ≥ αtgx
for some α and g ∈ G. In this case we say that the inequality is of Dirichlet type.

Lemma 1. Let g ∈ G. Then (fix(g) ∩ F ) \H=
g = ∅.

Proof. Let x ∈ fix(g). If x ∈ F \ H=
g , then γt

gx > 0. Moreover, γt
g(gx) ≤ 0 since gx ∈ gF . But this is a

contradiction as gx = x. ⊓⊔

Lemma 2. If G is Abelian, then for every g ∈ G, the set fix(g) is G-invariant, i.e., h fix(g) = fix(g) for all
h ∈ G.

Proof. Let g, h ∈ G. We show that h fix(g) = fix(g). Indeed, if y ∈ h fix(g), i.e., y = hx for some x ∈ fix(g),
then gy = g(hx) = h(gx) = hx = y. Therefore, y ∈ fix(g), and thus h fix(g) ⊆ fix(g). The inclusion
fix(g) ⊆ h fix(g) follows by applying the previous argument to h−1, implying that h−1 fix(g) ⊆ fix(g). ⊓⊔

Lemma 3. Given a finite group G ≤ On(R), let F ⊆ Rn be a subgroup consistent fundamental domain for
the collection {Hg}g∈G, where Hg = {x ∈ Rn : γt

gx ≥ 0}. Then γg belongs to the orthogonal complement of
the fixed space of g, i.e.,

γg ∈ fix(g)⊥ := {x ∈ Rn : gx = x}⊥.

Proof. We start by showing the lemma for the case that G is Abelian. By Lemma 2 we have that fix(g) is
G-invariant for every g ∈ G, and hence h fix(g) = fix(g) for any h ∈ G. Therefore,

fix(g) = fix(g) ∩

(
⋃

h∈G

hF

)
=
⋃

h∈G

(fix(g) ∩ hF ) =
⋃

h∈G

h(fix(g) ∩ F ).

Let span(S) denote the linear span of a set S. Notice that dim(span(fix(g) ∩ F )) = dim(fix(g)), otherwise,
fix(g) would be contained in the union of finitely many subspaces of strictly smaller dimension, which is
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clearly a contradiction. Since F ∩ fix(g) ⊆ fix(g), we conclude that span(F ∩fix(g)) = fix(g). As by Lemma 1
we have that F ∩ fix(g) ⊆ H=

g , this implies that fix(g) = span(F ∩ fix(g)) ⊆ H=
g . Since by definition γg is

orthogonal to every vector in H=
g , we conclude that γg ∈ fix(g)⊥. The lemma follows if G is Abelian.

For the general case, assume that F is subgroup consistent for collection {Hh}h∈G. Therefore, the Abelian
subgroup G′ = 〈g〉 has F ′ =

⋂
h∈G′ Hh as a fundamental domain. Then our argument for the Abelian case

implies that γg ∈ fix(g)⊥. ⊓⊔

The following is the main contribution of this section.

Theorem 1. Given a finite group G ≤ On(R), let F ⊆ Rn be a subgroup consistent fundamental domain
for a collection {Hg}g∈G, where Hg = {x : γt

gx ≥ 0}. Then, for every g ∈ G there exists αg ∈ Rn such that
γg = (id−g)αg. In particular, any facet-defining inequality for F is of the form αt

gx ≥ αt
gg

−1x for some
g ∈ G, and hence it is of Dirichlet type.

Proof. Recall that any automorphism f of Rn satisfies Im(f)⊥ = ker(f t). Since fix(g) = ker(id−g), and
recalling that g−1 = gt (interpreting g as a matrix), by Lemma 3 we have that

γg ∈ fix(g)⊥ = fix(g−1)⊥ = ker(id−gt)⊥ = Im (id−g) .

Hence, there exists αg ∈ Rn such that γg = (id−g)αg. ⊓⊔

Remark. It is worth noticing that this theorem does not imply that every subgroup consistent fundamental
domain is a Dirichlet fundamental domain. The difference relays in the fact that in Dirichlet domains α = αg

for all g ∈ G, while in subgroup consistent fundamental domains one can have different vectors αg for
different group elements g. For concrete examples see Section 4.

We say that a fundamental domain F is exact if for every facet S of F there exists a group element
g ∈ G such that S = F ∩ gF . In this case we say that g defines a facet of F . Notice that it also holds that
S = F ∩H=

g . Exact fundamental domains are well structured and have been studied in the literature [24].
It is worth noticing that Dirichlet domains are exact.

For exact fundamental domains, facets come in pairs, i.e., if g defines a facet of F , then g−1 also does.
The proof of the following proposition can be found in Ratcliffe [24, Thm. 6.7.5.].

Proposition 3. Let F ⊆ Rn be an exact fundamental domain for G ≤ On(R) finite. If S is a facet of F ,
then there is a unique non-trivial element g ∈ G such that S = F ∩ gF , moreover g−1S is a facet of F .

Proposition 3 and Theorem 1 together imply the following corollary which gives a stronger connection
between the facets F ∩ gF and F ∩ g−1F . Informally, the corollary says that we can take αg = αg−1 in
Theorem 1.

Corollary 1. Let F ⊆ Rn be an exact and subgroup consistent fundamental domain for G ≤ On(R) finite.
Suppose that Hg = {x : γt

gx ≥ 0} defines the facet F ∩ gF = F ∩ H=
g and Hg−1 = {x : γt

g−1x ≥ 0} defines

the facet F ∩ g−1F = F ∩H=
g−1 . Then there exists a vector αg such that

Hg = {x : αt
gx ≥ αt

g(g
−1x)} and Hg−1 = {x : αt

gx ≥ αt
g(gx)}.

Proof. By Theorem 1, γg = (id−g)αg for some αg and hence Hg = {x : αt
gx ≥ αt

g(g
−1x)}. Now, for any

x ∈ F ∩g−1F , we have gx ∈ gF ∩F = F ∩H=
g , and hence γt

g(gx) = (g−1γg)
tx = 0. Thus, g−1γg is orthogonal

to F ∩ g−1F . As dim(F ∩ g−1F ) = n − 1, we obtain that H=
g−1 = {x : (g−1γg)

tx = 0}. Now, notice that

Hg−1 = {x : (g−1γg)
tx ≤ 0}. Indeed, if Hg−1 = {x : (g−1γg)

tx ≥ 0} we have that for any x ∈ int(g−1F ) 6= ∅
it holds that (g−1γg)

tx < 0, and hence gx ∈ int(F ) satisfies γt
g(gx) < 0, which contradicts the construction

of Hg. We conclude that Hg−1 = {x : (g−1γg)
tx ≤ 0}. The results follows by recalling that γg = (id−g)αg,

which implies that Hg−1 = {x : αt
gx ≥ αt

g(gx)}. ⊓⊔
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4 Generalized Dirichlet Domains

In this section we present our main contribution: an algorithm which constructs a fundamental domain for
an arbitrary finite orthogonal group. We use the insights gained from the geometric properties of subgroup
consistent and exact fundamental domains to guide our search for new constructions. In particular we
create subgroup consistent fundamental domains based on a sequence of nested stabilizers of the G-action
on Rn. This construction generalizes Dirichlet domains, and hence k-fundamental domains, as well as the
Schreier-Sims fundamental domain, presented in Section 4.2. Both types of fundamental domains can be
easily constructed using our algorithm. Moreover, in Section 5 we exploit the flexibility of our construction
to define a new fundamental domain with better properties for a specific group.

Theorem 1 and Corollary 1 suggest that we should consider vectors αg for some g ∈ G and consider
inequalities of the form αt

gx ≥ αt
ggx and αt

gx ≥ αt
gg

−1x, although it seems hard to decide whether we should
pick different vectors αg for each pair g, g−1, and if so, how to choose them. For instance, if we fix a vector
α = αg for all g ∈ G, we would obtain a Dirichlet domain. However, if α’s stabilizer is non trivial, then
all inequalities αt

gx ≥ αt
gg

−1x in a coset of Gα are equivalent. This hints that we should choose a vector
α, apply a coset decomposition using a stabilizer subgroup, and add the Dirichlet inequalities related to all
members of the decomposition.

Furthermore, since all the elements of the group that fix α constitute a subgroup, if a fundamental domain
F for this subgroup were available, residual symmetries could be taken care of with F , while non-residual
symmetries could be exploited via αtx ≥ αt(gx) for g /∈ Gα. Our next result points in this direction and lays
the ground for our generalized Dirichlet domain algorithm.

Theorem 2. Let α ∈ Rn be an arbitrary vector and consider the polyhedral cone

Fα = {x ∈ Rn : αtx ≥ αtgx, ∀g ∈ G}.

Suppose that F is a fundamental domain for the subgroup Gα, i.e., the pointwise stabilizer of α. Then F ∩Fα

is a fundamental domain for G.
Moreover, for any transversal T for Gα in G, the polyhedral cone Fα can be described as

Fα = {x ∈ Rn : αtx ≥ αtgx, ∀g ∈ T ∪ T−1},

where T−1 := {g−1 : g ∈ T }.

Proof. First, notice that F ∩Fα is closed and convex. Now, we show that every x ∈ Rn has a representative
in F ∩Fα. In other words, we show that there exists some g ∈ G such that gx ∈ F ∩Fα. Let us consider two
cases: (i) x ∈ Fα and (ii) x /∈ Fα. In case (i), since F is a fundamental domain for Gα, there exists g ∈ Gα

such that gx ∈ F . As α = g−1α we have that

αtgx = (gtα)tx = (g−1α)tx = αtx.

Therefore, gx ∈ F ∩ Fα. Now, consider case (ii), i.e., there exists g′ ∈ G such that αtg′x > αtx. Let
h ∈ argmax{αtgx : g ∈ G}. Clearly hx ∈ Fα, and hence we are done if hx ∈ F . If hx 6∈ F there exists
g̃ ∈ Gα such that g̃(hx) ∈ F . We conclude that g̃(hx) ∈ F ∩ Fα by the same argument as in case (i).

Now we prove that for any g ∈ G \ {id} we have that int(F ∩ Fα) and int(g(F ∩ Fα)) are disjoint. Let
x ∈ int(F ∩ Fα). It suffices to show that gx /∈ F ∩ Fα. Indeed, since x ∈ int(F ) ∩ int(Fα), then gx /∈ F ∩ Fα

for all g ∈ Gα \ {id} as F is a fundamental domain for Gα. Moreover, since x belongs to the interior of Fα, it
holds that αtx > αtgx for all g ∈ G\Gα. Therefore, gx /∈ F ∩Fα. We conclude that F ∩Fα is a fundamental
domain for G.

Let us show that it suffices to consider the Dirichlet type inequalities associated to a transversal and its
inverses T ∪ T−1 to describe Fα. Let T ⊆ G be a transversal for Gα and let g ∈ G. If g ∈ Gα, then clearly
αt = αtg and hence the inequality αtx = αtgx is trivial. Consider g /∈ Gα, and thus g−1 /∈ Gα. Then there
exists r ∈ T such that g−1 ∈ rGα, i.e., g

−1α = rα. Therefore,

αt(gx) = (g−1α)tx = (rα)tx = αt(r−1x),

from which we can conclude that αtx ≥ αt(gx) and αtx ≥ αt(r−1x) are equivalent. ⊓⊔
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An iterative application of Theorem 2 yields Algorithm 1. We say that a fundamental domain constructed
by this algorithm is a generalized Dirichlet domain (GDD). See Examples 1 and 2 below for concrete examples
of this construction.

Algorithm 1 Construction of a generalized Dirichlet domain (GDD)

Input: A set of generators SG of a finite orthogonal group G

Output: A fundamental domain F for G

1: Set F := Rn, G0 := G, and i := 1
2: while Gi−1 6= {id} do

3: Choose αi ∈ Rn such that gαi 6= αi for some g ∈ Gi−1

4: Compute Gi := {g ∈ Gi−1 : gαi = αi}
5: Choose a transversal Ti for Gi in Gi−1 and add the inverses Ri := Ti ∪ T−1

i

6: Set Fi := {x ∈ Rn : αt
ix ≥ αt

ihx ∀h ∈ Ri}
7: F := F ∩ Fi and i := i+ 1
8: end while

9: return F

Theorem 3. Algorithm 1 terminates in at most n iterations and outputs a fundamental domain F .

Proof. We follow an inductive bottom-up argument. First we prove the base case. Given the output of
Algorithm 1 let m be the smallest integer such that Gm = 〈id〉. Notice that m ≤ n since the set {αi}mi=1 must
be linearly independent, otherwise some αi would belong to the linear span of {αj}j<i implying that αi is
fixed by Gi−1, which is a contradiction. Therefore the algorithm terminates in at most n iterations. Then, the
transversal Tm for Gm in Gm−1 computed in Line 5 corresponds to Gm−1, i.e. Gm−1 is trivially decomposed
by Gm. Hence, Fm = Fαm is a Dirichlet domain for Gm−1. Therefore, Fm−1 ∩ Fm is a fundamental domain
for Gm−2 by Theorem 2. Consequently, F is a fundamental domain for G since ∩m

i=2Fi is a fundamental
domain for G1, by iteratively applying Theorem 2. ⊓⊔

It is worth noticing that if we take α1 such that G1 is trivial, then the algorithm finishes after one
iteration. Indeed, the obtained fundamental domain is the Dirichlet domain Fα1

. This justifies the name
generalized Dirichlet domain.

We already know that Algorithm 1 terminates after at most n iterations. For the rest of the analysis of
the running time, we focus on permutation groups. Lines 4 and 5 are the most challenging with respect to
the algorithm’s computational complexity. The result of the computation in line 4 is a setwise stabilizer of
the coordinates of α. Computing a set of generators for this subgroup can be performed in quasi-polynomial
time with the breakthrough result by Babai [2,3] for String Isomorphism. In general, however, R1 might be
of exponential size. Indeed, the number of cosets of G1 in G equals the size of the orbit |OrbG(α1)|, by the
Orbit-Stabilizer Theorem. If we choose α1 with pairwise different coordinates, then |OrbG(α1)| = |G|. This
is exactly the case for the Dirichlet domain.

On the other hand, by choosing the αi vectors carefully we can avoid the described problem. In particular,
suppose that α = (α(1), . . . , α(k), 0, . . . , 0) such that α(i) 6= α(j) for i 6= j in [k], and α(i) 6= 0 for i ∈ [k].
Hence, a set of generators for the stabilizer Gα can be computed in polynomial time. Indeed, it corresponds
to the pointwise stabilizers of coordinates 1 to k [29, Section 5.1.1]. Moreover, the number of cosets is O(nk),
as again the number of cosets equals the cardinality of the orbit of α. In other words, we have just proven
the following proposition.

Proposition 4. Let G ≤ Sn a permutation group and let k ∈ [n] be a constant. Suppose that each αi in
Algorithm 1 satisfies

αi = (α
(1)
i , . . . , α

(k)
i , 0, . . . , 0),

α
(ℓ)
i 6= α

(m)
i for ℓ 6= m in [k], and α

(ℓ)
i 6= 0 for i ∈ [k]. Then the associated GDD for G can be computed in

time O(nO(k)).
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4.1 Geometric Properties of Generalized Dirichlet Domains

In this section we study two important geometric properties of fundamental domains: subgroup consistency
and exactness. To this end, first we show how can a canonical representation for generalized Dirichlet domains
be defined via a partition of G into layers. Then, we use this representation for GDDs to show that they are
subgroup consistent. Moreover, we show that they are not necessarily exact.

Subgroup consistency. Let F =
⋂m

i=1 Fi be the output of Algorithm 1, where m ∈ [n] denotes the smallest
index such that Gm = 〈id〉, and

Fi = {x ∈ Rn : αt
ix ≥ αt

ihx ∀h ∈ Ri}

where Ri = Ti ∪ T−1
i , with Ti a transversal for Gi in Gi−1 and G0 := G. We will define a partition of G

and a representation of F using the nested coset decompositions produced by Algorithm 1. Notice that in
the i-th iteration of our GDD algorithm a coset decomposition is computed using the subgroup Gi. In other
words, Gi−1 is partitioned into cosets as

Gi−1 =
⋃

g∈Ti

gGi

Now, fix i ∈ [m]. We say that g ∈ G\{id} belongs to the i-th layer Li of G induced by {αi}mi=1 if g ∈ Gi−1\Gi.
Since Gj−1 ≥ Gj for all j ∈ [m], g belongs to Li if and only if i smallest index such that g ∈ Gi. Therefore,
letting id ∈ Lm, we have that {Li}mi=1 is a partition of G as every g belongs to a unique Lj .

Now we are ready to define a GDD representation of F . First, note that Ti \ {id} ⊆ Li since by definition
Ti ⊆ Gi−1 and Ti \ {id} ∩ Gi = ∅. The latter implies that T−1

i \ {id} ⊆ Li, hence Ri \ {id} ⊆ Li. Now, let
g ∈ G \ {id}. Then g ∈ Lj for some j ∈ [m]. Since g /∈ Gj , then so does g−1, and it belongs to some coset
rGj , where r ∈ Tj . Since g−1αj = rαj , then

αt
jgx = (g−1αj)

tx = (rαj)
tx = αt

jr
−1x.

Since r−1 induces the same Dirichlet type inequality as g we say that g is associated to r−1. Therefore, any
g ∈ G can be associated to some h ∈ Rj in some layer Lj of G, i.e., we can define

Hg := {x ∈ Rn : αt
jx ≥ αt

jhx},

and say that {Hg}g∈G is a GDD representation of F induced by {αi}
m
i=1.

Proposition 5. Generalized Dirichlet domains are subgroup consistent.

Proof. Let {Hg}g∈G be the GDD representation of F induced {αi}mi=1 obtained via Algorithm 1. Let G′ be
any subgroup of G. We show that F ′ :=

⋂
g∈G′ Hg is a fundamental domain for G′.

Clearly F ′ is closed and convex. Let us prove that for all x ∈ Rn, there exists some g ∈ G′ such that
gx ∈ F ′. Suppose that x /∈ F ′ and let i1 ∈ [m] denote the first layer such that αt

i1
x < αt

i1
gx for some

g ∈ Li1 ∩ G′. Let hi1 ∈ argmax {αt
i1gx : g ∈ Li1 ∩ G′}. Notice that αt

jx = αt
jhi1x for all j < i1 since

hi1 ∈ Gj for j < i1, and then

hi1x ∈
⋂

i∈[i1]:
g∈Li∩G′

Hg.

If x̃ := hi1x /∈ F ′, we can replicate the argument on the first layer i2 > i1 such that x̃ /∈ Hg̃ where g̃ ∈ Li2∩G
′.

Inductively we obtain an element h := hiℓhiℓ−1
· · ·hi1 ∈ G′ such that hx ∈ F ′.

Now, we prove that int(F ′)∩g int(F ′) = ∅ for any non-trivial g ∈ G′. It suffices to show that if x ∈ int(F ′)
then gx /∈ F ′. Indeed, since x ∈ int(F ′), we have that

αt
ix > αt

irx for all i ∈ [m] and r ∈ Li ∩G′

⇐⇒ αt
ix > αt

ihx for all i ∈ [m] and h ∈ Ri associated to some r ∈ G′.
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Suppose g belongs to layer Lj and it is associated to some h ∈ Hj . Therefore, α
t
jgx = αt

jh and

αt
jgx < αt

jx = αt
jg

−1(gx)

where g−1 ∈ Lj ∩G′, i.e., gx /∈ F ′. ⊓⊔

Exactness. Recall that a fundamental domain is exact if every facet S of F is of the form S = F ∩ gF for
some g ∈ G. Dirichlet domains are exact [24, Theorem 6.7.4] though generalized Dirichlet domains may not
be exact. This means that for some iteration i of Algorithm 1 there exists some h ∈ Ri such that F ∩H=

h is
a facet of F and it satisfies:

relint(F ∩H=
h ) ∩ hF 6= ∅ and relint(F ∩H=

h ) ∩ gF 6= ∅

for some g 6= h. The following examples show non-exact GDDs. The first one is an example for a permutation
group in R4. The second one is a more geometrical example in R3.

Example 1. Let g := (1 2 3 4) and consider G := 〈g〉. We construct a GDD for G with α1 := (1, 0, 1, 0) and
α2 := (1, 0, 0, 0).

Indeed, if we first choose α1, its stabilizer is Gα1
= {id, g2}, and a Gα1

-transversal is H1 = {id, g}. Hence,

F1 = {x ∈ R4 : x1 + x3 ≥ x2 + x4}.

Next, the only subgroup of Gα1
that stabilizes α2 is 〈id〉, hence

F2 = {x ∈ R4 : x1 ≥ x3}.

The resulting GDD for G is

F := F1 ∩ F2 = {x ∈ R4 : x1 + x3 ≥ x2 + x4, x1 ≥ x3}.

Now, we exhibit two points that certify the non-exactness of F . Consider x = (2, 2, 1, 1) and x̃ = (2, 1, 1, 2).
Clearly both points belong to the facet F ∩H=

g , and since none of them satisfy x1 = x3 they belong to the
relative interior of F ∩H=

g . Moreover, as g−1x = (2, 1, 1, 2) ∈ F ⇐⇒ x ∈ gF and gx̃ = (2, 2, 1, 1) ∈ F ⇐⇒
x̃ ∈ g−1F , then the relative interior of a facet of F intersects gF and g−1F . Therefore F is not exact. △

Example 2. Let us consider the three-dimensional space R3, and let g be the isometry that consists of a
rotation by 90 degrees around the x3-axis, followed by a reflection with respect to the plane span(e1, e2).
The matrix associated to g is 


0 −1 0
1 0 0
0 0 −1


 .

The group G = 〈g〉 =
{
id, g, g2, g3

}
comprises four different elements. By taking α1 = (0, 0, 1), and α2 =

(0, 1, 0) when running Algorithm 1, where Gα1
= {id, g2}, we obtain the following GDD

F =
{
x ∈ R3 : x2 ≥ 0, x3 ≥ 0

}
.

Then, we have

gF =
{
x ∈ R3 : x1 ≤ 0, x3 ≤ 0

}
,

g2F =
{
x ∈ R3 : x2 ≤ 0, x3 ≥ 0

}
,

g3F =
{
x ∈ R3 : x1 ≥ 0, x3 ≤ 0

}
.

It is easy to see that this tessellation is not exact, see Figure 1. △
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x1

x2

x3

Fig. 1. The situation of Example 2, restricted to a cube. F is the red domain, gF the blue one, g2F the green one,
and g3F the cyan one.

4.2 The Lex-Max Fundamental Domain

In this section, we study a natural idea for breaking symmetries: in any orbit, choose the vector that is
lexicographically maximal. We relate this idea to our generalized Dirichlet domain construction.

Let ≻ denote a lexicographic order on Rn, that is for any pair x, y ∈ Rn we say that y ≻ x if there exists
j ∈ [n] such that yj > xj and yi = xi for all i < j. Therefore � defines a total order on Rn, where, y � x if
and only if y ≻ x or y = x. Given a group G ≤ Sn acting on Rn, we define

LexG := {x ∈ Rn : x � gx, ∀g ∈ G}.

In what follows we show an alternative characterization of the set of lexicographically maximal points
using k-fundamental domains. Recall that a k-fundamental domains is a Dirichlet domain Fk where k =
(kn−1, kn−2, . . . , k, 1) for some integer k ≥ 2.

Lemma 4. Let n ∈ N and x, y ∈ Rn. If x ≻ y, then there exists N ∈ N such that for every integer k > N it

holds that k
t
x > k

t
y.

Proof. Suppose x ≻ y. This implies that x1 > y1 or there exists i ∈ [n] \ {1} such that xi > yi and xj = yj
for all j ∈ [i − 1]. Let c := xi − yi > 0 such that i is the smallest i ∈ [n] for which xi − yi > 0, and let
m := max{|yj − xj | : j ∈ [n]}. Note that if i = n our claim is trivially true since for any k ∈ N we have that

k
t
x − k

t
y = xn − yn > 0. If i = n − 1 we have k

t
x − k

t
y = kc + (xn − yn), hence there exists N ∈ N such

that kc+ (xn − yn) > 0 for all k ≥ N . Now, suppose i ∈ [n− 2]. Then, for k ∈ N,

k
t
x− k

t
y = kn−ic− kn−i−1(yi+1 − xi+1) · · · − k(yn−1 − xn−1)− (yn − xn)

≥ kn−ic−m

n−i−1∑

j=0

kj = kn−ic−m

(
kn−i − 1

k − 1

)
.

Now, note that limk→∞

[
kn−ic−m

(
kn−i−1
k−1

)]
= +∞, because the sign of the leading coefficient of this

rational function is positive and the degree of the numerator is greater than that of the denominator. Hence,

there exists N such that kn−ic−m
(

kn−i−1
k−1

)
> 0 for all k > N .

With the help of the previous lemma, we provide an alternative characterization of LexG. Recall that a
fundamental set is a set that contains exactly one representative for each G-orbit.

Lemma 5. Let G ≤ Sn. Then LexG is a convex fundamental set and

LexG =
∞⋃

i=1

∞⋂

k=i

Fk = lim inf
k→∞

Fk.
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Proof. Let x ∈
⋃∞

i=1

⋂∞
k=i Fk, i.e. there exists N ∈ N such that x ∈ Fk for every integer k ≥ N , and suppose

on the contrary that x /∈ LexG. This implies that there exists a non-trivial g ∈ G such that gx ≻ x. By

Lemma 4 there exists N ′ ∈ N, such that for every integer k ≥ N ′, we have that k
t
gx > k

t
x. But this is

absurd because x ∈ Fk for k ≥ max{N,N ′}. The other inclusion is analogously derived from Lemma 4.

Furthermore, observe that
(⋂∞

k=i Fk

)∞
i=1

is a non-decreasing nested sequence of convex sets, which implies
that LexG is also convex. Finally, since the pair (Rn,�) is a total order, then LexG must be a fundamental
set for G ≤ Sn. ⊓⊔

We now show that LexG, the (topological) closure of LexG, is a fundamental domain for any G ≤ Sn.

Theorem 4. For any G ≤ Sn, the closure of LexG is a fundamental domain.

Proof. Let G ≤ Sn. We want to show that the non-empty closed set LexG ⊆ Rn satisfies:

(i)
⋃

g∈G gLexG = Rn,

(ii) g int(LexG)
⋂

int(LexG) = ∅, ∀g ∈ G \ {id}.

Notice that (i) follows directly as
⋃

g∈G gLexG = Rn since LexG is a fundamental set.

For (ii), note that int(LexG) = int(LexG) because LexG is a convex set by Lemma 5. So it suffices to
prove g int(LexG) ∩ int(LexG) = ∅ for every non-trivial g ∈ G. Suppose on the contrary that there exists a
non-trivial g ∈ G such that x ∈ g(int(LexG)) ∩ int(LexG). Hence, x and g−1x belong to int(LexG) ⊆ LexG.
This is clearly absurd as � is a total order. ⊓⊔

A Characterization of LexG using the Schreier-Sims Table In what follows, we provide a char-
acterization of LexG, which in particular allows to compute its facets efficiently. Indeed, we show that its
description coincides with the Schreier-Sims inequalities for G ≤ Sn [27] (where computational results can
be found).

The Schreier-Sims table is a representation of a permutation groupG ≤ Sn. The construction is as follows.
Consider the chain of nested pointwise stabilizers defined as: G0 := G and Gi := {g ∈ Gi−1 : g(i) = i} for
each i ∈ [n]. Note that the chain is not necessarily strictly decreasing (properly), and we always have that
Gn−1 = {id}. For a given i ∈ [n] and j ∈ OrbGi−1(i), let hi,j be any permutation in Gi−1 which maps i to
j. Hence, Ui := {hi,j : j ∈ OrbGi−1(i)} is a transversal for the cosets of Gi in Gi−1.

We arrange the permutations in the sets Ui, for i ∈ [n], in an n × n table T where Ti,j = hi,j if
j ∈ OrbGi−1(i) and Ti,j = ∅ otherwise.

The most interesting property of this construction is that each g ∈ G can be uniquely written as g =
g1g2 · · · gn with gi ∈ Ui, for i ∈ [n]. Therefore, the permutations in the table form a set of generators of G
which is called a strong generating set (SGS) for G [29].

The Schreier-Sims polyhedron, denoted by SSG, is the polyhedron given by the inequalities xi ≥ xj for
all Ti,j 6= ∅. Theorem 5 states that LexG = SSG. A crucial observation to prove this is that for any vector
x ∈ Rn, x is in the closure of LexG if and only if x can be perturbed into the interior of LexG, where the
perturbed vector is lexicographically maximal in its orbit.

The following lemma characterizes the boundary of LexG in terms of a special perturbation which we
call “tie-breaker” perturbation, because it breaks all possible ties between the vector’s entries. We will use
this lemma to prove that the facets of LexG are in fact Schreier-Sims inequalities.

Lemma 6. Let G ≤ Sn, x ∈ Rn, and 0 < ǫ < M , where

M :=

{
1 if xi = xj , ∀i, j ∈ [n],
min{|xi − xj | > 0 : i, j ∈ [n]} otherwise.

(2)

We define the ǫ-tie-breaker perturbation for x as

xǫ
i := xi −

iǫ

n2
for i ∈ [n].

Then x is in LexG if and only if for any 0 < ǫ < M , xǫ belongs to LexG.
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Proof. Let x ∈ Rn and M be defined as above and suppose that xǫ ∈ LexG for all 0 < ǫ < M . Since
lim
ε→0

xǫ = x then x ∈ LexG.

For the converse, suppose x ∈ Rn and let 0 < ǫ < M , with M defined as in (2). Notice that in xε ties in
x are broken without changing the relative order of its coordinates, that is, if xi < xj then xǫ

i < xǫ
j . Also,

xǫ
i 6= xǫ

j for i 6= j. Suppose that xǫ is not in LexG. We want to show that x does not belong to LexG. If
xǫ /∈ LexG, there exists a non-trivial g ∈ G such that gxǫ ≻ xǫ. Let us characterize this g. Let i ∈ [n] denote
the (largest) length of the prefix that g fixes in xǫ, i.e., (gxǫ)j = xǫ

j for j ≤ i and (gxǫ)i+1 6= xǫ
i+1. Hence, as

the coordinates of xǫ are pairwise different, g belongs to the subgroup ofG that fixes indices 1, . . . , i pointwise,
i.e. g ∈ G([i]). Then because g improves xǫ lexicographically and g fixes every j ≤ i, the improvement should
occur from entry i + 1 onwards. Hence, as gxǫ ≻ xǫ, it must hold that (gxǫ)i+1 = xǫ

g−1(i+1) > xǫ
i+1 and

g−1(i+ 1) > i+ 1.
By construction of our ǫ perturbation, it must also hold that xg−1(i+1) > xi+1. Indeed, it cannot hold

that xg−1(i+1) = xi+1, since the perturbation is increasing in the vector’s indices and g−1(i + 1) > i + 1.
Neither it can happen that xg−1(i+1) < xi+1 since this implies that xǫ

g−1(i+1) < xǫ
i+1. In consequence, it

holds that gx ≻ x and hence x 6∈ LexG. Moreover, the ball BM/2(x) ⊆ LexcG, as g fixes the indices 1, . . . , i
pointwise and exchanges xi+1 for a strictly greater entry xg−1(i+1) in x, where g−1(i+ 1) > i+ 1. ⊓⊔

Now we are ready to show a characterization of LexG by an explicit set of inequalities.

Theorem 5. Let G ≤ Sn. Then LexG = SSG.

Proof. Suppose on the contrary that x /∈ SSG but x ∈ LexG, i.e., x
ǫ ∈ LexG for all 0 < ǫ < M by Lemma 6.

As x /∈ SSG, there exists a minimal i ∈ [n] and j ∈ OrbGi−1
(i), such that xi < xj where i < j, and thus

xǫ
i < xǫ

j . Then, there exists g ∈ Gi−1 such that gxǫ ≻ xǫ which is a contradiction.
For the converse, suppose x ∈ SSG. If for each index-orbit Orb ⊆ [n], all the components of x indexed

by Orb are different, then x ∈ LexG since for any pair (i, j) such that i ∈ [n], j ∈ OrbGi−1
(i), and i < j,

the corresponding Schreier-Sims inequality is strict, i.e. xi > xj . If not, for every coordinate-tie within an
orbit apply the tie-breaker perturbation. Therefore, the perturbed vector belongs to LexG, i.e., x ∈ LexG by
Lemma 6. ⊓⊔

The next result exhibits the generality of our GDD method for constructing fundamental domains. It
shows that by choosing αi as the canonical basis vectors in our GDD construction the algorithm outputs
SSG. We note that this also gives an alternative proof to Theorem 4.

Proposition 6. For any group G ≤ Sn the set SSG is a GDD.

Proof. We show that SSG can be obtained from Algorithm 1 by choosing αi equal to the canonical vectors.
We begin the procedure with α1 := e1, then G1, in Line 4 of Algorithm 1, corresponds to the pointwise
stabilizer of the index 1 ∈ [n]. Hence, if in iteration i ∈ [n] we choose αi := ei, then the subgroup Gi which
stabilizes α1, . . . , αi is equal to G([i−1]). After at most n iterations we have that F = SSG. ⊓⊔

As the Schreier-Sims table has O(n2) many entries, the number of facets of the Schreier-Sims fundamental
domain is at most O(n2). In what follows we show a tighter bound of O(n). To this end, we notice that
several of the added inequalities are redundant.

Theorem 6. Let us consider a group G ≤ Sn and let f denote the number of G-orbits in [n]. Then SSG is
a polyhedron with at most n− f facets.

Proof. Let D = ([n], E) be a directed graph defined as follows. For each i ∈ [n] we have that (i, j) ∈ E for
each j ∈ OrbGi−1(i). By construction, D is a topological sort, and hence it is a directed acyclic graph (DAG).

Claim: Let j ∈ [n]. If (i, j), (k, j) ∈ E then either (i, k) ∈ E or (k, i) ∈ E.

Indeed, without loss of generality, let us assume that i < k. As (i, j) ∈ E then j ∈ OrbGi−1(i). Similarly,
it holds that j ∈ OrbGk−1(k) ⊆ OrbGi−1(k). Therefore, by transivity, k ∈ OrbGi−1(i), and hence (i, k) ∈ E.
This shows the claim.

14



Let D̃ = ([n], Ẽ) be the minimum equivalent graph of D, that is, a subgraph with a minimum number of
edges that preserves the reachability of D. Hence, there exists a (u, v)-dipath in D if and only if there exist
a (u, v)-dipath in D̃. Notice that

SSG = {x : xi ≥ xj for all (i, j) ∈ E}.

We define
S̃SG = {x : xi ≥ xj for all (i, j) ∈ Ẽ},

then SSG = S̃SG. Clearly we have that SSG ⊆ S̃SG. On the other hand, if xi ≥ xj is an inequality of SSG,

then there exists an (i, j)-dipath in S̃SG and hence xi ≥ xi1 ≥ xi2 ≥ . . . xik ≥ xj is a valid set of inequalities

for S̃SG, for certain nodes i1, . . . , ik. We conclude that SSG = S̃SG.
No we argue that D̃ is a collection of at least f out-trees. Indeed, lets assume by contradiction that for

j ∈ [n] there exists two distinct nodes i, k such that (i, j), (k, j) ∈ Ẽ. By our previous claim, k is reachable
from i in D (or analogously i is reachable from k), and hence the same is true in D̃. This is a contradiction
as the edge (i, j) could be removed from D̃ preserving the reachability. As D̃ is a DAG, then D̃ must be
a collection of node-disjoint out-trees. Finally, note that the smallest element in each orbit of G in [n] has
in-degree 0 in D, and hence also in D̃. Therefore D̃ has at least f different trees, which implies that D̃ has
at most n− f edges. ⊓⊔

This means that every permutation group admits a fundamental domain with at most n− 1 facets. We
complement this theorem by the following observation.

Proposition 7. Any fundamental domain for Sn has n− 1 facets.

Proof. Since Sn is generated by the transpositions (i j) for all i 6= j ∈ [n] which correspond to reflections
with reflection axis xi = xj , we conclude that Sn is a reflection group. Moreover, since fundamental domains
for reflection groups are unique (up to actions of the group), see Coxeter [6, pp. 79 – 81], any fundamental
domain for Sn is equivalent to the Schreier-Sims fundamental domain for Sn. This symmetry breaking set
has n− 1 facets and can be described by the inequalities xi ≥ xi+1 for every i ∈ [n− 1]. ⊓⊔

5 Overrepresentation of Orbit Representatives

A desirable property of symmetry breaking polyhedra is that they select a unique representative per G-orbit.
In general, the definition of fundamental domains only guarantees this for vectors in their interior. Recall
that a subset R of Rn which contains exactly one point from each G-orbit is called a fundamental set. The
following result shows that closed convex fundamental sets are only attained by reflection groups. In other
words, the only groups that admit fundamental domain containing unique representatives for every orbit are
reflection groups.

Theorem 7. Let G ≤ On(R) finite. Then G admits a fundamental domain F with |F ∩ O| = 1 for every
G-orbit O ⊆ Rn if and only if G is a reflection group.

Proof. Suppose G admits a closed convex fundamental set F ⊆ Rn, i.e. F is a fundamental domain and for
every x ∈ Rn we have that

OrbG(x) ∩ F = {gx},

for some g ∈ G. By Proposition 2 we know that F is a polyhedral cone and we can write it as

F =
⋂

g∈A

Hg,

where A is a generating set for G. We want to show that A is a set of reflections.
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Let g be a non-trivial element of A and consider its associated half-space Hg. We know that H=
g is a

supporting hyperplane for F , and F ∩ gF has dimension n− 1. Suppose x is an arbitrary vector in F ∩ gF .
Then g−1x ∈ F , and hence gx = x because F contains a unique representative of x. Now consider the span
of F ∩ gF and let ĝ denote the restriction of the orthogonal transformation g to this linear subspace. As ĝ
fixes every point in the relative interior of F ∩ gF , which is n− 1 dimensional, we have that ĝ acts trivially
in span(F ∩gF ) = H=

g . Since g is a non-trivial isometry, every vector y ∈ (H=
g )⊥ must satisfy that gy = −y.

We conclude that g is a reflection with respect to the hyperplane H=
g . For the converse implication, see

Coxeter [6, pp. 79 – 81] and notice that his construction gives an exact fundamental domain as its facets are
defined by reflections. ⊓⊔

As a corollary we can characterize when the fundamental set LexG is closed. Alternatively, this character-
izes when SSG contains a unique representative for every orbit. Equivalently, this characterizes the groups for
which the fundamental set LexG is closed. Our proof utilizes the next lemma which provides an orthogonal
decomposition of LexG when G is a direct product.

Lemma 7. Consider G ≤ Sn. Assume that O1, O2 is a partition of [n], and Gi ≤ SOi for i ∈ {1, 2}. If
G = G1 ×G2, then LexG = LexG1

× LexG2
.

Proof. For x ∈ Rn and S ⊆ [n], let us denote by xS the vector x restricted to the coordinates in S. Let us
also denote xOi ≻i yOi if xOi is lexicographically larger than yOi (without altering the order of elements
in Oi). Also, for (g1, g2) ∈ G1×G2, we denote by x → (g1, g2)x the action where g1 permutes the coordinates
in O1 and g2 permutes the coordinates in O2.

We must show that the following are equivalent:

(i) x � gx for all g ∈ G1 ×G2.
(ii) xOi �i gixOi for i ∈ {1, 2} for every (g1, g2) ∈ G1 ×G2.

Clearly, (ii) is equivalent to x � (g1, id)x and x � (id, g2)x for every (g1, g2) ∈ G1 ×G2. This last condition
is necessary for (i). To see that is also sufficient, assume that x ≺ (g1, g2)x for some (g1, g2) ∈ G1 ×G2. Let i
be the first coordinate where xi < ((g1, g2)x)i. Let us assume that i ∈ O1 (the case i ∈ O2 is analogous), and
hence xj = (g1xO1

)j for all j < i such that j ∈ O1. This implies that xO1
≺1 g1xO1

. The lemma follows. ⊓⊔

Corollary 2. Let G ≤ Sn. Suppose that G partitions [n] into a collection of orbits O1, . . . , Om ⊆ [n],
m ∈ [n]. Then LexG is closed if and only if

G = S|O1| × · · · × S|Om|.

Proof. Suppose that G ≤ Sn is transitive. Given that the only transitive reflection group of Sn is Sn itself,
Theorem 7 implies that if G is a proper transitive group of Sn then G does not admit a closed convex
fundamental set. Hence LexG cannot be closed since LexG is a convex fundamental set for any G ≤ Sn.

Suppose G is not transitive on [n]. Then the if part is straightforward by Lemma 7 and Theorem 7. For
the converse, without loss of generality assume that G is a subgroup of S|O1| × · · · × S|Om| and that the
orbits are reordered (relabeled) as {1, . . . , n1}, {n1 + 1, . . . , n2}, . . . , {nm−1 + 1, . . . , n}, where |O1| = n1,
|O2| = n2 − n1, . . . , |Om−1| = nm−1 − nm−2, |Om| = n−nm−1. We perform this reordering without changing
the order of the variables in the lexicographic order, so that LexG is maintained.

Now, suppose that LexG is closed, i.e. G is a group generated by reflections, and that G ≤ S|O1| × · · · ×
S|Om|. Note that if g ∈ G is a reflection, then it must be a transposition (i j) for some i, j ∈ [n]. Indeed,
consider the decomposition of g into disjoint cycles {c1, . . . , cL}, i.e. g = c1 · · · cL, and note that the invariant
subspace of any cycle cl is given by the equalities xi = xj for all i, j moved by cl. Since the invariant subspace
of g is n−1, then g must be equal to a single transposition (i j). Therefore, G is generated by transpositions,
and since it acts transitively on each G-orbit Ok, then the action of G restricted to Ok is isomorphic to
S|Ok|. Moreover, the direct product follows after noting that every g is a product of cycles of order 2, hence
S|Ok| ⊆ G for every k ∈ [m]. ⊓⊔

16



In integer programming problems, we are concerned about the number of representatives of binary orbits
in a fundamental domain. The Schreier-Sims domain can be weak in this regard, as shown in the following
example.

Example 3. Let n ∈ N be divisible by 3, and consider the direct product

G := C1 × C2 × · · · × Cn/3,

where Ci for i ∈ [n/3] is the cyclic group on the triplet

(3(i − 1) + 1, 3(i− 1) + 2, 3(i− 1) + 3).

Consider the binary vector x := (1, 1, 0, 1, 1, 0, . . . , 1, 1, 0). For each vector in the G-orbit of x, there are three
possible values for each triplet:

1, 1, 0 or 0, 1, 1 or 1, 0, 1.

Therefore, the orbit of x has cardinality 3n/3. The fundamental domain SSG for G can be described as follows

SSG = {x ∈ Rn : x3(i−1)+1 ≥ x3(i−1)+2 and x3(i−1)+1 ≥ x3(i−1)+3, ∀i ∈ [n/3]}.

It is clear that each vector in SSG ∩OrbG(x) admits two options for its index triplets: 1, 1, 0 and 1, 0, 1. As
a result | SSG ∩OrbG(x)| = 2n/3. △

We propose a definition for a theoretical classification of symmetry breaking systems inspired by our find-
ings, and we consider two attributes to rank symmetry breaking systems: the complexity of their separation,
and their symmetry breaking power, i.e. their effectiveness to cut isomorphic points. These two properties
seem to be a longstanding trade-off in mathematical programming with respect to symmetry breaking sys-
tems [20,14], and this trade-off has also been recognized in constraint satisfaction problems [25]. In the latter,
it is challenging to identify a symmetry breaking system which is both effective, in the sense that it rules
out a large portion of the search space, and compact, which means that the symmetry breaking inequalities
can be checked in a reasonable amount of time [31,7].

Let X be a G-invariant subset of Rn (e.g. X = {0, 1}n). Let O(G,X) be the set of all G-orbits in X .
Motivated by our previous discussion, we define, for a fixed G, the worst-case effectiveness of F on X as

ΛG,X(F ) := max
O∈O(G,X)

|F ∩O|.

Now, we use our GDD algorithm to obtain a suitable fundamental domain in Example 3 with ΛG,{0,1}n(F ) = 1

while ΛG,{0,1}n(SSG) = 2Ω(n).

Example 3 (continued). We construct a GDD F with ΛG,{0,1}n(F ) = 1. First, note that G has n/3 orbits in
[n] given by:

∆i := {3(i− 1) + 1, 3(i− 1) + 2, 3(i− 1) + 3}

for i ∈ [n/3]. Therefore the following vectors, and their associated stabilizers, construct a generalized Dirichlet
domain

α1 = (4, 2, 1, 0, 0, 0, 0, . . . , 0), Gα1
= (C3)

n/3−1

α2 = (0, 0, 0, 4, 2, 1, 0, . . . , 0), Gα2
= (C3)

n/3−2

...

αn/3 = (0, 0, 0, 0, . . . , 0, 4, 2, 1), Gαn/3
= 〈id〉.

such that OrbG(x) ∩ F = {x} for any x ∈ {0, 1}n. The number of cosets in each iteration is 3. Omitting the
trivial coset, the number of inequalities that defines our GDD is 2 · (n/3). △
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6 Future Work

Our work leaves several major questions.

Q1: Does our GDD construction exhaust all possible fundamental domains for a group of isometries, or are
there other fundamental domains that are not GDDs?

Any light on this question can help creating new fundamental domains with potential practical relevance,
or help us show impossibility results. This can also have consequences regarding our long term goal: under-
standing the tension (potentially trade-off) between the symmetry breaking effectiveness of a polyhedron
and its complexity. A closely related question is whether we need the hypothesis of being subgroup consistent
in Theorem 1. If the answer to Q1 is positive, we would immediately conclude that Theorem 1 holds without
assuming that the fundamental domain is subgroup consistent.

Q2: Does every group of isometries admit a fundamental domain with a single representative of each binary
orbit, and with a polynomial number of facets?

It is not hard to imagine other interesting variants of this question. For example, we could be interested
either in the extension complexity or complexity of the separation problem, instead of the number of facets.
At the moment, the only information we have is that blindly choosing lexicographically maximal binary
vectors as representatives should not help, as finding them is NP-hard [4]. It is worth noticing that an
answer to Q1 might help answering Q2, either positively or negatively. Alternatively, the relation between
ΛG,X(F ) and the number of facets of a fundamental domain F is of interest, for example for X = {0, 1}n.
On the other hand, we know that only reflection groups admit fundamental domains with ΛG,Rn(F ) = 1.
Characterizing, for example, the class of groups that allows for ΛG,Rn(F ) = O(1) might also give us a better
understanding on the limitations of symmetry breaking polyhedra.
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