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Abstract

Birkhoff’s representation theorem [12] defines a bijection between elements of a distribu-

tive lattice and the family of upper sets of an associated poset. Although not used explicitly,

this result is at the backbone of the combinatorial algorithm by Irving et al. [24] for maximiz-

ing a linear function over the set of stable matchings in Gale and Shapley’s stable marriage

model [19]. In this paper, we introduce a property of distributive lattices, which we term as

affine representability, and show its role in efficiently solving linear optimization problems over

the elements of a distributive lattice, as well as describing the convex hull of the character-

istic vectors of lattice elements. We apply this concept to the stable matching model with

path-independent quota-filling choice functions, thus giving efficient algorithms and a compact

polyhedral description for this model. To the best of our knowledge, this model generalizes

all models from the literature for which similar results were known, and our paper is the first

that proposes efficient algorithms for stable matchings with choice functions, beyond classical

extensions of the Deferred Acceptance algorithm.

Keywords: Stable Matching; Choice Function; Distributive Lattice; Birkhoff’s Representation Theorem;

Extended Formulation
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1 Introduction

Since Gale and Shapley’s seminal publication [19], the concept of stability in matching markets has been

widely studied by the optimization community. With minor modifications, the one-to-many version of Gale

and Shapley’s original stable marriage model is currently employed in the National Resident Matching

Program [33], which assigns medical residents to hospitals in the US, and for assigning eighth-graders to

public high schools in many major cities in the US [1].

In this paper, matching markets have two sides, which we call firms F and workers W . In the marriage

model, every agent from F ∪ W has a strict preference list that ranks agents in the opposite side of the

market. The problem asks for a stable matching, which is a matching where no pair of agents prefer each

other to their assigned partners. A stable matching can be found efficiently via the Deferred Acceptance

(DA) algorithm [19]. Although successful, the marriage model does not capture features that have become

of crucial importance both inside and outside academia. For instance, there is growing attention to models

that can increase diversity in school cohorts [31, 40]. Such constraints cannot be represented in the original

model, or its one-to-many or many-to-many generalizations, since admission decisions with diversity concerns

cannot be captured by a strict preference list.

To model these and other markets, instead of ranking individual potential partners, each agent a ∈ F ∪W

is endowed with a choice function Ca that picks a team she prefers the best from a given set of potential

partners. See, e.g., [17, 8, 25] for more applications of models with choice functions. Models with choice

functions were first studied in [34, 26] (see Section 1.2). Mutatis mutandis, one can define a concept of

stability in this model as well (for this and the other technical definition mentioned below, see Section 2).

Two classical assumptions on choices functions are substitutability and consistency, under which the existence

of stable matchings is guaranteed [22, 7]. Clearly, existence results are not enough for applications (and for

optimizers). Interestingly, little is known about efficient algorithms in models with choice functions. Only

extensions of the classical Deferred Acceptance algorithm for finding the one-side optimal matching have

been studied for this model [34, 14].

The goal of this paper is to study algorithms for optimizing a linear function w over the set of stable

matchings in models with choice functions, where w is defined over firm-worker pairs. Such questions are

classical in combinatorial optimization, see, e.g., [38] (and [28] for problems on matching markets). We focus

on two models. The first model (CM-Model) assumes that all choice functions are substitutable, consistent,

and cardinal monotone. The second model (CM-QF-Model) additional assumes that for one side of the

market, choice functions are also quota-filling. Both models generalize all classical models where agents have

strict preference lists, on which results for the question above were known. For these models, Alkan [5] has

shown that stable matchings form a distributive lattice. As we argue next, this is a fundamental property

that allows us to solve our optimization problem efficiently.

1.1 Our contributions and techniques

We give here a high-level description of our approach and results. For the standard notions of posets,

distributive lattices, and related definitions see Section 2.1. All sets considered in this paper are finite.

Let L = (X ,�) be a distributive lattice, where the elements of X are distinct subsets of a base set E

and � is a partial order on X . We refer to S ∈ X as an element (of the lattice). Birkhoff’s theorem [12]

implies that we can associate1 to L a poset B = (Y,�⋆) such that there is a bijection ψ : X → U(B), where

1The result proved by Birkhoff is actually a bijection between the families of lattices and posets, but in this paper
we shall not need it in full generality.
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U(B) is the family of upper sets of B. U ⊆ Y is an upper set of B if y ∈ U and y′ �⋆ y for some y′ ∈ Y

implies y′ ∈ U . We say therefore that B is a representation poset for L with the representation function ψ.

See Example 1.2 below. B may contain much fewer elements than the lattice L it represents, thus giving a

possibly “compact” description of L.

The representation poset B and the representation function ψ are univocally defined per Birkhoff’s

theorem. Moreover, the representation function ψ satisfies that for S, S′ ∈ X , S � S′ if and only if

ψ(S) ⊆ ψ(S′). Although B explains how elements of X are related to each other with respect to �, it does

not contain any information on which items from E are contained in each lattice element. We introduce

therefore Definition 1.1. For S ∈ X and U ∈ U(B), we write χS ∈ {0, 1}E and χU ∈ {0, 1}Y to denote their

characteristic vectors, respectively.

Definition 1.1. Let L = (X ,�) be a distributive lattice on a base set E and B = (Y,�⋆) be a representation

poset for L with representation function ψ. B is an affine representation of L if there exists an affine function

g : RY → RE such that g(χU ) = χψ
−1(U), for all U ∈ U(B). In this case, we also say that B affinely represents

L via function g and that L is affinely representable.

In Definition 1.1, we can always assume g(u) = Au + x0, where A ∈ {0,±1}E×Y and x0 is the charac-

teristic vector of the maximal element of L.

Example 1.2. Consider first the distributive lattice L = (X ,�) whose Hasse diagram is given in the

Figure 1a, with base set E = {1, 2, 3, 4}.

S1 = {1, 2}

S2 = {1, 3} S3 = {1, 2, 4}

S4 = {1, 3, 4}

(a) Lattice affinely representable

S1 = {1, 2}

S2 = {1, 3} S3 = {1, 3, 4}

S4 = {1, 2, 4}

(b) Lattice not affinely representable

Figure 1: Lattices for Example 1.2.

The representation poset B = (Y,�⋆) of L contains two non-comparable elements, y1 and y2. The

representation function ψ maps Si to Ui for i ∈ [4] with U1 = ∅, U2 = {y1}, U3 = {y2}, and U4 = {y1, y2}.

That is, U(B) = {U1, U2, U3, U4}. One can think of y1 as the operation of adding {3} and removing {2}, and

y2 as the operation of adding {4}. B affinely represents L via the function g(χU ) = AχU + χS1 where

A =




0 0

−1 0

1 0

0 1



, as

g(χU1)⊺ = (0, 0, 0, 0) + (1, 1, 0, 0) = (1, 1, 0, 0) = (χS1)⊺;

g(χU2)⊺ = (0,−1, 1, 0) + (1, 1, 0, 0) = (1, 0, 1, 0) = (χS2)⊺;

g(χU3)⊺ = (0, 0, 0, 1) + (1, 1, 0, 0) = (1, 1, 0, 1) = (χS3)⊺;

g(χU4)⊺ = (0,−1, 1, 1) + (1, 1, 0, 0) = (1, 0, 1, 1) = (χS4)⊺.

Next consider the distributive lattice L′ whose Hasse diagram is presented in Figure 1b. Note that

the same poset B represents L′ with the same representation function ψ. Nevertheless, L′ is not affinely

representable. If it is and such a function g(χU ) = AχU + χS1 exists, then since (χU1 + χU4)⊺ = (1, 1) =

2



(χU2 + χU3)⊺, we must have

χS1 + χS4 = (χS1 +AχU1) + (χS1 +AχU4) = (χS1 +AχU2) + (χS1 +AχU3) = χS2 + χS3 .

However, this is clearly not the case as (χS1 + χS4)⊺ = (2, 2, 0, 1) but (χS2 + χS3)⊺ = (2, 0, 2, 1). △

As we show next, affine representability allows one to efficiently solve linear optimization problems

over elements of a distributive lattice. In particular, it generalizes properties that are at the backbone of

algorithms for optimizing a linear function over the set of stable matchings in the marriage model and its

one-to-many and many-to-many generalizations (see, e.g., [24, 11]). For instance, in the marriage model,

the base set E is the set of potential pairs of agents from two sides of the market, X is the set of stable

matchings, and for S, S′ ∈ X , we have S � S′ if every firm prefers its partner in S to its partner in S′.

Elements of its representation poset are certain (trading) cycles, called rotations.

Lemma 1.3. Suppose we are given a poset B = (Y,�⋆) that affinely represents a lattice L = (X ,�) with

representation function ψ. Let w : E → R be a linear function over the base set E of L. Then the problem

max{w⊺χS : S ∈ X} can be solved in time min-cut(|Y | + 2), where min-cut(k) is the time complexity

required to solve a minimum cut problem with nonnegative weights in a digraph with k nodes.

Proof. Let g(u) = Au+ x0 be the affine function from the definition of affine representability. We have:

max
S∈X

w⊺χS = max
U∈U(B)

w⊺g(χU ) = max
U∈U(B)

w⊺(AχU + x0) = w⊺x0 + max
U∈U(B)

(w⊺A)χU .

Our problem boils down therefore to the optimization of a linear function over the upper sets of B. It is

well-known that the latter problem is equivalent to computing a minimum cut in a digraph with |Y | + 2

nodes [32]. �

We want to apply Lemma 1.3 to the CM-QF-Model model. Observe that a choice function may be

defined on all the (exponentially many) subsets of agents from the opposite side. We avoid this computational

concern by modeling choice functions via an oracle model. That is, choice functions can be thought of as

agents’ private information. The complexity of our algorithms will therefore be expressed in terms of |F |,

|W |, and the time required to compute the choice function Ca(X) of an agent a ∈ F ∪W , where the set X is

in the domain of Ca. The latter running time is denoted by oracle-call and we assume it to be independent

of a and X . Our first result is the following.

Theorem 1.4. The distributive lattice (S,�) of stable matchings in the CM-Model is affinely representable.

Its representation poset (Π,�⋆) has O(|F ||W |) elements. This representation poset, as well as its represen-

tation function ψ and affine function g(u) = Au + x0, can be computed in time O(|F |3|W |3oracle-call)

for the CM-QF-Model. Moreover, matrix A has full column rank.

In Theorem 1.4, we assumed that operations, such as comparing two sets and obtaining an entry from

the set difference of two sets, take constant time. If this is not the case, a factor mildly polynomial in

|F | · |W | needs to be added to the running time. Observe that Theorem 1.4 is the union of two statements.

First, the distributive lattice of stable matchings in the CM-Model is affinely representable. Second, this

representation and the corresponding functions ψ and g can be found efficiently for the CM-QF-Model.

Those two results are proved in Section 3 and Section 4, respectively. Combining Theorem 1.4, Lemma 1.3

and algorithms for min-cut (see, e.g., [38]), we obtain the following.
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Corollary 1.5. The problem of optimizing a linear function over the set of stable matchings in the CM-

QF-Model can be solved in time O(|F |3|W |3oracle-call).

As an interesting consequence of studying a distributive lattice via the poset that affinely represents it,

one immediately obtains a linear description of the convex hull of the characteristic vectors of elements of

the lattice (see Section 5). In contrast, most stable matching literature (see Section 1.2) has focused on

deducing linear descriptions for special cases of our model via ad-hoc proofs, independently of the lattice

structure.

Theorem 1.6. Let L = (X ,�) be a distributive lattice and B = (Y,�⋆) be a poset that affinely represents it

via function g(u) = Au+ x0. Then the extension complexity of conv(X ) := conv{χS : S ∈ X} is O(|Y |2). If

moreover A has full column rank, then conv(X ) has O(|Y |2) facets.

Theorem 1.4 and Theorem 1.6 imply the following description of the stable matching polytope conv(S),

i.e., the convex hull of the characteristic vectors of stable matchings.

Corollary 1.7. conv(S) has O(|F |2|W |2) facets in the CM-Model.

We next give an example of a lattice represented via a non-full-column rank matrix A.

Example 1.8. Consider the distributive lattice given in Figure 2a. It can be represented via the poset

B = (Y,�⋆) that contains three elements y1, y2, and y3 where y1 �⋆ y2 �⋆ y3. The upper sets of B

are U(B) = {∅, {y1}, {y1, y2}, {y1, y2, y3}}. In addition, B affinely represents L via the function g(χU ) =

AχU + χS1 , where A is given in Figure 2b. Matrix A clearly does not have full column rank. △

S1 = {1, 2}

S2 = {1, 3}

S3 = {1, 2, 4}

S4 = {1, 3, 4}

(a)

A =




0 0 0

−1 1 −1

1 −1 1

0 1 0




(b)

Figure 2: Affine representation with non-full-column-rank matrix A

Lastly, in Section 6, we discuss alternative ways to represent choice functions, dropping the oracle-model

assumption. Interestingly, we show that choice functions in the CM-Model (i.e., substitutable, consistent,

and cardinal monotone) do not have polynomial-size representation because the number of possible choice

functions in such a model is doubly-exponential in the size of acceptable partners.

1.2 Relationship with the literature

Gale and Shapley [19] introduced the one-to-one stable marriage (SM-Model) and the one-to-many stable

admission model (SA-Model), and presented an algorithm which finds a stable matching. McVitie and

Wilson [30] proposed the break-marriage procedure that allows us to find the full set of stable matchings.

Irving et al. [24] presented an efficient algorithm for the maximum-weighted stable matching problem with

4



weights over pairs of agents, utilizing the fact stable matchings form a distributive lattice [27] and that its

representation poset – an affine representation following our terminology – can be constructed efficiently

via the concept of rotations [23]. The above-mentioned structural and algorithm results were shown for its

many-to-many generalization (MM-Model) by Baïou and Balinski [9], and Bansal et al. [11]. A complete

survey of results on these models can be found, e.g., in [21, 28].

For models with substitutable and consistent choice functions, Roth [34] proved that stable matchings

always exist by generalizing the algorithm presented in [19]. Blair [13] proved that stable matchings form a

lattice, although not necessarily distributive. Alkan [4] showed that if choice functions are further assumed

to be quota-filling, the lattice is distributive. Results on (non-efficient) enumeration algorithms for certain

choice functions appeared in [29].

It is then natural to investigate whether algorithms from [11, 23] can be directly extended to construct

the representation poset in the CM-QF-Mode or the more general CM-Model. However, their definition

of rotation and techniques rely on the fact that there is a strict ordering of partners, which is not available

with choice functions. This, for instance, leads to the fact that the symmetric difference of two stable

matchings that are adjacent in the Hasse Diagram of the lattice is a simple cycle, which is not always true

in the CM-Model (see Example 3.9). We take then a more fundamental approach by showing a carefully

defined ring of sets is isomorphic to the set of stable matchings, and thus we can construct the rotation poset

following a maximal chain of the stable matching lattice. This approach conceptually follows the one by

Gusfield and Irving [21] for the SM-Model and leads to a generalization of the break-marriage procedure

from [30]. Again, proofs in [21, 30] heavily rely on the strict ordering of partners, while we need to tackle

the challenge of not having one.

Besides the combinatorial perspective, another line of research focuses on the polyhedral aspects. Linear

descriptions of the convex hull of the characteristic vectors of stable matchings are provided for the SM-

Model [41, 37, 36], the SA-Model [10], and the MM-Model [18]. In this paper, we provide a polyhedral

description for the CM-QF-Model, by drawing connections between the order polytope (i.e., the convex

hull of the characteristic vectors of upper sets of a poset) and Birkhoff’s representation theorem of distribu-

tive lattices. A similar approach has been proposed in [6]: their result can be seen as a specialization of

Theorem 1.4 to the SM-Model.

2 Basics

2.1 Posets, lattices, and distributivity

A set X endowed with a partial order relation ≥, denoted as (X,≥), is called a partially ordered set (poset).

When the partial order ≥ is clear from context, we often times simply use X to denote the poset (X,≥).

Let a, a′ ∈ X , if a′ > a, we say a′ is a predecessor of a in poset (X,≥), and a is a descendant of a′ in poset

(X,≥). If moreover, there is no b ∈ X such that a′ > b > a, we say that a′ an immediate predecessor of a

in poset (X,≥) and that a is an immediate descendant of a′ in poset (X,≥). If a 6≥ a′ and a′ 6≥ a, we say a

and a′ are incomparable.

For a subset S ⊆ X , an element a ∈ X is said to be an upper bound (resp. lower bound) of S if for all

b ∈ S, a ≥ b (resp. b ≥ a). An upper bound (resp. lower bound) a′ of S is said to be its least upper bound or

join (resp. greatest lower bound or meet), if a ≥ a′ (resp. a′ ≥ a) for each upper bound (resp. lower bound)

a of S.

A lattice is a poset for which every pair of elements has a join and a meet, and for every pair those are

unique by definition. Thus, two binary operations are defined over a lattice: join and meet. A lattice is
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distributive where the operations of join and meet distribute over each other.

For n ∈ N, we denote by [n] the set {1, · · · , n}. Two lattices are said to be isomorphic if there is a

structure-preserving mapping between them that can be reversed by an inverse mapping. Such a structure-

preserving mapping is called an isomorphism between the two lattices.

2.2 The firm-worker models

Let F and W denote two disjoint finite sets of agents, say firms and workers respectively. Associated with

each firm f ∈ F is a choice function Cf : 2W (f) → 2W (f) where W (f) ⊆W is the set of acceptable partners

of f and Cf satisfies the property that for every S ⊆ W (f), Cf (S) ⊆ S. Similarly, a choice function

Cw : 2F (w) → 2F (w) is associated to each worker w. We assume that for every firm-worker pair (f, w),

f ∈ F (w) if and only if w ∈ W (f). We let CW and CF denote the collection of firms’ and workers’ choice

functions respectively. A matching market (or an instance) is a tuple (F,W, CF , CW ). Following [5], we define

below the properties of substitutability, consistency, and cardinal monotonicity (law of aggregate demand)

for choice function Ca of an agent a.

Definition 2.1 (Substitutability). An agent a’s choice function Ca is substitutable if for any set of partners

S, b ∈ Ca(S) implies that for all T ⊆ S, b ∈ Ca(T ∪ {b}).

Definition 2.2 (Consistency). An agent a’s choice function Ca is consistent if for any sets of partners S and

T , Ca(S) ⊆ T ⊆ S implies Ca(S) = Ca(T ).

Definition 2.3 (Cardinal monotonicity). An agent a’s choice function Ca is cardinal monotone if for all sets

of partners S ⊆ T , we have |Ca(S)| ≤ |Ca(T )|.

Intuitively, substitutability implies that if an agent is selected from a set of candidates, she will also

be selected from a smaller subset; consistency is also called “irrelevance of rejected contracts”; and cardinal

monotonicity implies that the size of the image of the choice function is monotone with respect to set

inclusion.

Aizerman and Malishevski [3] showed that a choice function is substitutable and consistent if and only

if it is path-independent.

Definition 2.4 (Path-independence). An agent a’s choice function Ca is path-independent if for any sets of

partners S and T , Ca(S ∪ T ) = Ca
(
Ca(S) ∪ T

)
.

We next prove a few properties of path-independent choice functions.

Lemma 2.5. Let C : 2A → 2A be a path-independent choice function and let A1, A2 ⊆ A. If C(A1 ∪ {a}) =

C(A1) for every a ∈ A2 \A1, then C(A1 ∪ A2) = C(A1).

Proof. Assume A2 \A1 = {a1, a2, · · · , at}. Then, by repeated application of the path independence property,

C(A1 ∪ A2) = C(A1 ∪ {a1, a2, · · · , at}) = C(C(A1 ∪ {a1}) ∪ {a2, · · · , at})

= C(C(A1) ∪ {a2, · · · , at}) = C(A1 ∪ {a2, a3, · · · , at}) = · · · = C(A1).

�

Corollary 2.6. Let C : 2A → 2A be a path-independent choice function and let A1, A2 ⊆ A. If a /∈ C(A1∪{a})

for every a ∈ A2 \A1, then C(A1 ∪ A2) = C(A1).

6



Proof. By the consistency property of C, a /∈ C(A1 ∪ {a}) implies C(A1 ∪ {a}) = C(A1). Lemma 2.5 then

applies directly. �

Lemma 2.7. Let C : 2A → 2A be a path-independent choice function and let A1, A2 ⊆ A, a ∈ A. Assume

C(A1 ∪ A2) = A1 and a ∈ C(A1 ∪ {a}). Then, a ∈ C(A2 ∪ {a}).

Proof. By path-independence, we have that C(A1 ∪A2 ∪{a}) = C(C(A1 ∪A2)∪{a}) = C(A1 ∪{a}) and thus

a ∈ C(A1∪A2∪{a}). Also, by path-independence, we have C(A1∪A2∪{a}) = C
(
C(A1 \{a})∪C(A2∪{a})

)
.

Since a /∈ C(A1 \ {a}), it must be that a ∈ C(A2 ∪ {a}). �

A matching µ is a mapping from F ∪W to 2F∪W such that for all w ∈W and f ∈ F , (1) µ(w) ⊆ F (w);

(2) µ(f) ⊆W (f); and (3) w ∈ µ(f) if and only if f ∈ µ(w). A matching can also be viewed as a collection of

firm-worker pairs. That is, µ ≡ {(f, w) : f ∈ F,w ∈ µ(f)}. Thus, we use (f, w) ∈ µ, w ∈ µ(f), and f ∈ µ(w)

interchangeably. We say a matching µ is individually rational if for every agent a, Ca(µ(a)) = µ(a). An

acceptable firm-worker pair (f, w) /∈ µ is called a blocking pair if w ∈ Cf (µ(f)∪{w}) and f ∈ Cw(µ(w)∪{f}),

and when such pair exists, we say µ is blocked by the pair or the pair blocks µ. A matching µ is stable if it is

individually rational and it admits no blocking pairs. If f is matched to w in some stable matching, we say

that (f, w) is a stable pair and that f (resp. w) is a stable partner of w (resp. f). We denote by S(CF , CW )

the set of stable matchings in the market (F,W, CF , CW ), and when the market is clear from the context we

abbreviate S := S(CF , CW ).

Alkan [5] showed the following.

Theorem 2.8 ([5]). Consider a matching market (F,W, CF , CW ) and assume CF and CW are substitutable,

consistent, and cardinal monotone. Then S(CF , CW ) is a distributive lattice under the partial order relation

� where µ1 � µ2 if for all f ∈ F , Cf (µ1(f)) ∪ µ2(f)) = µ1(f). The join (denoted by ∨) and meet (denoted

by ∧) operations of the lattice are defined component-wise. That is, for all f ∈ F :

(µ1 ∨ µ2)(f) := µ1(f) ∨ µ2(f) := Cf (µ1(f) ∪ µ2(f)),

(µ1 ∧ µ2)(f) := µ1(f) ∧ µ2(f)

:=
((
µ1(f) ∪ µ2(f)

)
\ (µ1 ∨ µ2)(f)

)
∪
(
µ1(f) ∩ µ2(f)

)
.

Moreover, S(CF , CW ) satisfies the polarity property: µ1 � µ2 if and only if Cw(µ1(w)) ∪ µ2(w)) = µ2(w) for

every worker w ∈W .

Because of the lattice structure, the firm- and worker-optimal stable matchings are well-defined, and

we denote them respectively by µF and µW . In addition, Alkan [5] showed two properties, which we call

concordance (Proposition 7, [5]) and equal-quota (Proposition 6, [5]), satisfied by the family of sets of partners

under all stable matchings for every agent a. Let Φa := {µ(a) : µ ∈ S(CF , CW )}. Then for all S, T ∈ Φa,

S ∩ T ⊆ S ∨ T (concordance)

and

|S| = |T | =: qa. (equal-quota)

Instead of cardinal monotonicity, an earlier paper of Alkan [4] considers a more restrictive property of

choice functions, called quota-filling.

Definition 2.9 (Quota-filling). An agent a’s choice function Ca is quota-filling if there exists qa ∈ N such

that for any set of partners S, |Ca(S)| = min(qa, |S|). We call qa the quota of agent a.
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Intuitively, quota-filling means that an agent has a number of positions and she tries to fill these positions

as many as possible. Note that quota-filling implies cardinal monotonicity. Let qa denote the quota of each

agent a ∈ F ∪W .

Our results from Section 3 assume path-independence (i.e., substitutability and consistency) and cardinal

monotonicity. In Section 4, we will restrict our model by replacing cardinal monotonicity with quota-filling

for one side of the market. These two models are what we call the CM-Model and the CM-QF-Model,

respectively.

2.3 MC-representation for path-independent choice functions

We now introduce an alternative, equivalent description of choice functions for the model studied in this

paper that we will use in examples throughout the paper, and investigate more in detail in Section 6.

Aizerman and Malishevski [3] showed that a choice function Ca is path-independent if and only if there

exists a finite sequence of p(Ca) ∈ N preference relations over acceptable partners, denoted as {≥a,i}i∈[p(Ca)]

indexed by i, such that for every subset of acceptable partners S, Ca(S) = ∪i∈[p(Ca)]{x
∗
a,i}, where x∗a,i =

max(S,≥a,i) is the maximum element2 of S according to ≥a,i. We call this sequence of preference relations

the Maximizer-Collecting representation (MC-representation) of choice function Ca. Note that for distinct

i1, i2 ∈ [p(Ca)], it is possible to have x∗a,i1 = x∗a,i2 .

Conceptually, one can view the MC-representation as follows: a firm is a collection of positions, each of

which has its own preference relation; a worker is a collection of personas, each of whom also has his or her

own preference relation. Each firm hires the best candidate for each position, and the same candidate can be

hired for two positions if (s)he is the best for both. A symmetric statement holds for workers and personas.

Remark 2.10. We would like to again highlight the differences between MC-representation of choice func-

tions and the representation, in the MM-Model, by a single preference list ≥a together with a quota qa. In

particular, in the MM-Model, Ca(S) = ∪i∈[qa]{x̃a,i}, where x̃a,i = max(S \ {x̃a,j : j ∈ [i − 1]},≥a). Note

that here for distinct i1, i2 ∈ [qa], x̃a,i1 6= x̃a,i2 unless both are ∅.

3 Affine representability of the stable matching lattice

In this section, we show that the distributive lattice of stable matchings in the model by [5] is affinely

representable. An algorithm to construct an affine representation is given in Section 4 where we additionally

impose the quota-filling property upon choice functions of agents in one side of the markets. The proof of

this section proceeds as follows. First, we show in Section 3.1 that the lattice of stable matchings (S,�)

is isomorphic to a lattice (P ,⊆) belonging to a special class, that is called ring of sets. In Section 3.2,

we then show that ring of sets are always affinely representable. In Section 3.3, we show a poset (Π,�⋆)

representing (S,�). Lastly, in Section 3.4, we show how to combine all those results and “translate” the

affine representability of (P ,⊆) to the affine representability of (S,�), concluding the proof.

3.1 Isomorphism between the stable matching lattice and a ring of sets

A family H = {H1, H2, · · · , Hk} of subsets of a base set B is a ring of sets over B if H is closed under set

union and set intersection [12]. Note that a ring of sets is a distributive lattice with the partial order relation

2If S = ∅, then max(S,≥a,i) is defined to be ∅.
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⊆, and the join and meet operations corresponds to set intersection and set union, respectively. An example

of a ring of sets is given in Example 3.14.

In this and the following section, we fix a matching market (F,W, CF , CW ) and assume that CF and CW

are path-independent and cardinal monotone (i.e., the framework of [5]). Let φ(a) denote the set of stable

partners of agent a. That is, φ(a) := {b : b ∈ µ(a) for some µ ∈ S}. For a stable matching µ, define

Pf (µ) := {w ∈ φ(f) : w ∈ Cf (µ(f) ∪ {w})},

and define the P-set of µ as

P (µ) := {(f, w) : f ∈ F,w ∈ Pf (µ)}.

The goal of this section is to show the following theorem, which gives a representation of the stable

matching lattice as a ring of sets. Let P(CF , CW ) denote the set {P (µ) : µ ∈ S(CF , CW )}, and we often

abbreviate P := P(CF , CW ).

Theorem 3.1. Assume CF and CW are path-independent and cardinal monotone. Then,

(1) the mapping P : S → P is a bijection;

(2) (P ,⊆) is isomorphic to (S,�). That is, for two stable matchings µ1, µ2 ∈ S, we have µ2 � µ1 if and

only if P (µ2) ⊆ P (µ1). Moreover, P (µ1 ∨ µ2) = P (µ1) ∩ P (µ2) and P (µ1 ∧ µ2) = P (µ1) ∪ P (µ2). In

particular, (P ,⊆) is a ring of sets over the base set {(f, w) : f ∈ F,w ∈ φ(f)}.

Remark 3.2. An isomorphism between the lattice of stable matchings and a ring of sets (also called P-set)

is proved in the SM-Model by Gusfield and Irving [21] as well. However, they define P (µ) := {(f, w) :

f ∈ F,w ≥f µ(f)}, hence including firm-worker pairs that are not stable. We show in Example 3.9 that in

our more general setting, the P-set by [21] is not a ring of sets. As a consequence, while in their model the

construction of the P-set for a given stable matching is immediate, in ours it is not, since we need to know

first which pairs are stable.

Lemma 3.3. Let µ1 and µ2 be two stable matchings such that µ2 � µ1. Then, Pf (µ2) ⊆ Pf (µ1) for every

firm f .

Proof. Since µ2 � µ1, we have that Cf (µ2(f)∪µ1(f)) = µ2(f). The claim then follows from Lemma 2.7. �

Lemma 3.4. Let µ1 be a stable matching such that w ∈ Pf (µ1) for some firm f and worker w. Then, there

exists a stable matching µ2 such that µ2 � µ1 and w ∈ µ2(f).

Proof. By definition of Pf (µ1), we know there exists a stable matching µ′
1 such that w ∈ µ′

1(f). Let

µ2 := µ1∨µ′
1. We want to show that w ∈ µ2(f). If w ∈ µ1(f), then the claim follows due to the concordance

property. So assume w /∈ µ1(f) and also assume by contradiction that w /∈ µ2(f). Then, we must have

w ∈ (µ1 ∧ µ
′
1)(f) by definition of the meet. Since µ1 � µ1 ∧ µ

′
1, we have Cf(µ1(f) ∪ (µ1 ∧ µ

′
1)(f)) = µ1(f).

However, applying path-independence and consistency, we have

Cf(µ1(f) ∪ (µ1 ∧ µ
′
1)(f)) = Cf

(
Cf(µ1(f) ∪ (µ1 ∧ µ

′
1)(f) \ {w}) ∪ {w}

)

= Cf (µ1(f) ∪ {w}) 6= µ1(f),

which is a contradiction. �
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Lemma 3.5. Let µ1 and µ2 be two stable matchings such that µ2 � µ1. Assume w ∈ Pf (µ1) \ Pf (µ2) for

some firm f . Then, there exists a stable matching µ1 with µ2 � µ1 � µ1 such that w ∈ µ1(f).

Proof. By Lemma 3.4, there exists a stable matching µ2 � µ1 such that w ∈ µ2(f). Let µ1 := µ2∧µ2 and we

claim that µ1 is the desired matching. First, by definition of meet, we have µ2 � µ1 � µ1. Since w /∈ Pf (µ2),

by the contrapositive of the substitutability property, we have w /∈ Cf(µ2(f) ∪ µ2(f)), which implies that

w /∈ (µ2 ∨ µ2)(f). Therefore, w ∈ µ1(f), again by the definition of meet. �

Lemma 3.6. Let µ1 and µ2 be two stable matchings. Then,

P (µ1 ∨ µ2) = P (µ1) ∩ P (µ2) and P (µ1 ∧ µ2) = P (µ1) ∪ P (µ2).

Proof. Fix a firm f , and we want to show Pf (µ1∨µ2) = Pf (µ1)∩Pf (µ2) and Pf (µ1∧µ2) = Pf (µ1)∪Pf (µ2).

If µ1(f) = µ2(f), then the claim is obviously true. Thus, for the following, we assume µ1(f) 6= µ2(f). We

first show that Pf (µ1 ∨ µ2) ⊆ Pf (µ1) ∩ Pf (µ2). Since µ1 ∨ µ2 � µ1, µ2, the claim follows from Lemma 3.3.

Next, we show that Pf (µ1∨µ2) ⊇ Pf (µ1)∩Pf (µ2). If Pf (µ1)∩Pf (µ2) = ∅, then the claim follows trivially. So

we assume Pf (µ1)∩Pf (µ2) 6= ∅ and let w ∈ Pf (µ1)∩Pf (µ2). By Lemma 3.4, there exists a stable matching

µ1 such that µ1 � µ1 and w ∈ µ1(f). Similarly, there exists a stable matching µ2 such that µ2 � µ2 and

w ∈ µ2(f). Consider the stable matching µ1 ∨ µ2. Because of the concordance property, w ∈ (µ1 ∨ µ2)(f).

In addition, by transitivity of �, we have that µ1 ∨ µ2 � µ1, µ2 and thus µ1 ∨ µ2 � µ1 ∨ µ2 by minimality of

µ1 ∨ µ2. Hence, by Lemma 3.3, w ∈ Pf (µ1 ∨ µ2). This concludes the first part of the thesis.

For the second half, we first show Pf (µ1 ∧ µ2) ⊆ Pf (µ1) ∪Pf (µ2). Let w /∈ Pf (µ1)∪ Pf (µ2), we want to

show that w /∈ Pf (µ1 ∧ µ2). Assume by contradiction that w ∈ Pf (µ1 ∧ µ2). w /∈ Pf (µ1) ∪ Pf (µ2) implies

w /∈ µ1(f) and w /∈ µ2(f) and thus, w /∈ (µ1 ∧ µ2)(f). By Lemma 3.5, for both i ∈ {1, 2}, there exists a

stable matching µi such that µi � µi � µ1 ∧ µ2 and w ∈ µi(f). Note that µ1 ∧ µ2 � µ1 ∧ µ2 � µ1 ∧ µ2,

where the first relation holds because µi � µi for both i ∈ {1, 2}, and the second relation holds because

µ1, µ2 � µ1 ∧ µ2. Hence, µ1 ∧ µ2 = µ1 ∧ µ2. However, by the concordance property over µ1 and µ2, we have

w ∈ (µ1 ∧ µ2)(f) = (µ1 ∧ µ2)(f), which is a contradiction.

Lastly, we show Pf (µ1 ∧ µ2) ⊇ Pf (µ1)∪Pf (µ2). Let w ∈ Pf (µ1)∪Pf (µ2) and wlog assume w ∈ Pf (µ1).

Since µ1 � µ1 ∧ µ2, by Lemma 3.3, we have w ∈ Pf (µ1 ∧ µ2). �

Lemma 3.7. Let µ1 and µ2 be two stable matchings such that µ2 ≻ µ1 and assume that µ1(f) 6= µ2(f) for

some f ∈ F . Then, Pf (µ1) 6= Pf (µ2).

Proof. Assume by contradiction that Pf (µ1) = Pf (µ2). Let w ∈ µ1(f) \ µ2(f). w exists because µ1(f) 6=

µ2(f) and |µ1(f)| = |µ2(f)| due to the equal-quota property. Since the stable matching lattice (S,�) has

the polarity property as shown in Theorem 2.8, we have that Cw(µ1(w) ∪ µ2(w)) = µ1(w) and thus, by

substitutability, we have f ∈ Cw(µ2(w) ∪ {f}). On the other hand, w ∈ µ1(f) implies that w ∈ Pf (µ1) =

Pf (µ2). Since w /∈ µ2(f), this means that (f, w) is a blocking pair of µ2, which contradicts the stability

assumption. �

Lemma 3.8. Let µ1 and µ2 be two distinct stable matchings and assume that µ1(f) 6= µ2(f) for some f ∈ F .

Then, Pf (µ1) 6= Pf (µ2).

Proof. Assume by contradiction that Pf (µ1) = Pf (µ2). Then, we have Pf (µ1 ∨ µ2) = Pf (µ1 ∧ µ2) by

Lemma 3.6. However, µ1(f) 6= µ2(f) implies that (µ1 ∨µ2)(f) 6= (µ1 ∧µ2)(f), which contradicts Lemma 3.7

since µ1 ∨ µ2 ≻ µ1 ∧ µ2. �
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Proof of Theorem 3.1. For (1), note that the mapping P is onto by definition. It is therefore a bijection since

it is also injective as shown in Lemma 3.8. Next, we show (2). One direction of the first statement is shown

in Lemma 3.3. Conversely, if P (µ2) ⊆ P (µ1), then by Lemma 3.6, P (µ1 ∨ µ2) = P (µ1) ∩ P (µ2) = P (µ2).

Hence, by Lemma 3.8, we have µ1 ∨ µ2 = µ2 and thus, µ2 � µ1. The second statement of (2) follows from

Lemma 3.6. The third follows from the second and the fact that stable matchings form a distributive lattice

(Theorem 2.8). �

Example 3.9. Consider the following instance with 4 firms and 5 workers. Agents’ choice functions are

given below in their MC-representations. For instance, the first position of firm f1 prefers w1 the most and

prefers w2 the least.

f1 : ≥f1,1: w1 w5 w3 w4 w2

≥f1,2: w2 w5 w4 w3 w1

≥f1,3: w1 w2 w3 w4 w5

f2 : ≥f2,1: w4 w2 w1 w3 w5

f3 : ≥f3,1: w3 w1 w2 w4 w5

f4 : ≥f4,1: w5 w1 w2 w3 w4

w1 : ≥w1,1: f3 f1 f2 f4

w2 : ≥w2,1: f2 f1 f3 f4

w3 : ≥w3,1: f1 f3 f2 f4

w4 : ≥w4,1: f1 f2 f3 f4

w5 : ≥w5,1: f4 f1 f2 f3

There are four stable matchings in this instance:

µF = (f1, w1), (f1, w2), (f2, w4), (f3, w3), (f4, w5);

µ1 = (f1, w1), (f1, w4), (f2, w2), (f3, w3), (f4, w5);

µ2 = (f1, w2), (f1, w3), (f2, w4), (f3, w1), (f4, w5);

µW = (f1, w3), (f1, w4), (f2, w2), (f3, w1), (f4, w5).

Note that µ1 and µ2 are not comparable. Their corresponding P-sets are

P (µF ) = (f1, w1), (f1, w2), (f2, w4), (f3, w3), (f4, w5);

P (µ1) = (f1, w1), (f1, w2), (f1, w4), (f2, w2), (f2, w4), (f3, w3), (f4, w5);

P (µ2) = (f1, w1), (f1, w2), (f1, w3), (f2, w4), (f3, w1), (f3, w3), (f4, w5);

P (µW ) = (f1, w1), (f1, w2), (f1, w3), (f1, w4), (f2, w2), (f2, w4), (f3, w1), (f3, w3), (f4, w5).

One can easily check that the claims given in Lemma 3.6 are true. Note that if we follow the definition

given in [21] and include the pair (f1, w5) in P (µ1) and P (µ2). Then Lemma 3.6 no longer holds since

w5 /∈ Pf1(µF ) = Pf1(µ1 ∨ µ2). △

3.2 Affine representability of ring of sets via the poset of minimal differences

We now recall (mostly known) facts about posets representing ring of sets, and observe that the affine

representability of ring of sets easily follows from those.

Fix a ring of sets (H,⊆) over a base set B, and let H0 and Hz denote respectively the unique minimal

and maximal elements of H. That is, for all H ∈ H, we have H0 ⊆ H ⊆ Hz . For a ∈ Hz, let H(a) denote

the unique inclusion-wise minimal set among all sets in H that contain a, where uniqueness follows from the
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fact that H is closed under set intersection. That is,

H(a) :=
⋂
{H ∈ H : a ∈ H}.

In addition, define the set I(H) of the irreducible elements of H as follows

I(H) := {H ∈ H : ∃ a ∈ Hz s.t. H = H(a)}.

Since I(H) is a subset of H, we can view I(H) as a poset under the set containment relation.

For H ∈ I(H), let K(H) := {a ∈ Hz : H(a) = H} denote the centers of H . Note that K(H0) = H0.

Define D(H) as the set of centers of irreducible elements of H without the set H0. Formally,

D(H) := {K(H) : H ∈ I(H), H 6= H0}.

Immediately from the definition of centers, we obtain the following.

Lemma 3.10. Let a ∈ B. There is at most one K1 ∈ D(H) such that a ∈ K1. In particular, |D(H)| =

O(|B|).

For K1 ∈ D(H), let I(K1) denote the irreducible element from I(H) such that K(I(K1)) = K1. Let ⊒

be a partial order over the set D(H) that is inherited from the set containment relation of the poset I(H).

That is, for K1,K2 ∈ D(H), we have K1 ⊒ K2 if and only if I(K1) ⊆ I(K2).

Theorem 3.11 ([12]). Let (H,⊆) be a ring of sets. Then, (D(H),⊒) is a representation poset for (H,⊆)

with representation function ψH, where ψ−1
H (D) =

⋃
{K1 : K1 ∈ D} ∪H0 for any upper set D of (D(H),⊒),

and H0 is the minimal element of H.

Lemma 3.10 and Theorem 3.11 directly imply the following.

Theorem 3.12. Let (H,⊆) be a ring of sets over base set B. Then, (D(H),⊒) affinely represents (H,⊆)

via affine function g(u) = Au + x0, where x0 is the characteristic vector of the minimal element of H, and

A ∈ {0, 1}B×D(H) has columns χK1 for each K1 ∈ D(H). Moreover, A has full column rank.

Proof. Because of the representation function ψH given in Theorem 3.11, it is clear that g(χU ) = χψ
−1
H (U)

for every upper set U ∈ U((D(H),⊒)). Note that every row of A has at most one non-zero entry due to

Lemma 3.10, and every column of A contains at least one non-zero entry by definition. Therefore, A has full

column rank. �

Lemma 3.13. Let (H,⊆) be a ring of sets with minimal element H0, and let H ∈ H. If H =
⋃
{K1 : K1 ∈

D} ∪H0 for some subset D of D(H), then D is an upper set of (D(H),⊒).

Proof. By Lemma 3.10, there is at most one subset of D(H) whose union of the elements together with H0

gives H . On the other hand, Theorem 3.11 implies that there exists one such subset which is also an upper

set of (D(H),⊒). The claim follows thereafter. �

We elucidate in Example 3.14 the definitions and facts above.

Example 3.14. Consider the Hasse diagram of the ring of sets given in Figure 3a with base set B =

{a, b, c, d, e, f} and H = {H1, · · · , H7}. The irreducible elements are I(H) = {H1, H2, H3, H5, H7}. The

center(s) of each irreducible element is underlined, and D(H) = {{b}, {c}, {d, e}, {f}}. The poset of D(H)
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is represented in Figure 3b. The upper sets of poset D(H) corresponding to H1, · · · , H7 in the exact order

are: ∅; {{b}}; {{c}}; {{b}, {c}}; {{c}, {d, e}}; {{b}, {c}, {d, e}}; and {{b}, {c}, {d, e}, {f}}. Affine function

is g(u) = Au+ x0 with (x0)⊺ = (1, 0, 0, 0, 0, 0) and matrix A given below in Figure 3c. Note that columns of

A correspond to {b}, {c}, {d, e}, {f} in this order. △

a H1

a bH2
a c H3

a b cH4 a c d e H5

a b c d eH6

a b c d e fH7

(a) (H,⊆)

b c

d e

f

(b) (D(H),⊒)

A =




0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1




(c) Matrix A

Figure 3: Hasse diagrams of a ring of sets and its representation poset, as well as the matrix A for

affine representability for Example 3.14.

Alternatively, one can view D(H) as the set of minimal differences between elements of H. The following

lemma is established directly from Lemma 2.4.3 and Corollary 2.4.1 of [21].

Lemma 3.15. D(H) = {H \H ′ : H ′ is an immediate predecessor of H in (H,⊆)}.

A direct consequence of Lemma 3.10 and Lemma 3.15 is the following.

Lemma 3.16. Let H ′, H ∈ H. If H ′ ⊆ H and H \H ′ ∈ D(H), then H ′ is an immediate predecessor of H

in (H,⊆).

Proof. Let K1 := H \ H ′. Assume by contradiction that there exists H ∈ H with H ′ ( H ( H . Then,

because of Lemma 3.15, there exists a center K2 ∈ D(H) such that ∅ 6= K2 ( K1. However, this contradicts

Lemma 3.10. �

3.3 Representation of (S,�) via the poset of rotations

As discussed in Section 3.2, the poset (D(P),⊒) associated with (P ,⊆) provides a compact representation

of (P ,⊆) and can be used to reconstruct P via Theorem 3.12. In this section, we show how to associate with

(S,�) a poset that is isomorphic to (D(P),⊒), which can be used to reconstruct S. The precise statement

is give in Theorem 3.19 below.

For µ, µ′ ∈ S, with µ′ being an immediate predecessor of µ in the stable matching lattice, let

ρ+(µ′, µ) = {(f, w) : f ∈ F,w ∈ µ(f) \ µ′(f)}

and

ρ−(µ′, µ) = {(f, w) : f ∈ F,w ∈ µ′(f) \ µ(f)}.

Note that by definition,

µ = µ′△ρ−(µ′, µ)△ρ+(µ′, µ) = µ′ \ ρ−(µ′, µ) ∪ ρ+(µ′, µ).
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We call ρ(µ′, µ) := (ρ+(µ′, µ), ρ−(µ′, µ)) a rotation of (S,�). Let Π(S) denote the set of rotations of (S,�).

That is,

Π(S) := {ρ(µ′, µ) : µ′ is an immediate predecessor of µ in (S,�)}.

Remark 3.17. It is interesting to compare rotations in the current model [5] with the analogous concept

in the MM-Model. While in the latter case, rotations are simple cycles in the associated bipartite graph

of agents [9], this may not be the case for our model, as Example 3.18 shows.

Example 3.18. Consider the two stable matchings µ′ and µ shown in Example 4.14, where µ′ is an immediate

predecessor of µ. As shown in Figure 4, their symmetric difference is not a simple cycle. In Figure 4c, solid

lines are edges from µ′ and dashed lines are those from µ. △

f1

f2

f3

f4

w1

w2

w3

w4

(a) stable matching µ′

f1

f2

f3

f4

w1

w2

w3

w4

(b) stable matching µ

f1 f2

f3f4

w2

w3 w4

(c) symmetric difference µ△µ′

Figure 4: Two stable matchings neighboring in (S,�) and their symmetric difference.

In the following, we focus on proving a bijection between D(P) and Π(S), and we often abbreviate

Π := Π(S) and D := D(P). In particular, we show the following.

Theorem 3.19. Assume CF and CW are path-independent and cardinal monotone. Then,

(1) the mapping Q : Π→ D, with Q(ρ) = ρ+, is a bijection;

(2) (D,⊒) is isomorphic to the rotation poset (Π,�⋆) where for two rotations ρ1, ρ2 ∈ Π, ρ1 �⋆ ρ2 if

Q(ρ1) ⊒ Q(ρ2);

(3) (Π,�⋆) is a representation poset for (S,�) with representation function ψS such that for any upper set

Π of (Π,�⋆), P (ψ−1
S (Π)) = ψ−1

P ({Q(ρ) : ρ ∈ Π}) where ψP is the representation function of (P ,⊆) per

Theorem 3.11; and ψ−1
S (Π) =

(
△ρ∈Π(ρ

−△ρ+)
)
△µF , where △ is the symmetric difference operator.

Moreover, equivalently, we have ψ−1
S (Π) = µF ∪ (

⋃
ρ∈Π ρ

+) \ (
⋃
ρ∈Π ρ

−).

Lemma 3.20. Let µ, µ′ ∈ S such that µ′ ≻ µ. If w ∈ µ(f) \ µ′(f) for some f , then w /∈ Pf (µ
′).

Proof. Since µ′ ≻ µ, we have Cf (µ′(f) ∪ µ(f)) = µ′(f). By path-independence and consistency, we have

w /∈ µ′(f) = Cf(µ
′(f) ∪ µ(f)) = Cf(Cf (µ

′(f) ∪ µ(f) \ {w}) ∪ {w}) = Cf (µ
′(f) ∪ {w}).

Therefore, w /∈ Pf (µ′), concluding the proof. �

Lemma 3.21. Let µ, µ′ ∈ S such that µ′ is an immediate predecessor of µ in the stable matching lattice.

Then, µ(f) \ µ′(f) = Pf (µ) \ Pf (µ
′) for all f ∈ F . In particular, P (µ) \ P (µ′) = ρ+(µ′, µ).

Proof. Fix a firm f . µ(f) \ µ′(f) ⊆ Pf (µ) \ Pf (µ′) follows by definition and from Lemma 3.20. For the

reverse direction, assume by contradiction that there exists w ∈ Pf (µ) \ Pf (µ′) but w /∈ µ(f) \ µ′(f). Since
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w /∈ Pf (µ′) implies that w /∈ µ′(f) by definition of Pf (·), we also have w /∈ µ(f). By Lemma 3.5, there exists

a stable matching µ such that µ′ � µ � µ and w ∈ µ(f). However, since µ′ is an immediate predecessor of

µ in the stable matching lattice, we either have µ = µ or µ = µ′. However, both are impossible since we

deduced w /∈ µ(f) ∪ µ′(f). �

Lemma 3.22. Let µ1, µ2, µ3 ∈ S such that µ1 ≻ µ2 ≻ µ3. If w ∈ µ1(f) \ µ2(f) for some firm f , then

w /∈ µ3(f).

Proof. First, note that µ1 ≻ µ2 implies w ∈ µ1(f) = Cf (µ1(f) ∪ µ2(f)). Thus, by substitutability, we have

w ∈ Cf(µ2(f) ∪ {w}). Assume by contradiction that w ∈ µ3(f). Then, applying Lemma 3.20 on µ2 and µ3,

we have that w /∈ Pf (µ2), which is a contradiction. �

Lemma 3.23. Let µ1, µ
′
1, µ2, µ

′
2 ∈ S and assume that µ′

1, µ
′
2 are immediate predecessors of µ1, µ2 in the

stable matching lattice, respectively. In addition, assume that µ1 ≻ µ2. If P (µ1) \ P (µ′
1) = P (µ2) \ P (µ′

2),

then µ′
1(f) \ µ1(f) = µ′

2(f) \ µ2(f) for all firm f ∈ F .

Proof. Fix a firm f . Due to Lemma 3.21, we know µ1(f) \ µ′
1(f) = µ2(f) \ µ′

2(f). By the equal-quota

property, we have |µ1(f)| = |µ′
1(f)| and |µ2(f)| = |µ′

2(f)|. Thus, |µ′
1(f) \ µ1(f)| = |µ′

2(f) \ µ2(f)| (♮). If

µ′
1(f) \ µ1(f) = ∅, the claim follows immediately, and thus, in the following, we assume µ′

1(f) \ µ1(f) 6= ∅.

Assume by contradiction that there exists w ∈ µ′
1(f) \ µ1(f) but w /∈ µ′

2(f) \ µ2(f). Since µ1 ≻ µ2 and

µ′
i ≻ µi for i ∈ {1, 2}, by Theorem 3.1, we have P (µ1) ( P (µ2) and P (µ′

i) ( P (µi) for i ∈ {1, 2}. Therefore,

P (µ′
1) ( P (µ′

2) due to the assumption that P (µ1) \P (µ
′
1) = P (µ2) \P (µ

′
2). Again by Theorem 3.1, we have

µ′
1 ≻ µ

′
2. Hence, µ1∨µ′

2 = µ′
1 and we must have w ∈ µ′

2(f) and thus, w ∈ µ2(f). However, since µ′
1 ≻ µ1 ≻ µ2

and w ∈ µ′
1(f) \ µ1(f), we can apply Lemma 3.22 and conclude that w /∈ µ2(f), which is a contradiction.

This shows µ′
1(f) \ µ1(f) ⊆ µ′

2(f) \ µ2(f). Together with (♮), we have µ′
1(f) \ µ1(f) = µ′

2(f) \ µ2(f). �

Lemma 3.24. Let A,B,A′, B′ be sets such that A ⊆ A′ and B ⊆ B′. In addition, assume that A′\A = B′\B.

Then, (A′ ∩B′) \ (A ∩B) = A′ \A.

Proof. Let X := A′ \ A = B′ \ B. Notice that A′ = A ⊔X and B′ = B ⊔X , where ⊔ is the disjoint union

operator. Therefore, we have A ∩B = (A′ \X) ∩ (B′ \X) = (A′ ∩B′) \X and the claim follows. �

Lemma 3.25. Let µ1, µ
′
1, µ2, µ

′
2 ∈ S and assume that µ′

1, µ
′
2 are immediate predecessors of µ1, µ2 in the

stable matching lattice, respectively. If P (µ1) \ P (µ′
1) = P (µ2) \ P (µ′

2), then µ′
1(f) \ µ1(f) = µ′

2(f) \ µ2(f)

for every firm f . In particular, ρ−(µ′
1, µ1) = ρ−(µ′

2, µ2).

Proof. We first consider the case where µ1 = µ2. By Lemma 3.3, we have P (µ′
i) ⊆ P (µi) for i ∈ {1, 2}.

Therefore,

P (µ′
1) = P (µ1) \ (P (µ1) \ P (µ

′
1)) = P (µ2) \ (P (µ2) \ P (µ

′
2)) = P (µ′

2),

where the second equality is due to our assumptions that µ1 = µ2 and P (µ1)\P (µ′
1) = P (µ2)\P (µ′

2). Thus,

µ′
1 = µ′

2 because of Theorem 3.1, and the thesis then follows. Since the cases when µ1 ≻ µ2 or µ2 ≻ µ1 have

already been considered in Lemma 3.23, for the following, we assume that µ1 and µ2 are not comparable.

Let µ3 := µ1 ∨ µ2 and µ′
3 := µ′

1 ∨ µ
′
2. Note that µ′

3 � µ3. Then, applying Lemma 3.6 and Lemma 3.24, we

have

P (µ3) \ P (µ
′
3) = (P (µ1) ∩ P (µ2)) \ (P (µ

′
1) ∩ P (µ

′
2)) = P (µ1) \ P (µ

′
1).

By Theorem 3.1, Lemma 3.15 and Lemma 3.16, we also have that µ′
3 is an immediate predecessor of µ3

in the stable matching lattice. Note that by construction, we have µ3 ≻ µ1 and µ3 ≻ µ2 since µ1 and µ2
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are incomparable. Applying Lemma 3.23 on µ1 and µ3 as well as on µ2 and µ3, we have µ′
1(f) \ µ1(f) =

µ′
3(f) \ µ3(f) = µ′

2(f) \ µ2(f) for all firm f ∈ F , as desired. �

Theorem 3.26. Let µ1, µ
′
1, µ2, µ

′
2 ∈ S and assume that µ′

1, µ
′
2 are immediate predecessors of µ1, µ2 in the

stable matching lattice, respectively. Then, P (µ1)\P (µ
′
1) = P (µ2)\P (µ

′
2) if and only if ρ(µ′

1, µ1) = ρ(µ′
2, µ2).

Proof. For the “only if” direction, assume P (µ1) \ P (µ′
1) = P (µ2) \ P (µ′

2). Then, ρ+(µ′
1, µ1) = ρ+(µ′

2, µ2)

by Lemma 3.21 and ρ−(µ′
1, µ1) = ρ−(µ′

2, µ2) by Lemma 3.25. Thus, ρ(µ′
1, µ1) = ρ(µ′

2, µ2). For the “if”

direction, assume ρ(µ′
1, µ1) = ρ(µ′

2, µ2). Then, immediately from Lemma 3.21, we have that P (µ1)\P (µ′
1) =

ρ+(µ′
1, µ1) = ρ+(µ′

2, µ2) = P (µ2) \ P (µ′
2). �

Remark 3.27. In the SM-Model with P-sets defined as by Gusfield and Irving [21] stated in Remark 3.2,

Theorem 3.26 immediately follows from the definition of P-set. In fact, one can explicitly and uniquely

construct ρ(µ′, µ) from P (µ) \ P (µ′). In particular, ρ+(µ′, µ) is the set of edges (f, w) such that Pf (µ) 6=

Pf (µ
′) and w is the least preferred partner of f among Pf (µ)\Pf (µ′), and ρ−(µ′, µ) is the set of edges (f, w)

such that Pf (µ) 6= Pf (µ
′) and w is the partner that, in the preference list ≥f , is immediately before the

most preferred partner of f among Pf (µ) \ Pf (µ′).

Proof of Theorem 3.19. Because of Theorem 3.1 and Lemma 3.21, for every K1 ∈ D, there exist stable

matchings µ′ and µ with µ′ being an immediate predecessor of µ such that K1 = P (µ) \ P (µ′) = ρ+(µ′, µ).

Thus, the mapping Q is onto. Theorem 3.26 further implies that Q is injective. Hence, the mapping Q is a

bijection. This bijection and the definition of �⋆ immediately imply that (D,⊒) is isomorphic to (Π,�⋆).

Together with the isomorphism between (S,�) and (P ,⊆), and the fact that (D,⊒) is a representation

poset of (P ,⊆), we deduce a bijection between elements of (S,�) and upper sets of (Π,�⋆). That is,

(Π,�⋆) is a representation poset of (S,�) and its representation function ψS satisfies that for every µ ∈ S,

{Q(ρ) : ρ ∈ ψS(µ)} = ψP (P (µ)). It remains to show that the formula for the inverse of ψS given in the

statement of the theorem is correct. Let µ ∈ S and let µ0, µ1, · · · , µk be a sequence of stable matchings

such that µi−1 is an immediate predecessor of µi in (S,�) for all i ∈ [k], µ0 = µF and µk = µ. In

addition, let ρi = ρ(µi−1, µi) for all i ∈ [k]. Note that µ = µF△(ρ−1 △ρ
+
1 )△(ρ−2 △ρ

+
2 )△· · ·△(ρ−k△ρ

+
k ) (♮).

By Theorem 3.1, P (µ0) ⊆ P (µ1) ⊆ · · · ⊆ P (µk), and thus,

P (µ) = P (µ0) ∪
(
P (µ1) \ P (µ0)

)
∪
(
P (µ2) \ P (µ1)

)
∪ · · · ∪

(
P (µk) \ P (µk−1)

)
.

Therefore, by Lemma 3.21, P (µ) = P (µF ) ∪ Q(ρ1) ∪ · · · ∪ Q(ρk). By Lemma 3.13, we know that {Q(ρi) :

i ∈ [k]} is an upper set of D and thus, ψP (P (µ)) = {Q(ρi) : i ∈ [k]} due to Theorem 3.11. Hence,

ψS(µ) = {ρi : i ∈ [k]}. The inverse of ψS must be as in the first definition in the thesis so that (♮) holds.

Let (f, w) be a firm-worker pair. If (f, w) ∈ ρ−i for some i ∈ [k], then (f, w) /∈ µ due to Lemma 3.22.

In addition, because of Lemma 3.10 and the bijection Q, µF , ρ+1 , ρ+2 , · · · , ρ+i are disjoint. Hence, if

(f, w) ∈ µF ∪ (
⋃
{ρ+i : i ∈ [k]}) but (f, w) /∈

⋃
{ρ−i : i ∈ [k]}, then (f, w) ∈ µ. The second definition of ψS

from the thesis follows immediately from these facts and the previous definition. �
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Example 3.28. Consider the following instance where each agent has a quota of 2.

f1 : ≥f1,1: w4 w2 w1 w3

≥f1,2: w3 w1 w2 w4

f2 : ≥f2,1: w2 w3 w4 w1

≥f2,2: w1 w4 w3 w2

f3 : ≥f3,1: w1 w2 w4 w3

≥f3,2: w3 w4 w2 w1

f4 : ≥f4,1: w4 w3 w1 w2

≥f4,2: w2 w1 w3 w4

w1 : ≥w1,1: f2 f1 f3 f4

≥w1,2: f4 f1 f3 f2

≥w1,3: f2 f4 f3 f1

w2 : ≥w2,1: f1 f2 f4 f3

≥w2,2: f3 f2 f4 f1

≥w2,3: f1 f3 f4 f2

w3 : ≥w3,1: f4 f3 f1 f2

≥w3,2: f2 f1 f3 f4

w4 : ≥w4,1: f2 f3 f4 f1

≥w4,2: f1 f4 f3 f2

The stable matchings of this instance and their corresponding P-sets are listed below. To be concise, for

matching µ, we list the assigned partners of firms f1, f2, f3, f4 in the exact order. Similarly, for P-set P (µ),

we list in the order of Pf1 (µ), Pf2(µ), Pf3(µ), Pf4(µ) and replace {w1, w2, w3, w4} with W .

µF = ({w3, w4}, {w1, w2}, {w1, w3}, {w2, w4})

µ1 = ({w3, w4}, {w1, w2}, {w1, w4}, {w2, w3})

µ2 = ({w3, w4}, {w1, w2}, {w2, w3}, {w1, w4})

µ3 = ({w2, w4}, {w1, w3}, {w2, w3}, {w1, w4})

µ4 = ({w3, w4}, {w1, w2}, {w2, w4}, {w1, w3})

µW = ({w2, w4}, {w1, w3}, {w2, w4}, {w1, w3})

P (µF ) = ({w3, w4}, {w1, w2}, {w1, w3}, {w2, w4})

P (µ1) = ({w3, w4}, {w1, w2}, {w1, w3, w4}, {w2, w3, w4})

P (µ2) = ({w3, w4}, {w1, w2}, {w1, w2, w3}, {w1, w2, w4})

P (µ3) = ({w2, w3, w4}, {w1, w2, w3}, {w1, w2, w3}, {w1, w2, w4})

P (µ4) = ({w3, w4}, {w1, w2},W,W )

P (µW ) = ({w2, w3, w4}, {w1, w2, w3},W,W )

The stable matching lattice (S,�) and the rotation poset (Π,�⋆) are shown in Figure 5.

µF

µ1 µ2

µ4 µ3

µW

ρ3 ρ1

ρ1 ρ3 ρ2

ρ2 ρ3

(a) Stable matching lattice (S,�)

ρ3 ρ1

ρ2

(b) Rotation poset (Π,�⋆)

Figure 5: The stable matching lattice and its rotation poset of Example 3.28

Due to Theorem 3.1 and Theorem 3.19, one can also view Figure 5a and Figure 5b respectively as the

ring of sets (P ,⊆) and the poset of minimal differences (D,⊒).

Below, we list the rotations in Π and their corresponding minimal differences in D. In addition, we label

in Figure 5a the edges of the Hasse Diagram by these rotations.

ρ1 : Q(ρ1) = ρ+1 = {{f3, w2}, {f4, w1}}; ρ
−
1 = {{f3, w1}, {f4, w2}}

ρ2 : Q(ρ2) = ρ+2 = {{f1, w2}, {f2, w3}}; ρ
−
2 = {{f1, w3}, {f2, w2}}

ρ3 : Q(ρ3) = ρ+3 = {{f3, w4}, {f4, w3}}; ρ
−
3 = {{f3, w3}, {f4, w4}}

△
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3.4 Concluding the proof for the first part of Theorem 1.4

Because of Theorem 3.19, part (3), we know that poset (Π,�⋆) represents lattice (S,�). Let ψS be the

representation function as defined in Theorem 3.19. We denote by E ⊆ F ×W the set of acceptable firm-

worker pairs. Hence, E is the base set of lattice (S,�). We deduce the following, proving the structural

statement from Theorem 1.4.

Lemma 3.29. Let Π1,Π2 be two upper sets of (Π,�⋆) and let µi = ψ−1
S (Πi) for i ∈ {1, 2}. If Π1 ⊆ Π2,

then µ1 � µ2.

Proof. Let Di := {Q(ρ) : ρ ∈ Πi} and let Pi := ψ−1
P (Di) for i ∈ {1, 2}. Since Π1 ⊆ Π2, we have D1 ⊆ D2 and

thus subsequently P1 ⊆ P2. Since ψ−1
P (Di) = P (ψ−1

S (Πi)) by Theorem 3.19, Pi = P (µi) for both i = 1, 2.

Therefore, by Theorem 3.1, µ1 � µ2. �

Lemma 3.30. Let ρ1, ρ2 ∈ Π. If ρ+1 ∩ ρ
−
2 6= ∅, then ρ1 ≻⋆ ρ2.

Proof. Assume by contradiction that ρ1 6≻⋆ ρ2, that is, either ρ2 ≻⋆ ρ1 or that they are not comparable. Let

Π1 := {ρ ∈ Π : ρ � ρ2} be the inclusion-wise smallest upper set of Π that contains ρ2, let Π0 := Π1\{ρ2}, and

let Π2 := {ρ ∈ Π : ρ � ρ1 or ρ � ρ2} be the inclusion-wise smallest upper set of Π that contains both ρ1 and

ρ2. Note that Π0 ( Π1 ( Π2, where the second strict containment is due to our assumption that ρ1 6≻⋆ ρ2

and thus ρ1 /∈ Π1. For i ∈ {0, 1, 2}, let µi := (△ρ∈Πi
(ρ−△ρ+))△µF . Since Πi is an upper set of (Π,�⋆),

µi is a stable matching by Theorem 3.19. Moreover, µ0 ≻ µ1 ≻ µ2 by Lemma 3.29. Let (f, w) ∈ ρ+1 ∩ ρ
−
2 .

Since ρ(µ0, µ1) = ρ2, we have (f, w) ∈ µ0 \ µ1. Since ρ1 is a �-minimal element in Π2, Π2 \ {ρ1} is also

an upper set of Π. Then, µ′
2 := (△ρ∈Π2\{ρ1}(ρ

−△ρ+))△µF is a stable matching by Theorem 3.19, and

µ2 = µ′
2 \ ρ

−
1 ∪ ρ

+
1 . Thus, we have (f, w) ∈ µ2. Together, we have w ∈ (µ0(f) ∩ µ2(f)) \ µ1(f). However,

this contradicts Lemma 3.22. �

Theorem 3.31. The rotation poset (Π,�⋆) affinely represents the stable matching lattice (S,�) with affine

function g(u) = Au + χµF , where A ∈ {0,±1}E×Π is matrix with columns χρ
+

− χρ− for each ρ ∈ Π.

Moreover, |Π| = O(|F ||W |) and matrix A has full column rank.

Proof. The first claim follows immediately because by Theorem 3.19, part (3), χµ = AχψS (µ) + χµF , for

any stable matching µ. Because of Theorem 3.19, |Π| = |D|. In addition, by Lemma 3.10, we have |D| =

|E| = O(|F ||W |). Thus, |Π| = O(|F ||W |). Finally, we show that matrix A has full column rank. Assume

by contradiction that there is a non-zero vector λ ∈ RΠ such that
∑

ρ∈Π λρ(χ
ρ+ − χρ−) = 0. Let Π̃ := {ρ ∈

Π : λρ 6= 0} denote the set of rotations whose corresponding coefficients in λ are non-zero. Let ρ1 be a

minimal rotation (w.r.t. �⋆) in Π̃ and let (f, w) be a firm-worker pair in ρ+1 . Because of Lemma 3.10 and

the bijection Q, there is no rotation ρ 6= ρ1 such that (f, w) ∈ ρ+. Therefore, there must exist a rotation

ρ2 ∈ Π̃ with (f, w) ∈ ρ−2 . Note that we must have ρ1 ≻⋆ ρ2 due to Lemma 3.30. However, this contradicts

the choice of ρ1. �

4 Algorithms

Because of Theorem 3.31, in order to conclude the proof of Theorem 1.4, we are left to explicitly construct

(Π,�⋆). That is, we need to find elements of Π, and how they relate to each other via �⋆. We fix an instance

(F,W, CF , CW ) and abbreviate S := S(CF , CW ).

In this section, we further assume workers’ choice functions to be quota-filling. Under this additional

assumption, for each worker w ∈W , the family of sets of partners w is assigned to under all stable matchings
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(denoted as Φw) satisfies an additional property, which we call the full-quota3 property (see Lemma 4.1).

Recall that qw denote the quota of worker w and qw is the number of firms matched to w under every stable

matching, which is constant due to the equal-quota property (i.e., |S| = qw for all S ∈ Φw).

Lemma 4.1. For every worker w ∈W , if qw < qw, then w is matched to the same set of firms in all stable

matchings. That is,

qw < qw =⇒ |Φw| = 1. (full-quota)

Proof. Assume by contradiction that qw < qw but |Φw| > 1. Let S1, S2 be two distinct elements from Φw

and let µi be the matching such that µi(w) = Si for i = 1, 2. Note that due to the equal-quota property, we

have |S1| = |S2| = qw. Consider the stable matching µ := µ1 ∧ µ2. Then,

|µ(w)| = |Cw(µ1(w) ∪ µ2(w))| = |Cw(S1 ∪ S2)| = min(|S1 ∪ S2|, qw|) > qw,

where the first equality is by Theorem 2.8 and the last two relations are by quota-filling. However, this

contradicts the equal-quota property since µ is a stable matching. �

Our approach to construct (Π,�⋆) is as follows. First, we recall Roth’s adaptation of the Deferred

Acceptance algorithm to find a firm- or worker-optimal stable matching (Section 4.1). Second, we feed the

output of Roth’s algorithm to an algorithm that produces a maximal chain C1, C2, . . . , Ck of (S,�) and

the set Π (Section 4.2). In Section 4.3, we give an algorithm that, given a maximal chain of a ring of sets,

constructs the partial order of the poset of minimal differences. This and previous facts are then exploited

in Section 4.4 to construct the partial order �⋆ on elements of Π. We sum up our algorithm in Section 4.5,

where we show that the overall running time is O(|F |3|W |3oracle-call).

We start with a definition and properties which will be used in later algorithms. For a matching µ, let

Xf (µ) := {w ∈W (f) : Cf(µ(f) ∪ {w}) = µ(f)},

and define the closure of µ, denoted by X(µ), as the collection of sets {Xf (µ) : f ∈ F}. Note that

µ(f) ⊆ Xf (µ) for every firm f and individually rational matching µ.

Lemma 4.2. Let µ be an individually rational matching. Then, for every firm f , we have Cf (Xf (µ)) = µ(f).

Proof. Fix a firm f . Since µ is individually rational, Cf(µ(f)) = µ(f). The claim then follows from a direct

application of Lemma 2.5 with A1 = µ(f) and A2 = Xf (µ). �

Lemma 4.3. Let µ1, µ2 ∈ S(CF , CW ) such that µ1 � µ2. Then, for every firm f , µ2(f) ⊆ Xf (µ1).

Proof. Since µ1 � µ2, we have Cf (µ1(f)∪µ2(f)) = µ1(f) for every firm f . Thus, by the consistency property

of Cf , for every w ∈ µ2(f), we have Cf (µ1(f) ∪ {w}) = µ1(f). The claim follows. �

Lemma 4.4. The following three operations can be performed in polynomial times:

(1). given a matching µ, computing its closure X(µ) can be performed in time O(|F ||W |oracle-call);

(2). given a matching µ, deciding whether it is stable can be performed in time O(|F ||W |oracle-call);

(3). given stable matchings µ, µ′ ∈ S, deciding whether µ′ � µ can be performed in time O(|F |oracle-call).

3Note that the full-quota property is analogous to the Rural Hospital Theorem [35] in the SA-Model where agents
have preferences over individual partners instead of over sets of partners.
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Proof. (1). For any firm f , computing Xf (µ) requires O(|W |) oracle-calls by definition and thus, com-

puting the closure of µ takes O(|F ||W |) oracle-calls. (2). To check if a matching µ is stable, we need

to check first if it is individually rational, which takes O(|F | + |W |) oracle-calls, and then to check if it

admits any blocking pair, which takes O(|F ||W |) oracle-calls. (3). To decide if µ′ � µ, one need to check

if for every firm f ∈ F , Cf(µ′(f) ∪ µ(f)) = µ′(f), and this takes O(|F |) oracle-calls. �

4.1 Deferred acceptance algorithm

The deferred acceptance algorithm introduced in [34]4 can be seen as a generalization of the algorithm

proposed in [19]. For the following, we assume that firms are the proposing side. Initially, for each firm f ,

let Xf := W (f), i.e., the set of acceptable workers of f . At every step, every firm f proposes to workers in

Cf (Xf ). Then, every worker w considers the set of firms Xw who made a proposal to w, temporarily accepts

Yw := Cw(Xw), and rejects the rest. Afterwards, each firm f removes from Xf all workers that rejected

f . The firm-proposing algorithm iterates until there is no rejection. Hence, throughout the algorithm,

Xf denotes the set of acceptable workers of f that have not rejected f . A formal description is given in

Algorithm 1.

Algorithm 1 Firm-proposing DA algorithm for an instance (F,W, CF , CW ).

1: initialize the step count s← 0

2: for each firm f do initialize X
(s)
f ←W (f) end for

3: repeat
4: for each worker w do
5: X

(s)
w ← {f ∈ F : w ∈ Cf (X

(s)
f )}

6: Y
(s)
w ← Cw(X

(s)
w )

7: end for
8: for each firm f do

9: update X
(s+1)
f ← X

(s)
f \ {w ∈W : f ∈ X

(s)
w \ Y

(s)
w }

10: end for
11: update the step count s← s+ 1

12: until X
(s)
f = X

(s−1)
f for every firm f

Output: matching µ with µ(w) = Y
(s−1)
w for every worker w

Note that for every step s other than the final step, there exists a firm f ∈ F such that X
(s)
f ( X

(s−1)
f .

Therefore, the algorithm terminates, since there is a finite number of firms and workers. Moreover, the

output has interesting properties.

Theorem 4.5 (Theorem 2, [34]). Let µ be the output of Algorithm 1 over a matching market (F,W, CF , CW )

assuming CF , CW are path-independent. Then, µ = µF .

Due to the symmetry between firms and workers in a market where the only assumption on choice

functions is path-independence, swapping the role of firms and workers in Algorithm 1, we have the worker-

proposing deferred acceptance algorithm, which outputs µW .

4The model considered in [34] is more general than our setting here, where choice functions are only assumed to
be substitutable and consistent, not necessarily quota-filling.

20



4.2 Constructing Π via a maximal chain of (S,�)

Let (H,⊆) be a ring of sets. A chain C0, · · · , Ck in (H,⊆) is an ordered subset of H such that Ci−1 is

a predecessor of Ci in (H,⊆) for all i ∈ [k]. The chain is complete if moreover Ci−1 is an immediate

predecessor of Ci for all i ∈ [k]; it is maximal if it is complete, C0 = H0 and Ck = Hz. Consider K ∈ D(H).

If K = Ci \ Ci−1 for some i ∈ [k], then we say that the chain contains the minimal difference K. We start

with the theorem below, where it is shown that the set D(H) can be obtained by following any maximal

chain of (H,⊆).

Theorem 4.6 (Theorem 2.4.2, [21]). Let H ′, H ∈ H such that H ′ ⊆ H. Then, there exists a complete

chain from H ′ to H in (H,⊆), and every such chain contains exactly the same set of minimal differences.

In particular, for any maximal chain (C0, · · · , Ck) in (H,⊆), we have {Ci \ Ci−1 : i ∈ [k]} = D(H) and

k = |D(H)|.

In this section, we present Algorithm 3 that, on inputs µ′, outputs a stable matching µ that is an

immediate descendant of µ′ in (S,�). Then, using Algorithm 3 as a subroutine, Algorithm 4 gives a

maximal chain of (S,�).

We start by extending to our setting the break-marriage idea proposed by McVitie and Wilson [30] for

finding the full set of stable matchings in the one-to-one stable marriage model. Given a stable matching µ′

and a firm-worker pair (f ′, w′) ∈ µ′\µW , the break-marriage procedure, denoted as break-marriage(µ′, f ′, w′),

works as follows. We first initialize Xf to be Xf (µ
′) for every firm f 6= f ′, while we set Xf ′ = Xf ′(µ′)\{w′}.

We then restart the deferred acceptance process. The algorithm continues in iterations as in the repeat

loop of Algorithm 1, with the exception that worker w′ temporarily accepts Yw′ := Cw′(Xw′ ∪ {f ′}) \ {f ′}.

As an intuitive explanation, this acceptance rule of w′ ensures that for the output matching µ, we have

Cw′(µ(w′)∪µ′(w′)) = µ(w′), as we show in Lemma 4.9. The formal break-marriage procedure is summarized

in Algorithm 2. See Example 4.14 for a demonstration. Note that by choice of the pair (f ′, w′), we have

|µ′(w′)| = qw′ .

Algorithm 2 break-marriage(µ′, f ′, w′), with (f ′, w′) ∈ µ′ \ µW and µ′ ∈ S

1: for each firm f 6= f ′ do initialize X
(0)
f ← Xf (µ

′) end for

2: initialize X
(0)
f ′ ← Xf ′(µ′) \ {w′}

3: initialize the step count s← 0
4: repeat
5: for each worker w do
6: X

(s)
w ← {f ∈ F : w ∈ Cf (X

(s)
f )}

7: if w 6= w′ then Y
(s)
w ← Cw(X

(s)
w ) else Y

(s)
w ← Cw(X

(s)
w ∪ {f ′}) \ {f ′}

8: end for
9: for each firm f do

10: update X
(s+1)
f ← X

(s)
f \ {w ∈W : f ∈ X

(s)
w \ Y

(s)
w }

11: end for
12: update the step count s← s+ 1

13: until X
(s−1)
f = X

(s)
f for every firm f

Output: matching µ with µ(w) = Y
(s−1)
w for every worker w

With the same reasoning as for the DA algorithm, the break-marriage(µ′, f ′, w′) procedure is guaran-

teed to terminate. Let s⋆ be the value of step count s at the end of the algorithm. Note that, for every firm
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f ∈ F , we have

Xf (µ
′) ⊇ X(0)

f ⊇ X
(1)
f ⊇ · · · ⊇ X

(s⋆)
f , (1)

where the first containment is an equality unless f = f ′. In particular, (1) implies that f ′ /∈ X(s)
w′ for all

s ∈ {0, 1, · · · , s⋆}. Also note that the termination condition implies

µ(f) = Cf (X
(s⋆)
f ) = Cf (X

(s⋆−1)
f ) (2)

for every firm f , while for every worker w 6= w′ it implies that

µ(w) = Y (s⋆−1)
w = Cw(X

(s⋆−1)
w ) = X(s⋆−1)

w . (3)

Let (f, w) ∈ F ×W , we say f is rejected by w at step s if f ∈ X
(s)
w \ Y

(s)
w , and we say f is rejected by w

if f is rejected by w at some step during the break-marriage procedure. Note that a firm f is rejected by all

and only the workers in X
(0)
f \X

(s⋆)
f .

In the following, we prove Theorem 4.7.

Theorem 4.7. Let µ′, µ ∈ S(CF , CW ) and assume µ′ is an immediate predecessor of µ in the stable matching

lattice. Pick (f ′, w′) ∈ µ′ \µ and let µ be the output matching of break-marriage(µ′, f ′, w′). Then, µ = µ.

We start by outlining the proof steps of Theorem 4.7. We first show in Lemma 4.8 that the output

matching µ of break-marriage(µ′, f ′, w′) is individually rational. We then show in Lemma 4.13 that under

a certain condition (i.e., the break-marriage operation being successful), µ is a stable matching and µ′ ≻ µ.

Lastly, we show that under the assumptions in the statement of Theorem 4.7, the above-mentioned condition

is satisfied and µ � µ.

Lemma 4.8. Let µ′ ∈ S be a stable matching that is not the worker-optimal stable matching µW and let

(f ′, w′) ∈ µ′\µW . Consider the break-marriage(µ′, f ′, w′) procedure with output µ. Then, µ is individually

rational.

Proof. By (2) and (3) above, for every agent a ∈ F ∪W \ {w′}, µ(a) = Ca(X
(s⋆−1)
a ) and thus, Ca(µ(a)) =

Ca(Ca(X
(s⋆−1)
a )) = Ca(X

(s⋆−1)
a ) = µ(a), where the second equality is due to path-independence. For worker

w′, note that X
(s⋆−1)
w′ = Y

(s⋆−1)
w′ = µ(w′) = Cw′(X

(s⋆−1)
w′ ∪ {f ′}) \ {f ′}, where the first equality is due to the

termination criterion. Then, by the substitutability property, with T = X
(s⋆−1)
w′ and S = X

(s⋆−1)
w′ ∪ {f ′}, we

have that for every firm f ∈ µ(w′), f ∈ Cw′(X
(s⋆−1)
w′ ) holds. Thus, µ(w′) ⊆ Cw′(µ(w′)). Since Cw′(X) ⊆ X

for any X in the domain of Cw′ , we have µ(w′) = Cw′(µ(w′)). Therefore, µ is individually rational. �

Lemma 4.9. Consider the break-marriage(µ′, f ′, w′) procedure with output matching µ. Then, for every

firm f , Cf (µ(f) ∪ µ′(f)) = µ′(f).

Proof. For a firm f , we have

Cf (µ(f) ∪ µ
′(f)) = Cf (Cf (X

(s⋆)
f ) ∪ Cf (Xf (µ

′))

= Cf (X
(s⋆)
f ∪Xf (µ

′)) = Cf (Xf (µ
′)) = µ′(f),

where the first and last equality holds since µ′(f) = Cf (Xf (µ
′)) by Lemma 4.2 and µ(f) = Cf (X

(s⋆)
f )

by (2), the second equality is by path-independence, and the third equality is due to X
(s⋆)
f ⊆ X

(0)
f ⊆ Xf (µ

′)

by (1). �
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The following two properties of the break-marriage procedure are direct consequences of the path-

independence assumption imposed on choice functions. These properties are also true for the deferred

acceptance algorithm, as shown in [34]. Let f ∈ F and w ∈W be an arbitrary firm and worker. Lemma 4.10

states that once f proposes to w in some step of the algorithm, it will keep proposing to w in future steps

until w rejects f . Lemma 4.11 states that once w rejects f , w would never accept f in later steps even if the

proposal is offered again.

Lemma 4.10. For all s ∈ [s⋆ − 1] and w ∈ W , we have Y
(s−1)
w ⊆ X

(s)
w .

Proof. Let f ∈ Y
(s−1)
w . By construction, we have w ∈ Cf (X

(s−1)
f ) ∩ X

(s)
f . Since X

(s)
f ⊆ X

(s−1)
f by (1), we

deduce that w ∈ Cf(X
(s)
f ) by the substitutability property. Hence, f ∈ X

(s)
w by definition. �

Lemma 4.11. Let s ∈ [s⋆ − 1], f ∈ F , and w ∈W . Assume f ∈ X
(s−1)
w \ Y

(s−1)
w , i.e., f is rejected by w at

step s − 1. If w 6= w′, then for every step s′ ≥ s, f /∈ Cw(X
(s′)
w ∪ {f}); and if w = w′, then for every step

s′ ≥ s, f /∈ Cw(X
(s′)
w ∪ {f ′} ∪ {f}).

Proof. By construction, w /∈ X
(s)
f . Hence, f /∈ X

(s′)
w for all s′ ≥ s because of (1) and the definition of X

(s′)
w .

Fix a value of s′ ≥ s. First consider the case when w 6= w′. By repeated application of the path-independence

property of Cw and Lemma 4.10, we have

Cw(X
(s′)
w ∪ {f}) = Cw(X

(s′)
w ∪ Y (s′−1)

w ∪ {f}) = Cw(X
(s′)
w ∪ Cw(Y

(s′−1)
w ∪ {f}))

= Cw(X
(s′)
w ∪ Cw(Cw(X

(s′−1)
w ) ∪ {f}))

= Cw(X
(s′)
w ∪ Cw(X

(s′−1)
w ∪ {f}))

= · · ·

= Cw(X
(s′)
w︸ ︷︷ ︸
6∋f

∪X(s′−1)
w︸ ︷︷ ︸
6∋f

∪ · · · ∪ Cw(X
(s−1)
w ∪ {f})︸ ︷︷ ︸

=Cw(X
(s−1)
w )=Y

(s−1)
w 6∋f

).

Therefore, f /∈ Cw(X
(s′)
w ∪ {f}) as desired. We next consider the case where w = w′. Since w /∈ X

(0)
f ′ by

construction, we have w /∈ X
(s−1)
f ′ by (1), which then implies f ′ /∈ X

(s−1)
w by definition. Thus, we have

f 6= f ′. Again, by repeated application of the path-independence property of Cw and Lemma 4.10, we have

Cw(X
(s′)
w ∪ {f ′} ∪ {f}) = Cw(X

(s′)
w ∪ Y (s′−1)

w ∪ {f ′} ∪ {f})

= Cw(X
(s′)
w ∪ {f ′} ∪ Cw(Y

(s′−1)
w ∪ {f ′} ∪ {f}))

= Cw(X
(s′)
w ∪ {f ′} ∪ Cw((Cw(X

(s′−1)
w ∪ {f ′}) \ {f ′}) ∪ {f ′} ∪ {f}))

= Cw(X
(s′)
w ∪ {f ′} ∪ Cw(X

(s′−1)
w ∪ {f ′} ∪ {f}))

= · · ·

= Cw(X
(s′)
w︸ ︷︷ ︸
6∋f

∪X(s′−1)
w︸ ︷︷ ︸
6∋f

∪ · · · ∪ {f ′} ∪ Cw(X
(s−1)
w ∪ {f ′} ∪ {f})︸ ︷︷ ︸

=Cw(X
(s−1)
w ∪{f ′}) 6∋f

).

Therefore, f /∈ Cw(X
(s′)
w ∪ {f ′} ∪ {f}) as desired in this case as well. �

We say the break-marriage procedure break-marriage(µ′, f ′, w′) is successful if f ′ /∈ Cw′(X
(s⋆−1)
w′ ∪{f ′}).

We next show that when the procedure is successful, the output matching is stable.
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Remark 4.12. For the SM-Model, McVitie and Wilson [30] defines the break-marriage procedure break-

marriage(µ′, f ′, w′) to be successful if w′ receives a proposal from a firm that w′ prefers to f ′. To translate

this condition the CM-QF-Model, we interpret it as the follows: if w′ were to choose between this proposal

and f ′, w′ would not choose f ′.

Lemma 4.13. If break-marriage(µ′, f ′, w′) is successful, then the output matching µ is stable. Moreover,

µ′ ≻ µ.

Proof. Since break-marriage(µ′, f ′, w′) is successful, applying the consistency property with T = X
(s⋆−1)
w′

and S = T ∪ {f ′}, we have Cw′(X
(s⋆−1)
w′ ∪ {f ′}) = Cw′(X

(s⋆−1)
w′ ) and thus, Y

(s⋆−1)
w′ = Cw′(X

(s⋆−1)
w′ ). In

addition, by the termination condition, Y
(s⋆−1)
w′ = X

(s⋆−1)
w′ . Therefore, we have the following identity

µ(w′) = Y
(s⋆−1)
w′ = X

(s⋆−1)
w′ = Cw′(X

(s⋆−1)
w′ ) = Cw′(X

(s⋆−1)
w′ ∪ {f ′}), (4)

which is similar to (3) for other workers.

Claim 4.13.1. Let (f, w) ∈ F × W . If f is rejected by w during the break-marriage procedure, then

f /∈ Cw(µ(w) ∪ {f}).

Proof. If w 6= w′, then by Lemma 4.11, f /∈ Cw(X
(s⋆−1)
w ∪ {f}) = Cw(µ(w) ∪ {f}) where the equality is due

to (3). This is also true if w = w′ because again by Lemma 4.11,

f /∈ Cw′(X
(s⋆−1)
w′ ∪ {f ′} ∪ {f}) = Cw′(Cw′(X

(s⋆−1)
w′ ∪ {f ′}) ∪ {f}) = Cw′(µ(w′) ∪ {f}),

where the first equality is by path-independence, and the second equality by (4). �

Claim 4.13.2. Cw(µ′(w) ∪ µ(w)) = µ(w) for all w ∈W .

Proof. Let f ∈ µ′(w) \ µ(w), and suppose first (f, w) 6= (f ′, w′). Because of Lemma 4.2 and Lemma 4.10, f

must be rejected by w during the break-marriage procedure since otherwise f ∈ X
(s)
w for all s ∈ [s⋆] ∪ {0},

which in particular implies w ∈ µ(f) due to (3). Then, by Claim 4.13.1, f /∈ Cw(µ(w) ∪ {f}). Next assume

(f, w) = (f ′, w′). By (4), we know that X
(s⋆−1)
w = µ(w). Since break-marriage(µ′, f ′, w′) is successful, we

have f ′ /∈ Cw(X
(s⋆−1)
w ∪{f ′}) = Cw(µ(w)∪{f ′}). We conclude that in both cases, Cw(µ(w)∪{f}) = Cw(µ(w))

by consistency. Thus, we can apply Lemma 2.5 with A1 = µ(w) and A2 = µ′(w) and conclude that

Cw(µ′(w) ∪ µ(w)) = Cw(µ(w)). The claim then follows from Lemma 4.8. �

Fix an acceptable firm-worker pair (f, w) /∈ µ. We show that (f, w) does not block µ. Assume by contradiction

that f ∈ Cw(µ(w) ∪ {f}) (†) and w ∈ Cf(µ(f) ∪ {w}) (‡). We claim that (f, w) /∈ µ′. If this is not the

case, the consistency property of Cw, with S = µ′(w) ∪ µ(w) and T = µ(w) ∪ {f}, implies Cw(µ(w) ∪ {f}) =

Cw(µ′(w) ∪ µ(w)) = µ(w), where the last equality is by Claim 4.13.2. Thus, f /∈ Cw(µ(w) ∪ {f}), which

contradicts our assumption (†). Thus, (f, w) /∈ µ′. Note that in particular, (f, w) 6= (f ′, w′). By Lemma 2.7

and Claim 4.13.2, (†) implies f ∈ Cw(µ′(w) ∪ {f}). Hence, we must have w /∈ Cf(µ′(f) ∪ {w}) since µ′ is

stable, i.e., not blocked by (f, w). This implies Cf (µ
′(f) ∪ {w}) = Cf(µ′(f)) = µ′(f) due to the consistency

property or Cf and the fact that µ′ is individually rational. Thus, w ∈ Xf (µ
′) = X

(0)
f since f 6= f ′.

Suppose first w /∈ X
(s⋆)
f . Then, worker w rejected firm f during the break-marriage procedure. This

implies f /∈ Cw(µ(w) ∪ {f}) by Claim 4.13.1, contradicting assumption (†). Suppose next w ∈ X
(s⋆)
f . Since

(f, w) /∈ µ, we have w /∈ µ(f) = Cf (X
(s⋆)
f ), where the equality is due to (2). Then by the consistency
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property, with S = X
(s⋆)
f and T = µ(f) ∪ {w}, we have that w /∈ Cf (µ(f) ∪ {w}). However, this contradicts

(‡). Therefore, µ must be stable.

By Lemma 4.9, µ′ � µ. Moreover, we have µ′ 6= µ since f ′ ∈ µ′(w′)\µ(w′). Hence, µ′ ≻ µ as desired. �

We now give the proof of Theorem 4.7.

Proof of Theorem 4.7. Note that by Lemma 4.3, µ(f) ⊆ Xf (µ
′) for every f ∈ F . We start by showing that

during the break-marriage procedure, for every firm f , no worker in µ(f) rejects f . Assume by contradiction

that this is not true. Let s′ be the first step where such a rejection happens, with firm f1 being rejected by

worker w1 ∈ µ(f1). Hence, f1 ∈ X
(s′)
w1 \ Y

(s′)
w1 .

Claim 4.13.3. There exists a firm f2 ∈ Y
(s′)
w1 \ µ(w1) such that f2 ∈ Cw1(µ(w1) ∪ {f2}).

Proof. Assume by contradiction that such a firm f2 does not exist. We first consider the case when w1 6= w′.

By Corollary 2.6 with A1 = µ(w1) and A2 = Y
(s′)
w1 , we have Cw1(µ(w1) ∪ Y

(s′)
w1 ) = Cw1(µ(w1)) = µ(w1),

where the last equality is because µ is individually rational. Hence, f1 ∈ Cw1(µ(w1) ∪ Y
(s′)
w1 ), and using

substitutability, we deduce f1 ∈ Cw1(Y
(s′)
w1 ∪ {f1}). However, using consistency, with T = Y

(s′)
w1 ∪ {f1} and

S = X
(s′)
w1 , we conclude Cw1(Y

(s′)
w1 ∪ {f1}) = Cw1(X

(s′)
w1 ) = Y

(s′)
w1 6∋ f1, a contradiction.

We next consider the case when w1 = w′. Note that f1 6= f ′, because (f ′, w′) /∈ µ by choice of

(f ′, w′). Since µ′ � µ, by Theorem 2.8, Cw′(µ′(w′) ∪ µ(w′)) = µ(w′). Thus, by the consistency property,

with S = µ′(w′) ∪ µ(w′) and T = µ(w′) ∪ {f ′}, we have Cw′(µ(w′) ∪ {f ′}) = µ(w′) 6∋ f ′. As in the case

w1 6= w′, by Corollary 2.6 with A1 = µ(w′) and A2 = Y
(s′)
w1 ∪{f

′} and the fact that µ is individually rational,

µ(w′) = Cw′(µ(w′)) = Cw′(µ(w′)∪{f ′}∪Y
(s′)
w′ ). Then, since f1 ∈ µ(w

′)∩X
(s′)
w′ , by substitutability and path

independence, we have:

f1 ∈ Cw′(Y
(s′)
w′ ∪ {f ′} ∪ {f1}) = Cw′(Cw′(X

(s′)
w′ ∪ {f ′}) \ {f ′} ∪ {f ′} ∪ {f1})

= Cw′(X
(s′)
w′ ∪ {f ′}).

However, since f1 /∈ Y
(s′)
w′ by our choice and f1 6= f ′, we should have f1 /∈ Cw′(X

(s′)
w′ ∪ {f ′}), which is again

a contradiction. �

Now let f2 be the firm whose existence is guaranteed by Claim 4.13.3. In particular, f2 ∈ Y
(s′)
w1 implies

w1 ∈ Cf2(X
(s′)
f2

) ⊆ X
(s′)
f2

. Note that by our choice of f1, µ(f2) ⊆ X
(s′)
f2

. Therefore, by substitutability and

w1 ∈ Cf2(X
(s′)
f2

), we have w1 ∈ Cf2(µ(f2) ∪ {w1}). However, this means that (f2, w1) is a blocking pair of µ,

which contradicts stability of µ. Thus, for every firm f ∈ F , no worker in µ(f) rejects f during the break-

marriage procedure as we claimed, which, together with the fact that µ(f) ⊆ Xf (µ
′), implies µ(f) ⊆ X

(s⋆)
f .

By path-independence and (2), we have that for every firm f :

Cf (µ(f) ∪ µ(f)) = Cf(Cf (X
(s⋆)
f ) ∪ µ(f)) = Cf(Cf (X

(s⋆)
f ∪ µ(f)))

= Cf(X
(s⋆)
f ) = µ(f).

(5)

Moreover,

|µ(f)| = |µ′(f)| = |µ(f)|, ∀f ∈ F (6)
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because

|µ(f)| = |µ′(f)| = |Cf (µ(f) ∪ µ
′(f))| ≥ |Cf (µ(f))| = |µ(f)|

= |Cf (µ(f) ∪ µ(f))| ≥ |Cf (µ(f))| = |µ(f)|,

where the first equality is due to the equal-quota property, the second and the fourth equalities are by

Lemma 4.9 and (5) respectively, the remaining two equalities are due to the fact that µ and µ are individually

rational, and the two inequalities hold because of cardinal monotonicity.

We next show that the break-marriage procedure is successful. Consider the following two cases for a

worker w 6= w′. The first is when |µ′(w)| < qw. By the full-quota property, w has the same set of partners in

all stable matchings. In particular, µ′(w) = µ(w). We claim that only firms from µ(w) proposes to w during

the break-marriage procedure. Assume by contradiction that a firm f /∈ µ(w) proposes to w at step s (i.e.,

w ∈ Cf (X
(s)
f )). Then, since µ(f) = Cf(X

(s⋆)
f ) ⊆ X

(s⋆)
f ⊆ X

(s)
f due to (1) and (2), by substitutability, we

have w ∈ Cf (µ(f) ∪ {w}) and thus, w ∈ Cf (µ(f) ∪ {w}) because of (5) and Lemma 2.7. Since |µ(w)| < qw,

we also have that f ∈ Cw(µ(w)∪{f}) by the quota-filling property of Cw. However, this contradicts stability

of µ. Therefore, Y
(s)
w = X

(s)
w = µ′(w) for all s ∈ {0, 1, · · · , s⋆} by Lemma 4.2 and Lemma 4.10. Hence,

µ(w) = µ′(w) by (3).

We next consider the second case for worker w 6= w′, which is when |µ′(w)| = qw, and we claim that

|Y
(s)
w | = qw for all s ∈ {0} ∪ [s⋆]. We will show this by induction. For the base case with s = 0, we want

to show that X
(0)
w ⊇ µ′(w) because then we have |X

(0)
w | ≥ qw and thus |Y

(0)
w | = qw by quota-filling. Let

f ∈ µ′(w). If f 6= f ′, then by Lemma 4.2, we have w ∈ Cf(X
(0)
f ); and if f = f ′, by substitutability of Cf ′ , we

also have w ∈ Cf (X
(0)
f ) since w 6= w′. Hence, f ∈ X

(0)
w by definition of X

(0)
w . For the inductive step, assume

that |Y
(s−1)
w | = qw and we want to show that |Y

(s)
w | = qw. Because of Lemma 4.10, X

(s)
w ⊇ Y

(s−1)
w . Hence,

similar to the base case, we have |X
(s)
w | ≥ qw and subsequently |Y

(s)
w | = qw by quota-filling. Therefore,

|µ(w)| = |µ′(w)| by (3).

Combining both cases, we have |µ(w)| = |µ′(w)| for every worker w 6= w′. Together with (6), we have:

∑

w∈W\{w′}
|µ(w)| + |µ(w′)| =

∑

w∈W
|µ(w)| =

∑

f∈F
|µ(f)| =

∑

f∈F
|µ(f)|

=
∑

w∈W
|µ(w)| =

∑

w∈W\{w′}
|µ(w)| + |µ(w′)|.

Hence, we must also have |µ(w′)| = |µ′(w′)| = qw′ . Therefore, f ′ 6∈ Cw′(X
(s⋆−1)
w′ ∪ {f ′}) because otherwise

|µ(w′)| = |Cw′(X
(s⋆−1)
w′ ∪ {f ′}) \ {f ′}| ≤ qw′ − 1, where the inequality is by quota-filling. Hence, the break-

marriage procedure is successful.

Finally, by Lemma 4.13, we have µ ∈ S and µ′ ≻ µ. We also have µ � µ by (5). Therefore, it must be

that µ = µ since µ is an immediate descendant of µ′ in S. �

Example 4.14. Consider the following instance adapted from the one given in [29]. One can check that
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every choice function is quota-filling with quota 2.

f1 : ≥f1,1: w1 w4 w3 w2

≥f1,2: w2 w3 w4 w1

f2 : ≥f2,1: w1 w3 w4 w2

≥f2,2: w2 w4 w3 w1

f3 : ≥f3,1: w3 w1 w2 w4

≥f3,2: w4 w2 w1 w3

f4 : ≥f4,1: w3 w2 w1 w4

≥f4,2: w4 w1 w2 w3

w1 : ≥w1,1: f3 f2 f1 f4

≥w1,2: f4 f2 f1 f3

≥w1,3: f3 f4 f1 f2

w2 : ≥w2,1: f3 f1 f2 f4

≥w2,2: f4 f2 f1 f3

w3 : ≥w3,1: f1 f3 f4 f2

≥w3,2: f2 f3 f4 f1

≥w3,3: f1 f2 f4 f3

w4 : ≥w4,1: f1 f3 f4 f2

≥w4,2: f2 f3 f4 f1

≥w4,3: f1 f2 f4 f3

Consider the stable matching µ′ = ({w2, w4}, {w1, w2}, {w3, w4}, {w1, w3}), where, to be concise, we list

the assigned partners of firms f1, f2, f3, f4 in the exact order. Matched pairs are underlined above. The

closure of µ′ is

X(µ′) = {{w2, w3, w4}, {w1, w2, w3, w4}, {w1, w2, w3, w4}, {w1, w2, w3}}.

In the following, we describe the iterations of the break-marriage(µ′, f1, w2) procedure. The rejected firms

are bolded.

s = 0 s = 1 s = 2 s = 3

X
(s)
f1

{w3, w4} {w3, w4} {w3, w4} {w3, w4}

X
(s)
f2

{w1, w2, w3, w4} {w1, w2, w3, w4} {w1, w3, w4} {w1, w3, w4}

X
(s)
f3

{w1, w2, w3, w4} {w1, w2, w3, w4} {w1, w2, w3, w4} {w1, w2, w3}

X
(s)
f4

{w1, w2, w3} {w1, w2} {w1, w2} {w1, w2}

X
(s)
w1 {f2, f4} {f2, f4} {f2, f4} {f2, f4}

X
(s)
w2 {f2} {f2, f4} {f4} {f3, f4}

X
(s)
w3 {f1, f3,f4} {f1, f3} {f1, f3} {f1, f3}

X
(s)
w4 {f1, f3} {f1, f3} {f1, f2,f3} {f1, f2}

Y
(s)
w1 {f2, f4} {f2, f4} {f2, f4} {f2, f4}

Y
(s)
w2 {f2} {f4} {f4} {f3, f4}

Y
(s)
w3 {f1, f3} {f1, f3} {f1, f3} {f1, f3}

Y
(s)
w4 {f1, f3} {f1, f3} {f1, f2} {f1, f2}

The output matching is µ = ({w3, w4}, {w1, w4}, {w2, w3}, {w1, w2}), which, one can check, is stable.

Note the step highlighted in box above where Y
(1)
w2 = Cw2({f2, f4} ∪ {f1}) \ {f1} = {f1, f4} \ {f1} = {f4}. If

instead, w2 used the original (i.e., same as in the DA algorithm) acceptance rule and accepted both f2 and

f4, the algorithm would prematurely stopped after s = 1, without leading to a stable matching. △

We are now ready to present the algorithm that finds an immediate descendant for any given stable

matching, using the break-marriage procedure. The details of the algorithm are presented in Algorithm 3.
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Algorithm 3 Immediate descendant of stable matching µ′ 6= µW

Input: µ′, µW
1: initialize T ← ∅
2: for each (f ′, w′) ∈ µ′ \ µW do
3: run the break-marriage(µ′, f ′, w′) procedure

4: if the procedure is successful then add the output matching µ to T
5: end for
6: let µ∗ be a matching in T
7: for each µ ∈ T \ {µ∗} do
8: if µ � µ∗ then update µ∗ ← µ
9: end for ⊲ µ∗ is a maximal matching from T

Output: µ∗

Theorem 4.15. The output µ∗ of Algorithm 3 is an immediate descendant of µ′ in the stable matching

lattice (S,�).

Proof. First note that due to Lemma 4.13, all matchings in the set T constructed by Algorithm 3 are stable

matchings and µ′ � µ for all µ ∈ T . Moreover, we claim that T 6= ∅. Let µ1 ∈ S such that µ′ is an immediate

predecessor of µ1 in (S,�⋆). Such a stable matching µ1 exists because µ′ 6= µW . Because of Lemma 3.22,

we have µ′ \ µ1 ⊆ µ′ \ µW and thus by Theorem 4.7, we have µ1 ∈ T . Hence, T 6= ∅ as desired. Now, to

prove the theorem, assume by contradiction that the output matching µ∗ is not an immediate descendant

of µ′ in (S,�). Then, there exists a stable matching µ such that µ′ ≻ µ ≻ µ∗. By Lemma 3.22, for every

firm-worker pair (f ′, w′) ∈ µ′ \ µ, we also have (f ′, w′) /∈ µW . Thus, µ ∈ T due to Theorem 4.7. However,

this means that µ∗ is not a maximal matching from T , which is a contradiction. �

Finally, putting everything together, Algorithm 4 finds a maximal chain of the stable matching lattice,

as well as the set of rotations. Its correctness follows from Theorem 4.15, Theorem 4.6, and Theorem 3.19.

Algorithm 4 A maximal chain of (S,�) and the set of rotations Π

Input: µF and µW
1: initialize counter k ← 0 and Ck ← µF
2: while Ck 6= µW do
3: run Algorithm 3 with input Ck and µW , and let µ∗ be its output

4: update counter k ← k + 1 and Ck ← µ∗

5: end while
Output: maximal chain C0, C1, · · · , Ck; and Π = {ρi := ρ(Ci−1, Ci) : i ∈ [k]}.

4.3 Finding irreducible elements via maximal chains

The goal of this section is to prove the following. Note that the result below holds for any ring of sets.

Theorem 4.16. Consider a ring of sets (H,⊆) with base set B. Let C0, C1, · · · , Ck be a maximal chain of

(H,⊆) and let Ki := Ci \ Ci−1 for all i ∈ [k]. For H ⊆ B, let ros-membership denote the running time

of an algorithm that decides if H ∈ H. There exists an algorithm with running time O(k2ros-membership)

that takes C0, C1, · · · , Ck as input and outputs, for each minimal difference Ki, a set of indices Λ(Ki) such
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that I(Ki) =
⋃
{Kj : j ∈ Λ(Ki)} ∪ C0. In particular, this algorithm can be used to obtain the partial order

⊒ over D(H).

We start with the theorem below, which gives an alternative definition of the partial order ⊒.

Theorem 4.17 (Theorem 2.4.4, [21]). Let K1,K2 ∈ D(H). Then, K1 ⊒ K2 if and only if K1 appears before

K2 on every maximal chain in (H,⊆).

We now present the algorithm stated in Theorem 4.16 in Algorithm 5. The idea is as follows. In order to

find I(Ki) (i.e., the minimal element in H that contains Ki), the algorithm tries to remove from the set Ci as

many items as possible, while keeping Ci ∈ H. That is, the algorithm removes from Ci all minimal differences

K ∈ {K1,K2, · · · ,Ki} such that K 6⊒ Ki. As we show in the proof of Theorem 4.16, the resulting set is

I(Ki). A demonstration of this algorithm is given in Example 4.18 on the ring of sets from Example 3.14.

Algorithm 5

Input: A maximal chain C0, C1, · · · , Ck of (H,⊆).
1: for i = 1, 2, · · · , k do
2: define Ki ← Ci \ Ci−1

3: initialize H ← Ci and Λ(Ki)← {1, 2, · · · , i}
4: for j = i− 1, i− 2, · · · , 1 do
5: if H \Kj ∈ H then
6: update H ← H \Kj and Λ(Ki)← Λ(Ki) \ {j}
7: end if
8: end for
9: end for

Output: Λ(Ki) for all i ∈ [k]

Example 4.18. Consider the ring of sets given in Example 3.14, and assume Algorithm 5 takes in the

maximal chain C0 = H1, C1 = H2, C2 = H4, C3 = H6, C4 = H7. Then, K1 = {b}, K2 = {c}, K3 = {d, e}

and K4 = {f}. Now, image we would like to obtain Λ(K3). From Figure 3a, it is clear that I(K3) = H5 and

thus, Λ(K3) = {2, 3}. During Algorithm 5, at the outer for loop with i = 3, H is initialized to be C3 = H6.

In the first iteration of the inner for loop, since H6 \K2 = {a, b, d, e} /∈ H, Λ(K3) remains {1, 2, 3}. Next,

H is updated to be H6 \K1 = H5 and Λ(K3) is updated to be {2, 3}. The output is as expected. △

We now give the proof of Theorem 4.16.

Proof of Theorem 4.16. It is clear that the running time of Algorithm 5 is O(k2ros-membership). Suppose

first the output of Algorithm 5 is correct, that is, I(Ki) =
⋃
{Kj : j ∈ Λ(Ki)} ∪ C0. Then, for two minimal

differences Ki1 ,Ki2 ∈ D(H), Ki1 ⊒ Ki2 if and only if Λ(Ki1) ⊆ Λ(Ki2) by definition of ⊒. Hence, the partial

order ⊒ can be obtained in time O(k2) from the output of Algorithm 5. It remains to show the correctness

of Algorithm 5. Fix a value of i ∈ [k] and for the following, consider the ith iteration of the outer for loop

of the algorithm. Let {j1, j2, · · · , jM} be an enumeration of Λ(Ki) at the end of the iteration such that

j1 < j2 < · · · < jM . Note that jM = i. We start by showing the following claim.

Claim 4.18.1. For all m ∈ [M − 1], Kjm ⊒ Ki.

Proof. We prove this by induction on m, where the base case is m = M − 1. We start with the base

case. Note that jm is the first index for which the if statement at Line 5 is evaluated to be false. That is,
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(
⋃jm
ℓ=1Kℓ)∪Ki∪C0 ∈ H but (

⋃jm−1
ℓ=1 Kℓ)∪Ki∪C0 /∈ H. By Lemma 3.13, {K1,K2, · · · ,Kjm ,Ki} is an upper

set of (D(H),⊒), and by Theorem 3.11, {K1,K2, · · · ,Kjm−1,Ki} is not an upper set of (D(H),⊒). Since for

all j′ < jm, Kjm 6⊒ Kj′ because of Theorem 4.17, the reason why {K1,K2, · · · ,Kjm−1,Ki} is not an upper set

of (D(H),⊒) must be that Kjm ⊒ Ki. For the inductive step, assume the claim is true for all m′ > m and we

want to show thatKjm ⊒ Ki. Note that again by Theorem 3.11, {K1,K2, · · · ,Kjm ,Kjm+1 ,Kjm+2 , · · · ,Ki} is

an upper set of (D(H),⊒) but {K1,K2, · · · ,Kjm−1,Kjm+1 ,Kjm+2 , · · · ,Ki} is not an upper set of (D(H),⊒).

With the same argument as in the base case, since for all j′ < jm, Kjm 6⊒ Kj′ by Theorem 4.17, it must be

that Kjm ⊒ Kjm′ for some m′ > m. Therefore, applying the inductive hypothesis, we have Kjm ⊒ Ki as

desired. �

Let H∗ be set H at the end of ith iteration of the outer for loop. Note that H∗ =
⋃
{Kj : j ∈ Λ(Ki)}∪C0

by construction. Since Ki ⊆ H∗, we have I(Ki) ⊆ Ci ⊆ H∗ by definition. Also note that by definition,

I(Ki) ∈ H. Assume by contradiction that H∗ 6= I(Ki) (i.e., H∗ 6⊆ I(Ki)). Consider a complete chain from

the minimal element H0 of (H,⊆) to I(Ki) in (H,⊆), whose existence is guaranteed by Theorem 4.6. Then,

at least one minimal difference from {Kj : j ∈ Λ(Ki) \ {i}}, call it K ′, is not contained in this complete

chain. However, this means K ′ 6⊒ Ki due to Theorem 4.6, which contradicts Claim 4.18.1. Therefore, we

must have I(Ki) = H∗. �

4.4 Partial order �⋆ over Π

In this section, we show how to obtain the partial order �⋆ over the rotation poset Π. Recall that as

stated in Theorem 4.16 of the previous section, there exists an algorithm that finds the partial order ⊒ over

D := D(P) when given as input a maximal chain of P . Employing the isomorphism between S and P shown

in Theorem 3.1 and that between D and Π shown in Theorem 3.19, we adapt the algorithm so that from a

maximal chain of S, we obtain the partial order �⋆ over Π.

Algorithm 6

Input: outputs of Algorithm 4 – maximal chain C0, · · · , Ck of (S,�) and the set of rotations

Π = {ρi := ρ(Ci−1, Ci) : i ∈ [k]}
1: for i = 1, 2, · · · , k do
2: initialize µ← Ci and Λ(ρi)← {1, 2, · · · , i}
3: for j = i− 1, i− 2, · · · , 1 do
4: if µ△ρ−j △ρ

+
j ∈ S then

5: update µ← µ△ρ−j △ρ
+
j and Λ(ρi)← Λ(ρi) \ {j}

6: end if
7: end for
8: end for

Output: Λ(ρi) for all i ∈ [k]

Theorem 4.19. Let Λ(ρ) and Λ(ρ′) be the outputs of Algorithm 6 for rotations ρ, ρ′ ∈ Π, respectively. Then,

ρ �⋆ ρ′ if and only if Λ(ρ) ⊆ Λ(ρ′).

Proof. To distinguish between the inputs of Algorithm 6 and Algorithm 5, we let µ0, µ1, · · · , µk denote the

maximal chain in the input of Algorithm 6. Consider the outputs of Algorithm 5 with inputs Ci = P (µi) for

all i ∈ [k]∪{0}. Then, because of the isomorphism between (S,�) and (P ,⊆) and the isomorphism between
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(Π,�⋆) and (D,⊒) as respectively stated in Theorem 3.1 and Theorem 3.19, Ki = Q(ρi) and Λ(ρi) = Λ(Ki)

for all i ∈ [k], where Ki = Ci \ Ci−1 as defined in Algorithm 5. Thus, together with Theorem 4.16,

ρ �⋆ ρ′ ⇔ Q(ρ) ⊒ Q(ρ′)⇔ Λ(Q(ρ)) ⊆ Λ(Q(ρ′))⇔ Λ(ρ) ⊆ Λ(ρ′),

concluding the proof. �

Example 4.20. Consider the instance given in Example 3.28 and assume the maximal chain we obtained

is C0 = µF , C1 = µ2, C2 = µ3, C3 = µW so that we exactly have ρi = ρ(Ci−1, Ci) for all i ∈ [3] as denoted

in Example 3.28. Imagine we want to compare ρ1 and ρ2. As shown in Figure 5b, ρ1 �
⋆ ρ2. First, consider

the outer for loop of Algorithm 6 with i = 1. Then the body of the inner for loop is not executed and

immediately we have Λ(ρ1) = {1}. Next, consider the outer for loop of Algorithm 6 with i = 2. Then, µ

is initialized to be µ3 and Λ(ρ2) is initialized to be {1, 2}. During the first and only iteration of the inner

for loop, since µ3△ρ
−
1 △ρ

+
1 is not a stable matching, Λ(ρ2) is not updated and remains {1, 2}. Finally,

Λ(ρ1) ⊆ Λ(ρ2) and thus, ρ1 �⋆ ρ2 as expected. △

4.5 Summary and time complexity analysis

The complete procedure to build the rotation poset is summarized in Algorithm 7.

Algorithm 7 Construction of the rotation poset (Π,�⋆)

1: Run Algorithm 1’s, firm-proposing and worker-proposing, to obtain µF and µW .

2: Run Algorithm 4 to obtain a maximal chain C0, C1, · · · , Ck of the stable matching lattice (S,�),
and the set of rotations Π ≡ {ρ1, ρ2, · · · , ρk}.

3: Run Algorithm 6 to obtain the sets Λ(ρi) for each rotation ρi ∈ Π.

4: Define the partial order relation �⋆: for ρi, ρj ∈ Π, ρi �
⋆ ρj ⇔ Λ(ρi) ⊆ Λ(ρj).

The rest of the section focuses on time complexity analysis.

Theorem 4.21. Algorithm 7 runs in time |W |3|F |3oracle-call.

DA algorithm (Algorithm 1). Because of Lemma 4.10 and Lemma 4.11, Algorithm 1 can be imple-

mented as in Algorithm 8 to reduce the number of oracle-calls. In particular, during each repeat loop,

only firms that are rejected in the previous step (i.e., in F ) and only workers who receive new proposals (i.e.,

in W ) need to invoke their choice functions. Therefore, the for loop at Line 5 is entered at most |F ||W |

times, and similarly, the for loop at Line 13 is entered at most |F ||W | times. That is, the total number of

oracle-calls is O(|F ||W |). Moreover, and for each firm-worker pair (f, w), w is removed from Xf at most

once and f is added to Xw at most once. That is, Line 8 (resp. Line 16) is repeated at most |F ||W | times.

Therefore, the running time of the DA algorithm is O(|F ||W |oracle-call).

Break-marriage procedure (Algorithm 2). Since the core steps (i.e., the loops) of the break-

marriage procedure is the same as that of the DA algorithm, the running time of the break-marriage procedure

is O(|F ||W |oracle-call), with the same arguments as above.

Immediate descendant (Algorithm 3). Recall that qf denotes the number of workers matched to

firm f under any stable matching (see the equal-quota property). Let Υ :=
∑

f∈F qf denote the number of
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Algorithm 8 Efficient implementation of Algorithm 1

1: set F ← F and W ← ∅
2: for each firm f do initialize Xf ←W (f) and Y prev

f ← ∅ end for

3: for each worker w do initialize Xw ← ∅ and Y prev

w ← ∅ end for
4: repeat
5: for each firm f ∈ F do
6: Af ← Cf (Xf )
7: for each worker w ∈ Af \ Y

prev

f do

8: update Xw ← Xw ∪ {f} and W ←W ∪ {w}
9: end for

10: update Y prev

f ← Af

11: end for
12: re-set F ← ∅
13: for each worker w ∈W do
14: Xw ← C(Xw)
15: for each firm f ∈ Y prev

w \Xw do
16: update Xf ← Xf \ {w} and F ← F ∪ {f}
17: end for
18: update Y prev

w ← Xw

19: end for
20: re-set W ← ∅
21: until F = ∅
Output: matching µ with µ(w) = Y prev

w for every worker w; closure X̃(µ) with X̃f (µ) = Xf for

every firm f

worker-firm pairs in any stable matching. Then, Algorithm 2 is run for at most Υ times. In addition, finding

one maximal element µ∗ from T requires at most Υ comparisons of pairs of stable matchings, each of which

requires |F | oracle-calls by Part (3) of Lemma 4.4. All together, since Υ ≤ |F ||W |, the running time of

Algorithm 3 is O(|F |2|W |2oracle-call).

Maximal chain (Algorithm 4). Since the length of a maximal chain of P , and equivalently of S due

to Theorem 3.1, is at most the size of its base set due to Lemma 3.10 and Theorem 4.6, Algorithm 3 is

repeated for at most |F ||W | times. Thus, the running time of Algorithm 4 is O(|F |3|W |3oracle-call).

Partial order �⋆ (Algorithm 6). Recall that checking if a matching is stable requires O(|F ||W |)

oracle-calls by Part (2) of Lemma 4.4. Thus, ros-membership is O(|F ||W |oracle-call). Since k is at

most |F ||W | as argued above, the running time of Algorithm 6 is O(|F |3|W |3oracle-call).

Rotation poset (Π,�⋆) (Algorithm 7). Summing up the time of running Algorithm 1 twice, then

Algorithm 4, and lastly Algorithm 6, the time complexity for building (Π,�⋆) is O(|F |3|W |3oracle-call).
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5 The convex hull of lattice elements

Consider a poset (Y,�⋆). Its associated order polytope is defined as

O(Y,�⋆) := {y ∈ [0, 1]Y : yi ≥ yj , ∀i, j ∈ Y s.t. i �⋆ j}.

A characterization of vertices and facets of O(X,�⋆) is given in [39].

Theorem 5.1 ([39]). The vertices of O(Y,�⋆) are the characteristic vectors of upper sets of Y . The facets

of O(Y,�⋆) are all and only the following: yi ≥ 0 if i is a minimal element of the poset; yi ≤ 1 if i is a

maximal element of the poset; yi ≥ yj if i is an immediate predecessor of j.

Proof of Theorem 1.6. Let (Y,�⋆) affinely represent (X,�) via functions ψ and g(u) = Au + x0. We claim

that
conv(X ) := conv({χµ : µ ∈ X}) = {x0} ⊕A · O(Y,�⋆)

= {x ∈ RX : x = x0 +Ay, y ∈ O(Y,�⋆)},
(7)

where ⊕ denotes the Minkowski sum operator. Indeed, by definition of affine representation and the fact that

both polytopes, conv(X ) and O(Y,�⋆), have 0/1 vertices, g defines a bijection between vertices of these two

polytopes. Convexity then implies (7). As O(Y,�⋆) has O(|Y |2) facets shown in Theorem 5.1, we conclude

the first statement from Theorem 1.6.

Now suppose that A has full column rank. This implies that conv(X ) is affinely isomorphic to O(Y,�⋆).

Hence, there is a one-to-one correspondence between facets of O(Y,�⋆) and facets of conv(X ), concluding

the proof. �

Following the proof of Theorem 1.6, when a poset B = (Y,�⋆) affinely represent a lattice L = (X ,�∗)

via a function g(u) = Au+ x0, with A having full column rank, many properties of conv(X ) can be derived

from the analogous properties of O(Y,�∗). For instance, the following immediately follows from the fact

that O(Y,�∗) is full-dimensional.

Corollary 5.2. Let B = (Y,�⋆) affinely represent the lattice L = (X ,�) via functions ψ and g(u) = Au+x0,

with A having full column rank. Then the dimension of conv(X ) is equal to the number of elements in B.

Example 5.3 shows that statements above need not hold when A does not have full column-rank.

Example 5.3. Consider the lattice (X ,�) and its representation poset (Y,�⋆) from Example 1.8. Note

that

conv(X ) = {x ∈ [0, 1]4 : x1 = 1, x2 + x3 = 1}.

Thus, conv(X ) has dimension 2. On the other hand, O(Y,�⋆) has dimension 3. So the two polytopes are

not affinely isomorphic. Polytopes conv(X ) and O(Y,�⋆) are shown in Figure 6.

More generally, one can easily construct a “trivial” distributive lattice (X ,�) such that the number of

facets of O(Y,�⋆) gives no useful information on the number of facets of conv(X ), where (Y,�⋆) is a poset

that affinely represents (X ,�). In fact, the vertices of any 0/1 polytope can be arbitrarily arranged in a

chain to form a distributive lattice (X ,�). A poset O(Y,�⋆) that affinely represents (X ,�) is given by a

chain with |Y | = |X | − 1. It is easy to see that O(Y,�⋆) is a simplex and has therefore |Y |+1 = |X | facets.

However, conv(X ) could have much more (or much less) facets than the number of its vertices. △
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x2

x4

x3

(a) conv(X ) in the space of x1 = 1

y1

y3

y2

(b) O(Y,�⋆)

Figure 6: Polytopes for Example 5.3.

6 Representations of choice functions and algorithms

Recall our previous observation that a choice function may be defined on all the (exponentially many) subsets

of agents from the opposite side. The oracle model bypasses the computational concerns of representing

choice functions explicitly. However, one drawback of this model is that it requires multiple rounds of

communication between the “central planner” and each agent in the market. This, from an application point

of view, is time-consuming: one of the major improvements brought about by the implementations of the

Deferred Acceptance algorithm when applied, e.g., to the New York City school system, lies in the fact that

it does not require multiple rounds of communication between the agents and the central planner [2].

This observation leads to the following practically relevant and theoretically intriguing questions: is

there a way to represent choice functions “compactly”, and do our algorithms perform efficiently in such a

model? A natural starting point is the MC-representation defined in Section 2.3. We show in Section 6.1

that the time complexity of our algorithms in the model where choice functions are given through their

MC-representation is polynomial in the input size (where now the input includes the MC-representations).

However, the MC-representation of a choice function may need a number of preference relations that are

exponential in the number of agents (see Remark 6.1).

It is therefore interesting to investigate whether there are other ways to represent choice functions that

is of size polynomial in the number of agents. Via a counting argument, we give a negative answer to this

question in Section 6.2 for choice functions that are substitutable, consistent, and cardinal monotone (see

Theorem 6.4 and Remark 6.5). We remark that our argument leaves it open whether a similar result holds

if we replace cardinal monotonicity with quota-filling.

6.1 Algorithms with MC-representation

In this section, we show how to modify the algorithms and analyze their time complexities when agents’

choice functions are explicitly given via the MC-representations.

In Algorithm 1 and Algorithm 2, instead of relying on an oracle model, we need to compute the outcomes

of choice functions Ca(S) for agent a ∈ F∪W and subset of acceptable partners S. Using results in Section 2.3,

Ca(S) can be obtained as a set of maximizers: {max(S,≥a,i) : i ∈ [p(Ca)]}. Since each max(S,≥a,i) re-

quires O(max(|F |, |W |) time to compute, the time-complexity for obtaining Ca(S) is O(max(|F |, |W |)p(Ca)).

Thus, for all previous results in terms of time complexity, one can simply replace O(oracle-calls) with

O(max(|F |, |W |)maxa∈F∪W p(Ca)). Note that this time complexity bound is polynomial in the input size,

but could be exponential in the number of agents, since maxa∈F∪W p(Ca) maybe exponential in the number

of the agents as discussed in Remark 6.1.
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Remark 6.1. [15] constructed strict preference lists (i.e., choice functions for the MM-Model) whose MC-

representation needs exponentially many preference relations. Since such choice functions is a special case

of the quota-filling choice functions, in general the MC-representation of quota-filling choice functions is not

polynomial in the number of agents.

6.2 On the number of substitutable, consistent, and cardinal monotone choice

functions

In this section, the domain of all choice functions is the family of subsets of X , with |X | = n. The simplest

choice functions C appears in the SM-Model, where there is a single underlying strict preference list. The

number of such choice functions is

n∑

i=0

(
n

i

)
i! =

n∑

i=0

n!

(n− i)!
=

n∑

i=0

n!

(n− i)!
= n!

n∑

i=0

1

i!
≤ en!,

hence, singly exponential in n. On the other extreme, the number of all choice functions is doubly-exponential

in n (see, e.g., [16]). We give the proof of this fact for completeness.

Theorem 6.2. The number of choice functions on subsets of X with |X | = n is 2n2
n−1

.

Proof. Since for each set of partners S ⊆ X with |S| = i, C(S) can take 2i possible values and there are
(
n
i

)

subsets of X with size i, the number of possible choice function is
∏n
i=1(2

i)(
n
i). Taking the logarithm with

base 2, we have

log2

(
n∏

i=1

(2i)(
n
i)

)
=

n∑

i=1

(
n

i

)
i =

n∑

i=1

n!

(n− i)!(i− 1)!
= n

n−1∑

i′=0

(n− 1)!

(n− 1− i′)!(i′)!
= n2n−1.

�

It has also been shown by Echenique [16] that when choice functions are assumed to be substitutable

and consistent (i.e., path-independent), the number of choice functions remains doubly exponential in n.

Theorem 6.3 ([16])). The number of substitutable and consistent choice functions on subsets of X with

|X | = n is 2
Ω
(

2n−1
√

n−1

)

.

In the rest of the section, we show that the number of choice functions that additionally satisfies cardinal

monotonicity remains doubly exponentially in n. The proof idea follows from that given in [16].

Theorem 6.4. The number of substitutable, consistent, and cardinal monotone choice functions on subsets

of X with |X | = n is 2
Ω
(

2n−1
√

n−1

)

.

Remark 6.5. Because of Theorem 6.4, in order to encode all substitutable, consistent, and cardinal mono-

tone choice function in binary strings, we need a number of strings that is super-polynomial in n, i.e., the

number of agents in the market.

A family of subsets A ⊆ 2X is an antichain of (2X ,⊆) if for any subsets A,B ∈ A, they are not

comparable, i.e., A \ B 6= ∅ and B \ A 6= ∅. A family of subsets F ⊆ 2X is a filter (i.e., lower set) if for all

F ∈ F , F ′ ⊇ F implies F ′ ∈ F . Moreover, we say filter F is a filter at x if for all F ∈ F , we have x ∈ F .

Note that ∅ is a filter at x.
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Theorem 6.6 ([16]). There is an injective function mapping collections of antichains A = {Ax : x ∈ X}

where each Ax is an antichain of the poset (2X\{x},⊆) to substitutable choice functions. The image of A is

defines as follows: for all C ⊆ X,

C(S) := {x ∈ S : S /∈ Tx},

where

Tx := {B ⊆ X : A ∪ {x} ⊆ B for some A ∈ Ax}.

Moreover, Tx is a filter at x for all x ∈ X.

Because of Theorem 6.6, let C[A] denote the substitutable choice function corresponding to the collection

of antichains A constructed by the statement of the theorem.

Lemma 6.7. Let (Y,W ) be a partition of X with W = {w}. Let A = {Ax : x ∈ X} be a collection

of antichains such that (i) for all x ∈ Y , Ax = ∅ and (ii) Aw is an antichain of (2Y ,⊆). Then C[A] is

consistent and cardinal monotone.

Proof. We abbreviate C := C[A]. Let Tx be as defined in the statement of Theorem 6.6. That is, Tx = ∅ for

all x ∈ Y and Tw is a filter at w. Hence, note that S ∩ Y ⊆ C(S) for all S ⊆ X (♯).

Let T ⊆ X . We consider first the case when w /∈ T . Then, C(T ) = T because of (♯). Let S ⊆ X be such

that C(T ) ⊆ S ⊆ T . Then it must be that S = T and it follows immediately that C(T ) = C(S). In addition,

for all S ⊆ T , we also have S ⊆ Y and thus, using (♯) again, |C(S)| = |S| ≤ |T | = |C(T )|.

We next consider the case when w ∈ T . Then, either C(T ) = T or C(T ) = T \ {w}, again because of

(♯). We start with the consistency property. Assume we are in the former case, and let S ⊆ X be such that

C(T ) ⊆ S ⊆ T . Since T = C(T ), we have S = T and thus C(T ) = C(S). Now assume we are in the latter case:

C(T ) = T \{w}. If S ⊆ X satisfies C(T ) ⊆ S ⊆ T , we either have S = T or S = T \{w}. Regardless, we have

C(S) = C(T ). Lastly, we show the cardinality monotonicity property, and we consider both cases at once. For

all S ( T , we either have C(S) = S or C(S) = S \{w} due to (♯). Either way, |C(S)| ≤ |S| ≤ |T |−1 ≤ |C(T )|.

Hence, C is both consistent and cardinal monotone, concluding the proof. �

Thus, a lower bound to the number of substitutable, consistent, and cardinal monotone choice functions

can be obtained by counting the number of antichains. The problem of counting the number of antichains

of a poset is called the Dedekind’s problem. Let N (k) denote the collection of antichains of poset (2[k],⊆).

The following result is well-known and we include the proof for completeness.

Lemma 6.8. |N (k)| ≥ 2(
k

⌊k/2⌋) = 2Θ(2k/
√
k).

Proof. Consider any two distinct subsets A,B ⊆ X with |A| = |B|, then it must be that A \ B 6= ∅ and

B \ A 6= ∅. Thus, a collection of subsets, each with the same size, is an antichain of (2[k],⊆). Therefore,

the number of antichains of (2[k],⊆) is at least the number of subsets of {A ⊆ X : |A| = ⌊k/2⌋}, which is

exactly 2(
k

⌊k/2⌋) since there are
(

k
⌊k/2⌋

)
subsets of X with size ⌊k/2⌋. The last equality follows from Stirling’s

approximation. �

We now present the proof for Theorem 6.4.

Proof of Theorem 6.4. Let (Y,W ) be a partition of X with |Y | = n− 1 and |W | = 1, as in the statement of

Lemma 6.7. By Lemma 6.8, the possible choices of antichains Ax for x ∈ W is at least N (n− 1). Hence, the

number of A (i.e., collection of antichains) in the statement of Lemma 6.7 is also at least N (n− 1). Finally,

together with Theorem 6.6, we have that the number of substitutable, consistent, and cardinal monotone

choice functions is again at least N (n− 1). �
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7 Concluding remarks

Our results show that approaching stable matching problems by regarding their feasible regions as a dis-

tributive lattice leads to efficient optimization algorithms and a polyhedral description of the associated

convex sets. Our study leaves some questions open and it poses research directions which we think are worth

exploring.

First, it is not clear if algorithms from Section 4 extend to the CM-Model – or even beyond – and if

conversely the lower bound from Section 6 extends to choice functions that are quota-filling. Second, there

has been some recent work showing how feasible regions of certain problems in combinatorial optimization

can be seen as a distributive lattice [20]. This fact, combined with our approach, may lead to (known or

new) efficient algorithms for optimizing linear functions over the associated polytopes.
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