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Instantaneous dynamic equilibrium (IDE) is a standard game-theoretic con-
cept in dynamic traffic assignment in which individual flow particles myopically
select en route currently shortest paths towards their destination. We analyze
IDE within the Vickrey bottleneck model, where current travel times along a
path consist of the physical travel times plus the sum of waiting times in all the
queues along a path. Although IDE have been studied for decades, several fun-
damental questions regarding equilibrium computation and complexity are not
well understood. In particular, all existence results and computational methods
are based on fixed-point theorems and numerical discretization schemes and no
exact finite time algorithm for equilibrium computation is known to date. As our
main result we show that a natural extension algorithm needs only finitely many
phases to converge leading to the first finite time combinatorial algorithm com-
puting an IDE. We complement this result by several hardness results showing
that computing IDE with natural properties is NP-hard.

1. Introduction
Flows over time or dynamic flows are an important mathematical concept in network flow
problems with many real world applications such as dynamic traffic assignment, production
systems and communication networks (e.g., the Internet). In such applications, flow particles
that are sent over an edge require a certain amount of time to travel through each edge and
when routing decisions are being made, the dynamic flow propagation leads to later effects
in other parts of the network. A key characteristic of such applications, especially in traffic
assignment, is that the network edges have a limited flow capacity which, when exceeded,
leads to congestion. This phenomenon can be captured by the fluid queueing model due to
Vickrey [27]. The model is based on a directed graph G = (V,E), where every edge e has
an associated physical transit time τe ∈ R+ and a maximal rate capacity νe ∈ R+. If flow
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Figure 1.: An edge e = vw. As the inflow rate at node v exceeds the edge’s capacity, a queue forms at
its tail.

enters an edge with higher rate than its capacity the excess particles start to form a queue
at the edge’s tail, where they wait until they can be forwarded onto the edge (cf. Figure 1).
Thus, the total travel time experienced by a single particle traversing an edge e is the sum
of the time spent waiting in the queue of e and the physical transit time τe.
This physical flow model then needs to be enhanced with a behavioral model prescribing

the actions of flow particles. There are two main standard behavioral models in the traffic
assignment literature known as dynamic equilibrium (DE) (cf. Ran and Boyce [22, § V-VI])
and instantaneous dynamic equilibrium (IDE) ([22, § VII-IX]). Under DE, flow particles have
complete information on the state of the network for all points in time (including the future
evolution of all flow particles) and based on this information travel along a shortest path.
The full information assumption is usually justified by assuming that the game is played
repeatedly and a DE is then an attractor of a learning process. The behavioral model of IDE
is based on the idea that drivers are informed in real-time about the current traffic situation
and, if beneficial, reroute instantaneously no matter how good or bad that route will be in
hindsight. Thus, at every point in time and at every decision node, flow only enters those
edges that lie on a currently shortest path towards the respective sink. This concept assumes
far less information (only the network-wide queue lengths which are continuously measured)
and leads to a distributed dynamic using only present information that is readily available
via real-time information. IDE has been proposed already in the late 80’s (cf. Boyce, Ran
and LeBlanc [1, 23] and Friesz, Luque, Tobin, and Wie [9]).
A line of fairly recent works starting with Koch and Skutella [18] and Cominetti, Correa

and Larré [3] derived very elegant combinatorial characterizations of DE for the fluid queueing
model of Vickrey. They derived a complementarity description of DE flows via so-called thin
flows with resetting which leads to an α-extension property stating that for any equilibrium
up to time θ, there exists α > 0 so that the equilibrium can be extended to time θ + α.
An extension that is maximal with respect to α is called a phase in the construction of
an equilibrium and the existence of equilibria on the whole R+ then follows by a limit
argument over the phases. In the same spirit, Graf, Harks and Sering [11] established a
similar characterization for IDE flows and also derived an α-extension property.

For both models (DE or IDE), it is an open question whether for constant inflow rates
and a finite time horizon, a finite number of phases suffices to construct an equilibrium, see
[3, 18] and [11]. This problem remains even unresolved for single-source single-sink series-
parallel graphs as explicitly mentioned by Kaiser [17]. Proving finiteness of the number of
phases would imply an exact finite time algorithm. Such an algorithm is not known to date
neither for DE nor for IDE.1 More generally, the computational complexity of equilibrium
computation is widely open.

1Algorithms for DE or IDE computation used in the transportation science literature are numerical, that
is, only approximate equilibrium flows are computed given a certain numerical precision, see the related
work for a more detailed comparison.
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1.1. Our Contribution and Proof Techniques
In this paper, we study IDE flows and derive algorithmic and computational complexity
results. As our main result we settle the key question regarding finiteness of the α-extension
algorithm.

Theorem 3.7: For single-sink networks with piecewise constant inflow rates for a fi-
nite time horizon, there is an α-extension algorithm computing an IDE after finitely
many extension phases. This implies the first finite time combinatorial exact algorithm
computing IDE within the Vickrey model.

The proof of our result is based on the following ideas. We first consider the case of acyclic
networks and use a topological order of vertices in order to schedule the extension phases in
the algorithm. The key argument for the finiteness of the number of extension phases is that
for a single node v and any interval with linearly changing distance labels of nodes closer
to the sink and constant inflow rate into v this flow can be redistributed to the outgoing
edges in a finite number of phases of constant outflow rates from v. We show this using the
properties (derivatives) of suitable edge label functions for the outgoing edges (see the graph
in Figure 3). The overall finiteness of the algorithm follows by induction over the nodes
and time. We then generalize to arbitrary single-sink networks by considering dynamically
changing topological orders depending on the current set of active edges. Finally, a closer
inspection of the proofs also enables us to give an explicit upper bound on the number of
extension steps in the order of

O
(
P
(
2(∆ + 1)4∆+1

)2L·|E|·|V |·T/τ2
min

)
,

where P is the number of constant phases of the network inflow rates, ∆ the maximum out
degree in the network, T the termination time, L an upper bound on the absolute value of
the derivatives of the distance labels depending on the network inflow rates and the edge
capacities of the given network and τmin the shortest physical transit time of all edges of the
given network.
We then turn to the computational complexity of IDE flows. Our first result here is a

lower bound on the output complexity of any algorithm. We construct an instance in which
the unique IDE flow oscillates with a changing periodicity (see Figure 4).

Theorem 4.1: There are instances for which the output complexity of an IDE flow
is not polynomial in the encoding size of the instance, even if we are allowed to use
periodicity to reduce the encoding size of the flow.

We also show that several natural decision problems about the existence of IDE flows with
certain properties are NP-hard.

Theorem 4.9: The following decision problems are all NP-hard:
• Given a specific edge: Is there an IDE using/not using this edge?
• Given some time horizon T : Is there an IDE that terminates before T?
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• Given some k ∈ N: Is there an IDE with at most k phases?

The proof is a reduction from 3SAT, wherein for any given 3SAT-formula we construct a
network (see Figure 10) with the following properties: If the 3SAT-formula is satisfiable there
exists a quite simple IDE flow, where all flow particles travel on direct paths towards the sink.
If, on the other hand, the 3SAT-formula is unsatisfiable all IDE flows in the corresponding
network lead to congestions diverting a certain amount of flow into a separate part of the
network. Placing different gadgets in this part of networks then allows for the reduction to
various decision problems involving IDE flows.

1.2. Related Work
The concept of flows over time was studied by Ford and Fulkerson [7]. Shortly after, Vick-
rey [27] introduced a game-theoretic variant using a deterministic queueing model. Since
then, dynamic equilibria have been studied extensively in the transportation science litera-
ture, see Friesz et al. [9]. New interest in this model was raised after Koch and Skutella [18]
gave a novel characterization of dynamic equilibria in terms of a family of static flows (thin
flows) which was further refined by Cominetti, Correa and Larré in [3]. Using this new
approach Sering and Skutella [25] considered dynamic equlibria in networks with multiple
sources or multiple sinks, Correa, Cristi, and Oosterwijk [6] derived a bound on the price of
anarchy for dynamic equilibria and Sering and Vargas-Koch [26] incorporated spillbacks in
the fluid queuing model. In a very recent work, Kaiser [17] showed that the thin flows needed
for the extension step in computing dynamic equilibria can be determined in polynomial time
for series-parallel networks. Several of these papers ([3, 6, 17, 25]) also explicitly mention
the problem of possible non-finiteness of the extension steps.
In the traffic assignment literature, the concept of IDE was studied by several papers such

as Ran and Boyce [22, § VII-IX], Boyce, Ran and LeBlanc [1, 23], Friesz et al. [9]. These
works develop an optimal control-theoretic formulation and characterize instantaneous user
equilibria by Pontryagin’s optimality conditions. For solving the control problem, Boyce,
Ran and LeBlanc [1] proposed to discretize the model resulting in finite dimensional NLP
whose optimal solutions correspond to approximative IDE. While this approach only gives an
approximative equilibrium, there are further difficulties. The control-theoretic formulation
is actually not compatible with the deterministic queueing model of Vickrey. In Boyce,
Ran and LeBlanc [1], a differential equation per edge governing the cumulative edge flow
(state variable) is used. The right-hand side of the differential equation depends on the
exit flow function which is assumed to be differentiable and strictly positive for any positive
inflow. Both assumptions (positivity and differentiability) are not satisfied for the Vickrey
model. For example, flow entering an empty edge needs a strictly positive time after which
it leaves the edge again, thus, violating the strict positiveness of the exit flow function.
More importantly, differentiability of the exit flow function is not guaranteed for the Vickrey
queueing model. Non-differentiability (or equivalently discontinuity w.r.t. the state variable)
is a well-known obstacle in the convergence analysis of a discretization of the Vickrey model,
see for instance Han, Friesz, and Yao [12]. It is a priori not clear how to obtain convergence of
a discretization scheme for an arbitrary flow over time (disregading equilibrium properties)
within the Vickrey model. And while a recent computational study by Ziemke, Sering,
Vargas-Koch, Zimmer, Nagel, and Skutella [28] shows some positive results with regards to
convergence for DE, Otsubo and Rapoport [21] report “significant discrepancies” between the
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continuous and a discretized solution for the Vickrey model. To overcome the discontinuity
issue, Han et al. [12] reformulated the model using a PDE formulation. They obtained a
discretized model whose limit points correspond to dynamic equilibria of the continuous
model. The algorithm itself, however, is numerical in the sense that a precision is specified
and within that precision an approximate equilibrium is computed. The overall discretization
approach mentioned above stands in line with a class of numerical algorithms based on
fixed point iterations computing approximate equilibrium flows within a certain numerical
precision, see Friesz and Han [8] for a recent survey.

The long term behavior of dynamic equilibria with infinitely lasting constant inflow rate
at a single source was studied by Cominetti, Correa and Olver [5]. They introduced the
concept of a steady state and showed that dynamic equilibria always reach a stable state
provided that the network inflow rate is at most the capacity of a minimal s-t cut. Later,
Olver, Sering, and Vargas Koch showed in [20] that dynamic equilibria reach such stable
states even without the condition on the network inflow rate if one relaxes the definition of
stable state to also encompass states wherein all queues grow linearly at a fixed rate forever.
Ismaili [15, 16] considered a discrete version of DE and IDE, respectively. He investigated

the computational complexity of computing best responses for DE showing that the best-
response optimization problem is not approximable, and that deciding the existence of a
Nash equilibrium is complete for the second level of the polynomial hierarchy. In [16] a
sequential version of a discrete routing game is studied and PSPACE hardness results for
computing an optimal routing strategy are derived. For further results regarding a discrete
packet routing model, we refer to Cao et al. [2], Scarsini et al.[24], Harks et al. [13] and
Hoefer et al. [14].

2. Model and the Extension-Algorithm
Throughout this paper we always consider networks N = (G, (νe)e∈E , (τe)e∈E , (uv)v∈V \{ t }, t)
given by a directed graph G = (V,E), edge capacities νe ∈ Q>0, edge travel times τe ∈ Q>0,
and a single sink node t ∈ V which is reachable from anywhere in the graph. Every other
node v ∈ V \ { t } has a corresponding (network) inflow rate uv : R≥0 → Q≥0 indicating for
every time θ ∈ R≥0 the rate uv(θ) at which the infinitesimal small agents enter the network
at node v and start traveling through the graph until they leave the network at the common
sink node t. We will assume that these network inflow rates are right-constant step functions
with bounded support and finitely many, rational jump points and denote by P ∈ N∗ the
total number of jump points for all network inflow rates.
A flow over time in N is a tuple f = (f+, f−) where f+, f− : E × R≥0 → R≥0 are

integrable functions. For any edge e ∈ E and time θ ∈ R≥0 the value f+
e (θ) describes the

(edge) inflow rate into e at time θ and f−e (θ) is the (edge) outflow rate from e at time θ. For
any such flow over time f we define the cumulative (edge) in- and outflow rates F+ and F−
by

F+
e (θ) :=

∫ θ

0
f+
e (ζ)dζ and F−e (θ) :=

∫ θ

0
f−e (ζ)dζ,

respectively. The queue length of edge e at time θ is then defined as

qe(θ) := F+
e (θ)− F−e (θ + τe). (1)
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Such a flow f is called a feasible flow for the given set of inflow rates uv : R≥0 → Q≥0, if it
satisfies the following constraints (2) to (5). The flow conservation constraints are modeled
for all nodes v 6= t as∑

e∈δ+
v

f+
e (θ)−

∑
e∈δ−v

f−e (θ) = uv(θ) for all θ ∈ R≥0, (2)

where δ+
v := { vu ∈ E } and δ−v := {uv ∈ E } are the sets of outgoing edges from v and

incoming edges into v, respectively. For the sink node t we require∑
e∈δ+

t

f+
e (θ)−

∑
e∈δ−t

f−e (θ) ≤ 0 (3)

and for all edges e ∈ E we always assume

f−e (θ) = 0 for all θ < τe. (4)

Finally we assume that the queues operate at capacity which can be modeled by

f−e (θ + τe) =
{
νe, if qe(θ) > 0
min { f+

e (θ), νe } , if qe(θ) ≤ 0
for all e ∈ E, θ ∈ R≥0. (5)

Following the definition in [11] we call a feasible flow an IDE flow if whenever a particle
arrives at a node v 6= t, it can only ever enter an edge that is the first edge on a currently
shortest v-t path. In order to formally describe this property we first define the current or
instantaneous travel time of an edge e at θ by

ce(θ) := τe + qe(θ)
νe

. (6)

We then define time dependent node labels `v(θ) corresponding to current shortest path
distances from v to the sink t. For v ∈ V and θ ∈ R≥0, define

`v(θ) :=

0, for v = t

min
e=vw∈E

{`w(θ) + ce(θ)}, else. (7)

We say that an edge e = vw is active at time θ, if `v(θ) = `w(θ) + ce(θ), denote the set
of active edges by Eθ ⊆ E and call the subgraph G[Eθ] induced by these edges the active
subgraph.

Definition 2.1. A feasible flow over time f is an instantaneous dynamic equilibrium (IDE),
if for all θ ∈ R≥0 and e ∈ E it satisfies

f+
e (θ) > 0⇒ e ∈ Eθ. (8)

During the computation of an IDE we also need the concept of partial flows/IDE that
are only defined up to a certain point in time. First, a partial flow over time is a tupel
(f+, f−) such that for every edge e we have two integrable functions f+

e : [0, ae)→ R≥0 and
f−e : [0, ae + τe)→ R≥0 for some non-negative number ae, satisfying constraints (4) and (5)
for all θ < ae. Such a flow is a feasible (partial) flow up to θ̂ at node v if
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• the edge outflow rates for all edges leading towards v are defined at least up to time θ̂,
i.e. ae + τe ≥ θ̂ for all e ∈ δ−v ,

• the edge inflow rates for all edges leaving v are defined up to time θ̂, i.e. ae = θ̂ for all
e ∈ δ+

v and
• constraint (2) or constraint (3), respectively, holds at v for all θ < θ̂.
A partial flow is a feasible (partial) flow up to time θ̂, if it is a feasible partial flow up to time
θ̂ at every node. We call such a flow a partial IDE up to time θ̂, if additionally constraint (8)
holds for all edges and all times before θ̂. If the given network is acyclic, we can even speak of
a partial IDE up time θ̂ at some node v, denoting a feasible flow up to time θ̂ at v, at least up
to time θ̂ for all nodes lying on some path from v to the sink t and satisfying constraint (8)
for all e ∈ δ+

v and θ < θ̂.
Note that, while the edge inflow rates of a feasible partial flow up to θ̂ are defined only on

[0, θ̂), this already determines the queue length functions and, therefore, the instantaneous
edge travel times on [0, θ̂]. In particular, for such a flow we can speak about active edges at
time θ̂ even though the flow itself is not yet defined at that time.
In [11, Section 3] the existence of IDE flows in single-sink networks is proven by the

following almost constructive argument: A partial IDE up to some time θ̂ can always be
extended for some additional proper2 time interval on a node by node basis (starting with
the nodes closest to the sink t). The existence of IDE for the whole R≥0 then follows by a
limit argument. This leads to a natural algorithm for computing IDE flows in single-sink
networks, which we make explicit here as Algorithm 1, wherein b−v denotes the gross node
inflow rate at node v defined by setting

b−v (θ) :=
∑
e∈δ−v

f−e (θ) + uv(θ)

for all v ∈ V \ { t } and θ ∈ [θ̂, θ̂ + τmin), where τmin := min { τe | e ∈ E } > 0.

Algorithm 1: IDE-Construction Algorithm from [11]
Input: A single-sink network N with piecewise constant network inflow rates
Output: An IDE flow f in N

1 Let f be the zero flow and θ ← 0
2 while not all flow particles have reached the sink t do

/* f is a partial IDE up to time θ */
3 Let t = v1 < v2 < · · · < vn be a topological order w.r.t. G[Eθ]
4 for i = 2, . . . , n do
5 Compute b−vi(θ) and determine a constant distribution of this inflow to edges

in δ+
vi such that the used edges remain active for some proper interval

6 end for
7 Determine the largest α ≥ 0 such that all b−v are constant on (θ, θ+ α) and the set

of active edges does not change
8 Extend f up to time θ + α with constant edge inflow rates and set θ ← θ + α

9 end while

2We call an interval [a, b) proper if a < b.
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For the extension at a single node v in line 5 we can use a solution to the following convex
optimization problem, which can be determined in polynomial time using a simple water
filling procedure (see Appendix A for more details):

min
∑

e=vw∈δ+
v ∩Eθ

∫ xe

0

ge(z)
νe

+ ∂+`w(θ)dz (OPT-b−v (θ))

s.t.
∑

e∈δ+
v ∩Eθ

xe = b−v (θ), xe ≥ 0 for all e ∈ δ+
v ∩ Eθ,

where ge denotes the right side derivative of the queue length function qe depending on the
inflow rate into e, i.e. ge(z) := z − νe, if qe(θ) > 0 and ge(z) := max { z − νe, 0 }, otherwise.
The right side derivatives ∂+`w(θ) exist because we only need them for nodes w closer to
the sink with respect to the current topological order. And for those we already determined
(constant) edge inflow rates for all outgoing edges for some additional proper time interval
beginning with θ. The integrand of the objective function is, thus, the right derivative of the
shortest instantaneous travel time towards the sink when entering edge vw at time θ and
assuming a constant inflow rate of z into this edge starting at time θ. Using this observation
one can show (cf. [11, Lemma 3.1]) that any solution to (OPT-b−v (θ)) corresponds to a flow
distribution to active edges so that for every edge e = vw ∈ δ+

v ∩Eθ the following condition
is satisfied

f+
e (θ) > 0 =⇒ ∂+`v(θ) = ∂+ce(θ) + ∂+`w(θ)
f+
e (θ) = 0 =⇒ ∂+`v(θ) ≤ ∂+ce(θ) + ∂+`w(θ).

(9)

Because the network inflow rates as well as all already constructed edge inflow rates are
piecewise constant and the node label functions as well as the queue length functions are
continuous, (9) ensures that the used edges will remain active for some proper time interval.
It is, however, not obvious whether a finite number of such extension phases suffices to

construct an IDE flow for all of R≥0. Since IDE flows always have a finite termination time
in single-sink networks ([11, Theorem 4.6]) it is at least enough to extend the flow for some
finite time horizon (in [10] we even provide a way to explicitly compute such a time horizon).
This leaves the possibility of continuously decreasing lengths of the extension phases as
possible reason for Algorithm 1 not to terminate within finite time, e.g. some sequence of
extension phases of lengths α1, α2, . . . such that

∑∞
i=1 αi converges to some point strictly

before the IDE’s termination time (see Remark 4.7 for an example where we can in fact
achieve arbitrarily small extension phases). Thus, the question of whether IDE flows can
actually be computed was left as an open question in [11]. A first partial answer was found
in [19], where finite termination was shown for graphs obtained by series composition of
parallel edges. In the following section we give a full answer by showing that the α-extension
algorithm terminates for all single-sink networks.

3. Finite IDE-Construction Algorithm
In this chapter we will show that IDE flows can be constructed in finite time using Algorithm 1
or slight variations thereof. We will first show this only for acyclic networks since there we
can use a single constant order of the nodes for the whole construction. Building on that,
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we will then prove the general case by showing that we can always compute IDE flows while
changing the node order only finitely many times.

3.1. Acyclic Networks
For each extension step, Algorithm 1 takes a partial IDE and determines a network-wide
constant extension of all edge in- and outflow rates. This flow distribution then continues
until an event (change of gross node inflow rate or change of the set of active edges) anywhere
in the network requires a new flow split. In [11] such a maximal extension is called a phase
of the constructed IDE. After each phase, one then has to determine a new topological order
with respect to the active subgraph at the beginning of the next phase.
For an acyclic network, we can instead use a single static topological order of the nodes

with respect to the whole graph, which is then in particular a topological order with respect
to any possible active subgraph. This allows us to rearrange the order of the extension
steps: Considering the nodes according to the fixed topological order, at each node, we then
already know the gross node inflow rate for the whole interval [θ, θ + τmin) as well as the
flow distribution for all nodes closer to the sink over the same time interval. Thus, we have
enough information to determine a (possibly infinite) sequence of extensions covering the
whole interval [θ, θ+τmin), where each extension is defined through constant flow distributions
at this node. Within this sequence, each extension lasts until an event at the current node
happens, which forces us to compute a new flow distribution. We call such a maximal
extension using one constant flow distribution at a single node a local phase. The restructured
version of the extension algorithm is formalized in Algorithm 2.

Algorithm 2: IDE-Construction Algorithm for acyclic networks
Input: An acyclic single-sink network N with piecewise constant network inflow rates
Output: An IDE flow f in N

1 Choose T ∈ Q large enough such that all IDE flows in N terminate before T
2 Let f be the zero flow, θ ← 0 and t = v1 < · · · < vn a topological order
3 for k = 0, . . . , bT/τminc do

/* f is a partial IDE up to time θ = kτmin */
4 for i = 2, . . . , n do
5 Compute the piecewise constant gross node inflow function b−vi for the interval

[θ, θ + τmin)
6 Distribute this inflow for the whole interval to active edges in δ+

vi using
maximal local phases of constant flow distribution

7 end for
8 θ ← θ + τmin
9 end for

Observation 3.1. For acyclic networks both variants of the general algorithm (Algorithm 1
and Algorithm 2) construct the same IDE provided that they use the same tie-breaking rules.
Thus, showing that one of them terminates in finite time, also proves the same for the other
variant.

Using the water filling procedure (Algorithm 4) we can compute an IDE compliant flow
distribution with constant edge-inflow rates at a node vi for any interval wherein the inflow
into node vi is constant, the labels on all the nodes w with viw ∈ δ+

vi change linearly and
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θ1 θ2
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θ1 θ2

`w4

Figure 2.: The situation in Lemma 3.2: We
have an acyclic graph with some
topological order on the nodes
(here from left to right) and a par-
tial IDE up to some time θ2 for
all nodes closer to the sink t than
v and up to some earlier time θ1
for v and all nodes further away
than v from t. Additionally, over
the interval [θ1, θ2) the edges lead-
ing into v have a constant out-
flow rate and the nodes wi all have
affine label functions `wi

. The
edges vwi start with some current
queue lengths qvwi(θ1) ≥ 0.

the set of active edges leaving vi remains constant. Thus, it suffices to show that in line 6
we can always cover the extension interval [θ, θ+ τmin) with a finite number of local phases.
We will show this by induction over k ∈ N0 and i ∈ [n] using the following key lemma:

Lemma 3.2. Let N be a single-sink network on an acyclic graph with some fixed topological
order on the nodes, v some node in N and θ1 < θ2 ≤ θ1 + τmin two points in time. If f is a
partial flow over time in N such that
• f is a partial IDE up to time θ2 for all nodes closer to the sink t than v with respect to

the fixed topological order,
• f is a partial IDE up to time θ1 for all other nodes,
• b−v is constant during [θ1, θ2) and
• the labels at the nodes reachable via direct edges from v are affine functions on [θ1, θ2),
then we can extend f to a partial IDE up to time θ2 at v using a finite number of local phases.

Proof. We want to show that a finite number of maximal constant extensions of the flow at
node v using the water filling algorithm is enough to extend the given flow for the whole
interval [θ1, θ2) at node v. So, let f be the flow after an, a priori, infinite number of extension
steps getting us to a partial IDE up to some θ̂ ∈ (θ1, θ2] at node v.
Let δ+

v = { vw1, . . . , vwp } be the set of outgoing edges from v. Then, by the lemma’s
assumption, the label functions `wi : [θ1, θ2) → R≥0 are affine functions and, since we
extended f at node v up to θ̂, the queue length functions qvwi are well defined on the interval
[θ1, θ̂). Thus, for all i ∈ [p] we can define functions

hi : [θ1, θ̂)→ R≥0, θ 7→ τvwi + qvwi(θ)
νvwi

+ `wi(θ)

such that hi(θ) is the shortest current travel time to the sink t for a particle entering edge
vwi at time θ. Then, for any edge vwi ∈ δ+

v and any time θ ∈ [θ1, θ̂) we have

vwi ∈ Eθ ⇐⇒ hi(θ) = min {hj(θ) | j ∈ [p] } = `v(θ). (10)

We start by stating two important observations and then proceed by showing two key-
properties of the functions hi and `v, which are also visualized in Figure 3:
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Figure 3.: A possible flow distribution from the node v in five local phases for the situation depicted
in Figure 2. The first six pictures show the flow split for these five local phases. The graph
at the bottom shows the corresponding functions hi. The bold gray line marks the graph of
the function `v. The second, third and fifth local phase all start because an edge becomes
newly active (edges vw3, vw1 and vw3 again, respectively). The fourth local phase starts
because the queue on the active edge vw1 runs empty. By observation (ii) these are the
only two possible events which can trigger the beginning of a new local phase. Edge vw2 is
inactive for the whole time interval and – as stated in Claim 1 – has a convex graph. Also,
note the slope changes of the functions hi and `v in accordance with Claim 2.
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(i) The functions hi are continuous and piece-wise linear. In particular they are differ-
entiable almost everywhere and their left and right side derivatives ∂−hi and ∂+hi,
respectively, exist everywhere. The same holds for the function `v.

(ii) A new local phase begins at a time θ ∈ [θ1, θ̂) if and only if at least one of the following
two events occurs at time θ: An edge vwi becomes newly active or the queue of an
active edge vwi runs empty.

Claim 1. If an edge vwi is inactive during some interval (a, b) ⊆ [θ1, θ̂] the graph of hi is
convex on this interval.

Claim 2. For any time θ define I(θ) := { i ∈ [p] | hi(θ) = `v(θ) }. Then, we have

min { ∂−hi(θ) | i ∈ I(θ) } ≤ ∂+`v(θ). (11)

If, additionally, no edge becomes newly active at time θ, we also have

∂−`v(θ) ≤ ∂+`v(θ). (12)

Proof of Claim 1. By the lemma’s assumption `wi is linear on the whole interval. For an
inactive edge vwi its queue length function consists of at most two linear sections: One
where the queue depletes at a constant rate of −νe and one where it remains constant 0.
Thus, hi is convex as sum of two convex functions for any interval, where vwi is inactive. �

Proof of Claim 2. To show (11), let I ′ be the set of indices of edges active immediately after
θ, i.e.

I ′ := { i ∈ I(θ) | ∂+hi(θ) = ∂+`v(θ) } .

Since the total outflow from node v is constant during [θ1, θ̂) and flow may only enter edges
vwi with i ∈ I ′ after θ, there exists some j ∈ I ′, where the inflow rate into vwj after θ is the
same or larger than before. But then we have ∂+hj(θ) ≥ ∂−hj(θ) and, thus,

min { ∂−hi(θ) | i ∈ I(θ) } ≤ min { ∂−hi(θ) | i ∈ I ′ } ≤ ∂−hj(θ) ≤ ∂+hj(θ) = ∂+`v(θ).

If, additionally, no edge becomes newly active at time θ, all edges vwi with i ∈ I ′ have been
active directly before θ as well implying

∂−`v(θ) = min { ∂−hi(θ) | i ∈ I(θ) }
(11)
≤ ∂+`v(θ). �

We also need the following observation which is an immediate consequence of the way
the water filling algorithm determines the flow distribution (see Observation A.1) combined
with the lemma’s assumption that all label functions `wi have constant derivative during the
interval [θ1, θ2).

Claim 3. There are uniquely defined numbers `I,J for all subsets J ⊆ I ⊆ [p] such that
`′v(θ) = `I,J within all local phases, where { vwi | i ∈ I } is the set of active edges in δ+

v and
{ vwi | i ∈ J } is the subset of such active edges that also have a non-zero queue during this
local phase. �

Using these properties we can now first show a claim which implies that the smallest `I,J
can only be the derivative of `v for a finite number of intervals. Inductively the same then
holds for all of the finitely many `I,J . The proof of the lemma finally concludes by observing
that an interval with constant derivative of `v can contain only finitely many local phases.
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Claim 4. Let (a1, b1), (a2, b2) ⊆ [θ1, θ̂) be two disjoint maximal non-empty intervals with
constant `′v(θ) =: c. If b1 < a2 and `′v(θ) ≥ c for all θ ∈ (b1, a2) where the derivative exists,
then there exists an edge vwi such that

1. the first local phase of (a2, b2) begins because vwi becomes newly active and
2. this edge is not active for any time in the interval [a1, a2).

In particular, the first local phase of (a1, b2) is not triggered by vwi becoming active.

Proof of Claim 4. Since we have ∂+`v(a2) = c, Claim 2 implies that there exists some edge
vwi with hi(a2) = `v(a2) and ∂−hi(a2) ≤ c. As (a2, b2) was chosen to be maximal and
`′v(θ) ≥ c holds almost everywhere between b1 and a2, we have ∂−`v(a2) > c. Thus, vwi was
inactive before a2.
Now let θ̃ < a2 be the last time before a2, where vwi was active. By Claim 1 we know

then that h′i(θ) ≤ c holds almost everywhere on [θ̃, a2]. At the same time we have `′v(θ) ≥ c
almost everywhere on [a1, a2] and `′v(θ) > c for at least some proper subinterval of [b1, a2],
since the intervals (a1, b1) and (a2, b2) were chosen to be maximal. Combining these two facts
with `v(a2) = hi(a2) implies `v(θ) < hi(θ) for all θ ∈ [θ̃, a2) ∩ [a1, a2). As both functions are
continuous we must have θ̃ < a1. Thus, vwi is inactive for all of [a1, a2). �

This claim directly implies that the lowest derivative of `v during [θ1, θ̂] only appears in
a finite number of intervals, as each of these intervals has to start with a different edge
becoming newly active. But then, iteratively applying this claim for the intervals between
these intervals shows that any derivative of `v can only appear in a finite number of intervals.
Since, by Claim 3, `′v can only attain a finite number of values, this implies that [θ1, θ̂) consists
of a finite number of intervals with constant derivative of `v.

Claim 5. Let (a, b) ⊆ [θ1, θ̂) be an interval during which `′v is constant. Then (a, b) contains
at most 2p local phases, where p denotes the out-degree of v.

Proof of Claim 5. By Claim 1 an edge that changes from active to inactive during the interval
(a, b) will remain inactive for the rest of this interval. Thus, at most p local phases can start
because an edge becomes newly active. By Claim 4 if a local phase begins because the queue
on an active edge vwi runs empty at time θ, we have ∂+hi(θ) > ∂−hi(θ) = ∂−`v(θ) = ∂+`v(θ)
meaning that this edge will become inactive. Thus, at most p local phases start because the
queue of an active edge runs empty. Since by observation (ii) these are the only ways to
start a new local phase, we conclude that there can be no more than 2p local phases during
(a, b). �

Combining Claims 4 and 5 we see that [θ1, θ̂) only contains a finite number of local phases
and, thus, we achieve θ̂ = θ2 with finitely many extensions.

With this lemma the proof of the following theorem is straightforward.

Theorem 3.3. For any acyclic single-sink network with piecewise constant network-inflow
rates an IDE can be constructed in finite time using Algorithm 2.

Proof. First, note that by [10, Theorem 1] for any given single-sink network N there exists
an (easily computable) time T such that all IDE in N terminate before T . This makes the
first line of Algorithm 2 possible. Thus, it remains to show that in line 6 a finite number
of local phases always suffices. We show this by induction over θ and i ∈ [n], i.e. we can
assume that the currently constructed flow f is a partial IDE up to time θ for all nodes
vj , j ≥ i and up to time θ + τmin for all nodes vj , j < i with only a finite number of (local)
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phases. In particular, this means that we can partition the interval [θ, θ+ τmin) into a finite
number of proper subintervals such that within each such subinterval there is a constant
gross node inflow rate into node vi and the labels at all the vertices w with viw ∈ δ+

vi change
linearly. Then, by Lemma 3.2, we can distribute the flow at node vi to the outgoing edges
using a finite number of local phases for each of these subintervals. Note that, aside from
the queue lengths on the edges leaving vi, the so distributed flow has no influence on the
flow distribution in later subintervals and, in particular, does not influence the partition into
subintervals or the flow distribution at nodes closer to t than vi. Thus, we can distribute
the outflow from vi for the whole interval [θ, θ + τmin) using only a finite number of local
phases.

Closer inspection of the proofs above also allows us to derive a rough but explicit bound
on the number of phases the constructed IDE flow can have.

Proposition 3.4. For any acyclic single-sink network with piecewise constant network-inflow
rates the number of phases of any IDE flow constructed by Algorithm 2 is bounded by

O
(
P
(
2(∆ + 1)4∆+1

)|V |T/τmin
)
,

where ∆ := max {
∣∣δ+
v

∣∣ | v ∈ V } the maximum out-degree in the given network and P is the
number of intervals with constant network inflow rates.

Proof. First, we look at an interval [θ1, θ2) and a single node v as in Lemma 3.2. Here we
can use Claim 4 to bound the number of intervals of constant derivative of `v by

(∣∣∣δ+
v

∣∣∣+ 1
)|{ (I,J)|J⊆I⊆[|δ+

v |] }| ≤
(∣∣∣δ+

v

∣∣∣+ 1
)4|δ

+
v |
,

each of them containing at most 2
∣∣δ+
v

∣∣ local phases by Claim 5. Together this shows that
any such interval will be subdivided into at most 2(∆+1)4∆+1 local phases. Thus, whenever
we execute line 6 of Algorithm 2 every currently existing (local) phase may be subdivided
further into at most 2(|∆| + 1)4∆+1 local phases. Consequently, for every pass of the outer
for-loop the number of local phases can be multiplied by at most

∏
v∈V

(
2(|∆|+ 1)4∆+1

)
in

total during the extension over the interval [θ, θ+ τmin). Combining this with the at most P
phases triggered by changing network inflow rates results in the bound of

O
(
P
(
2(∆ + 1)4∆+1

)|V |T/τmin
)
.

3.2. General Single-Sink Networks
We now want to extend this result to general single-sink networks, i.e. we want to show that
Algorithm 1 terminates within finite time not only for acyclic graphs, but for all graphs. We
first note that the requirement for input-graphs of Algorithm 2 to be acyclic is somewhat too
strong. It is actually enough to have some (static) order on the nodes such that it is always
a topological order with respect to the active subgraph. That is, for a general single-sink
network we can still apply Algorithm 2 to determine an IDE-extension with finitely many
phases for any interval during which we have such a static node ordering. Thus, Algorithm 1
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Algorithm 3: IDE-Construction Algorithm for general single-sink networks
Input: A single-sink network N with piecewise constant network inflow rates
Output: An IDE flow f in N

1 Choose T large enough such that all IDE flows in N terminate before T
2 Let f be the zero flow, θ ← 0 and Ẽ ← E0
3 Determine a topological order t = v1 < v2 < · · · < vn w.r.t. the edges in Ẽ
4 while θ < T do

/* f is a partial IDE up to time θ */
5 for i = 2, . . . , n do
6 Compute b−vi(θ) and determine a constant distribution of this inflow to edges

in δ+
vi such that the used edges remain active for some proper interval

7 end for
8 Determine the largest α ≥ 0 such that all b−v are constant on (θ, θ+ α) and the set

of active edges does not change
9 Extend f up to time θ + α with constant edge inflow rates and set θ ← θ + α

10 if Eθ \ Ẽ 6= ∅ then
11 Define Ẽ ← Ẽ ∪ Eθ.
12 while there exists a cycle C in Ẽ do
13 Remove an edge e = xy with the largest value `y(θ)− `x(θ) of all edges in C
14 end while
15 Determine a topological order t = v1 < v2 < · · · < vn w.r.t. the edges in Ẽ
16 end if
17 end while
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will also use finitely many extension phases for each interval with such a static ordering.
This observation gives rise to Algorithm 3, another slight variant of Algorithm 1.

We will prove that this algorithm does indeed construct an IDE for arbitrary single-sink
networks within finite time by first showing that this algorithm is a special case of the original
algorithm. Thus, it is correct and uses only a finite number of phases for any interval in
which the topological order does not change. We then conclude the proof by showing that it
is indeed enough to change the topological order a finite number of times for any given time
horizon.
Lemma 3.5. Algorithm 3 is a special case of Algorithm 1. In particular it is correct.
Proof. As in Algorithm 2 the existence of an upper bound T on the termination time of all
IDE flows for a given single-sink network is guaranteed by [10, Theorem 1]. Next, note that
Ẽ is clearly always acyclic (except in lines 11 and 13) which guarantees that we can always
find a topological order with respect to Ẽ. We now only need to show that such an ordering
is also a topological order with respect to the active edges, i.e. that for any time θ we have
Eθ ⊆ Ẽ. For this we will use the following observation

Claim 6. Any edge xy removed from Ẽ in line 13 of Algorithm 3 satisfies `x(θ) < `y(θ).

Proof. Let C ⊆ Ẽ be a cycle containing the removed edge xy. Since Ẽ was acyclic before we
added the newly active edges in line 11, this cycle also has to contain some currently active
edge vw. This gives us∑

e=uz∈C\{vw}
(`z(θ)− `u(θ)) =

∑
e=uz∈C

(`z(θ)− `u(θ))− (`w(θ)− `v(θ))

= 0− `w(θ) +
(
`w(θ) + τvw + qvw(θ)

νvw

)
= τvw + qvw(θ)

νvw
≥ τmin.

Thus, C contains at least one edge uz with `z(θ)− `u(θ) > 0 and, by the way it was chosen,
this then holds in particular for edge xy. �

This claim immediately implies that in line 13 we only remove inactive edges and that,
afterwards, we still have Eθ ⊆ Ẽ.

Lemma 3.6. For any single-sink network there exists some constant C > 0 such that for
any time interval of length C the set Ẽ changes at most |E| times during this interval in
Algorithm 3.
Proof. The proof of this lemma mainly rest on the following claim stating that for any fixed
network we can bound the slope of the node labels of any feasible flow in this network by
some constant.

Claim 7. For any given network there exists some constant L > 0 such that for all feasible
flows, all nodes v and all times θ we have |`′v(θ)| ≤ L.

Proof. First note that for any node v we can bound the maximal inflow rate into this node
by some constant Lv as follows:

∑
e∈δ−v

f−e (θ) + uv(θ)
(5)
≤
∑
e∈δ−v

νe + max {uv(θ) | θ ∈ R≥0 } =: Lv.
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Using flow conservation (2) this, in turn, allows us to bound the inflow rates into all edges
e ∈ δ+

v and, thus, the rate at which the queue length and the current travel time on these
edges can change:

−1 ≤ c′e(θ)
(1),(6)
≤ f+

e (θ)
νe

≤ Lv
νe

=: Le.

Since this rate of change is also lower bounded by −1 setting L :=
∑
e∈E max { 1, Le } proves

the claim, as for all nodes v and times θ we then have∣∣`′v(θ)∣∣ ≤∑
e∈E

∣∣c′e(θ)∣∣ ≤∑
e∈E

Le = L. �

Now, from Claim 6 we know that, whenever we remove an edge xy from Ẽ at time θ we
must have `x(θ) < `y(θ). But at the time where we last added this edge to Ẽ, say at time
θ′ < θ, it must have been active (since we only ever add active edges to Ẽ) and, thus, we
had `x(θ′) = `y(θ′) + cxy(θ′) ≥ `y(θ′) + τmin. Therefore, the difference between the labels at
x and y has changed by at least by τmin between θ′ and θ. Claim 7 then directly implies
θ − θ′ ≥ τmin

2L . So, for any time interval of length at most τmin
2L each edge can be added at

most once to Ẽ. Since Ẽ only ever changes when we add at least one new edge to it, setting
C := τmin

2L proves the lemma.

Theorem 3.7. For any single-sink network with piecewise constant network-inflow rates an
IDE can be constructed in finite time using Algorithm 3.
Proof. By Lemma 3.5 Algorithm 3 is a special case of Algorithm 1. Thus, for any interval
with static Ẽ it produces the same flow as Algorithm 2. In particular, by Theorem 3.3, for any
such interval the constructed flow consists of finitely many phases. Finally, Lemma 3.6 shows
that the whole relevant interval [0, T ] can be partitioned into a finite number of intervals
with static set Ẽ. Consequently, Algorithm 3 constructs an IDE with finitely many phases
and, thus, terminates within finite time.

As in the acyclic case we can again also extract an explicit upper bound on the number
of phases.

Proposition 3.8. For any single-sink network with piecewise constant network inflow rates
the number of phases of any IDE flow constructed by Algorithm 3 is bounded by

O
(
P
(
2(∆ + 1)4∆+1

)2L·|E|·|V |·T/τ2
min

)
,

where, again, ∆ := max {
∣∣δ+
v

∣∣ | v ∈ V } is the maximum out-degree in the given network, P
is the number of intervals with constant network inflow rates and L the bound on the slopes
of the label functions from Claim 7.
Proof. For any time interval with fixed node order Algorithm 3 is equivalent to Algorithm 2
and, thus, the bound from Proposition 3.4 applies. Also note, that in Algorithm 2 we
could change the node order after every time step of length τmin without any impact on
correctness or the bound on the number of phases (as long as we always choose an order
which is a topological order with respect to the active edges). As, by Lemma 3.6, the node
order in Algorithm 3 changes at most 2L · |E| /τmin times during any unit time interval,
replacing T by 2L · |E| · T/τmin in the bound for Algorithm 2 yields a valid bound for the
number of phases of Algorithm 3.
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Remark 3.9. If presented with rational input data (i.e. rational capacities, node inflow rate,
current queue lengths, current distance labels and slopes of distance labels of neighbour-
ing nodes) the water filling procedure Algorithm 4 again produces a rational solution to
(OPT-b−v (θ)) (i.e. rational edge inflow rates) which then, in turn, results in a rational max-
imal extension length α. Thus, Algorithm 3 can be implemented as an exact combinatorial
algorithm.
Since DE and IDE coincide for parallel link networks and for DE paths can always be

replaced by single edges, the above theorem also implies the following result for DE. Note,
however, that, while to the best of our knowledge this result has never explicitly been stated
elsewhere, it seems very likely that it could also be shown in a more direct way for this very
simple graph class.

Corollary 3.10. On parallel paths networks Dynamic Equilibria can be constructed in finite
time using the natural extension algorithm.

4. Computational Complexity of IDE-Flows
While Theorem 3.7 shows that IDE flows can be constructed in finite time, the bound
provided in Proposition 3.8 is clearly superpolynomial. We now want to show that in some
sense this is to be expected. Namely, we first look at the output complexity of any such
algorithm, i.e. how complex the structure of IDE flows can be. Then we show that many
natural decision problems involving IDE are actually NP-hard.

4.1. Output Complexity and Steady State
In this section we call an open interval (a, b) ⊆ R≥0 a phase of a feasible flow f , if it is a
maximal interval with constant in- and outflow rates for all edges. Then it seems reasonable
to expect of any algorithm computing feasible flows that its output has to contain in some
way a list of the flow’s phases and corresponding in- and outflow rates. In particular, the
number of phases of a flow is a lower bound for the runtime of any algorithm determining
that flow. This observation allows us to give an exponential lower bound for the output
complexity and therefore also for the worst case runtime of any algorithm determining IDE
flows. This remains true even if we only look at acyclic graphs and allow for our algorithm
to recognize simple periodic behaviour and abbreviate the output accordingly.

Theorem 4.1. The worst case output complexity of calculating IDE flows is not polynomial
in the encoding size of the instance, even if we are allowed to use periodicity to reduce the
encoding size of the determined flow. This is true even for series parallel graphs.

Proof. For any given U ∈ N∗ consider the network pictured in Figure 4 with a constant inflow
rate of 2 at s over the interval [0, U ]. This network can clearly be encoded in O(logU) space.
The unique (up to changes on a set of measure zero) IDE is displayed up to time θ = 6.5 in
Figure 4 and described for all times in Table 1. As this pattern is clearly non-periodic and
continues up to time θ = U , it exhibits Ω(U) distinct phases. This proves the theorem.

Remark 4.2. In [5, Section 5.2] Cominetti, Correa, and Olver sketch a family of instances of
size O(d2) where a dynamic equilibrium flow exhibits an exponential number of phases (of
order Ω(2d)) before it reaches a stable state.
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Figure 4.: A network (top left picture) where constant inflow rate of 2 over [0, U ] leads to an IDE with
Ω(U) different phases. The following pictures show the first states of the network, which
are described in general in Table 1.

θ = f+
vt(θ) f+

wx(θ) qvt(θ) qwx(θ) f+
sv(θ) f+

sw(θ)
4k + 2−k − 1 0 2 2− 2−k ↘ 1− 2−k ↗ 2 0
4k + 2−k 2 0 1− 2−k ↗ 2− 2−k ↘ 2 0
4k + 2−k + 1 2 0 2− 2−k ↗ 1− 2−k ↘ 0 2
4k + 2 2 0 2− 2−k ↗ 0 → 0 2
4k + 2−k + 2 0 2 3− 2−k ↘ 0 ↗ 0 2

Table 1.: Phases of the (unique) IDE in the instance of Figure 4. For all k ∈ N0 the table includes the
(constant) inflow rates into edges on the intervals (4k+ 2−k − 1, 4k+ 2−k), (4k+ 2−k, 4k+
2−k + 1),(4k+ 2−k + 1, 4k+ 2), (4k+ 2, 4k+ 2−k + 2) and (4k+ 2−k + 2, 4k+ 2−(k+1) + 3) as
well as the queue lengths on the edges vt and wx at the beginning of these intervals and the
rate of change for the queue lengths over the following interval (↗ stands for an increase
at rate 1, ↘ for a decrease at rate −1 and → for no change).

The network constructed in the above proof can also be used to gain some insights into
the long term behavior of IDE flows, i.e. how such flows behave if the inflow rates con-
tinue forever. In order to analyze this long term behavior of dynamic equilibrium flows
Cominetti et al. define in [5, Section 3] the concept of a steady state:

Definition 4.3. A feasible flow f with forever lasting constant inflow rate reaches a steady
state if there exists a time θ̃ such that after this time all queue lengths stay the same forever
i.e.

qe(θ) = qe(θ̃) f.a. e ∈ E, θ ≥ θ̃.

For dynamic equilibrium flows Cominetti et al. then show that the obvious necessary
condition that the inflow rate is at most the minimal total capacity of any s-t cut is also
a sufficient condition for any dynamic equilibrium in such a network to eventually reach a
steady state ([5, Theorem 3]). We will show that this is not true for IDE flows - even if we
consider a weaker variant of steady states:
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Definition 4.4. A feasible flow f reaches a periodic state if there exists a time θ̃ and a
periodicity p ∈ R≥0 such that after time θ̃ all queue lengths change in a periodic manner,
i.e.

qe(θ + kp) = qe(θ) f.a. e ∈ E, θ ≥ θ̃, k ∈ N∗.

Note that, in particular, every flow reaching a stable state also reaches a periodic state
(with arbitrary periodicity).

Theorem 4.5. There exists a series parallel network with a forever lasting constant inflow
rate u at a single node s, satisfying u ≤ ∑

e∈δ+
X
νe for all s-t cuts X, where no IDE ever

reaches a periodic state.

Proof. Consider the network constructed in the proof of Theorem 4.1, i.e. the one pictured
in Figure 4, but with a constant inflow rate of 2 at s for all of R≥0. A minimal cut is
X = { s, v, w } with

∑
e∈δ+

X
νe = 2. The unique IDE flow is still the one described in Table 1

and, thus, never reaches a periodic state.

Remark 4.6. In contrast the (again unique) dynamic equilibrium for the network from Fig-
ure 4 is displayed in Figure 5 and does indeed reach a steady state at time θ = 4.
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Figure 5.: The dynamic equilibrium flow for the network constructed in the proof of Theorem 4.5.

Remark 4.7. The network considered in the proof of Theorem 4.5 also shows that we can in
fact achieve arbitrarily short extension phases even within quite simple networks. Namely,
the gross node inflow rate at node x is of the following form

b−x (θ) =
{

0, if θ ∈ [4k + 3, 4k + 3 + 2−k] for some k ∈ N0

1, else.

Thus, the flow distribution at node x requires phases of lengths 2−k for any k ∈ N0. Note
however, that these ever smaller getting phases are far enough apart so as to still allow us to
reach any finite time horizon within a finite number of extension phases (as it is guaranteed
by Theorem 3.3).

4.2. NP-Hardness
We will now show that the decision problem whether in a given network there exists an IDE
with certain properties is often NP-hard – even if we restrict ourselves to only single-source
single-sink networks on acyclic graphs. Note, however, that due to the non-uniqueness of
IDE flows this does not automatically imply that computing any IDE must be hard.

We first observe that the restriction to a single source can be made without loss of gener-
ality.
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C

c

us ≡ 12 · 1[0,1]

`1 `2 `3

t

Figure 6.: The clause gadget C consists of a source node and
three edges leaving it, each with capacity 12 and travel
time 1. If embedded in a larger network in such a way
that the shortest paths from `1,`2 and `3 to t all have
the same length (and no queues during the interval
[0, 1]), the inflow at node s can be distributed in any
way among the three edges. In particular, it is possible
to send all flow over only one of the three edges. In
any distribution there has to be at least one edge which
carries a flow volume of at least 4.

Lemma 4.8. For any multi-source single-sink network N with piecewise constant inflow
rates with finitely many jump points there exists a (larger) single-source single-sink network
N ′ with constant inflow rate such that

a) the encoding size of N ′ is linearly bounded in that of N ,
b) if N is acyclic, so is N ′,
c) N is a subnetwork of N ′ (except for the sources),
d) the restriction map composed with some constant translation is a one-to-one correspon-

dence between the IDE-flows in N ′ and those in N :

{ IDE in N ′ } → { IDE in N } , f 7→ f |N (_− c).

Proof. This can be accomplished by using the construction from the proof of [11, Theorem
6.3], which clearly satisfies all four properties.

Theorem 4.9. The following decision problems are NP-hard:
(i) Given a network and a specific edge: Is there an IDE not using this edge?
(ii) Given a network and a specific edge: Is there an IDE using this edge?
(iii) Given a network and a time horizon T : Is there an IDE that terminates before T?
(iv) Given a network and some k ∈ N: Is there an IDE consisting of at most k phases?
All these decision problems remain NP-hard even if we restrict them to single-source instances
with constant inflow rate on acyclic graphs. Problem (iv) becomes NP-complete if we restrict
k by some polynomial in the encoding size of the whole instance.

Proof. We will show this theorem by reducing the NP-complete problem 3SAT to the above
problems. The main idea of the reduction is as follows: For any given instance of 3SAT
we construct a network which contains a source node for each clause with three outgoing
edges corresponding to the three literals of the clause. Any satisfying interpretation of the
3SAT-formula translates to a distribution of the network inflow to the literal edges, which
leads to an IDE flow that passes through the whole network in a straightforward manner.
If, on the other hand, the formula is unsatisfiable every IDE flow will cause a specific type
of congestion which will divert a certain amount of flow into a different part of the graph.
This part of the graph may contain an otherwise unused edge or a gadget which produces
many phases (e.g. the graph constructed for the proof of Theorem 4.1) or a long travel time
(e.g. an edge with very small capacity).
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x

y

¬x

z

z′

s2

t

V

Figure 7.: The variable gadget V . The edges xy and zz′

have capacity 1, all other edges have infinite ca-
pacity. The travel times on all (solid) edges are
1 while the dashed lines represent paths with a
length such that the travel time from s2 to t is
the same as from y over z and z′ to t. If flow
enters this gadget at any rate over a time inter-
val of length one at either x or ¬x all flow will
travel over the edge zz′ to the sink t. If, on the
other hand, at both x and ¬x a flow of volume
at least 4 enters the gadget over an interval of
length 1 a flow volume of more than 1 will be
diverted towards s2.

We start by providing two types of gadgets: One for the clauses and one for the variables
of a 3SAT-formula. The clause gadget C (see Figure 6) consists of a source node c with
a constant network inflow rate of 12 over some interval of length 1 and three edges with
capacity 12 and travel time 1 connecting c to the nodes `1, `2 and `3, respectively. This
gadget will later be embedded into a larger network in such a way that the shortest paths
from the nodes `1, `2 and `3 to the sink t all have the same length. Thus, the flow entering the
gadget at the source node c can be distributed in any way over the three outgoing edges. We
will have a copy of this gadget for any clause of the given 3SAT-formula with the three nodes
`1, `2 and `3 corresponding to the three literals of the respective clause. Setting a literal to
true will than correspond to sending a flow volume of at least 4 towards the respective node.
The variable gadget V (see Figure 7) has two nodes x and ¬x over which flow can enter

the gadget. From both of these nodes there is a path consisting of two edges of length 1
leading towards a common node z, from where another edge of length and capacity 1 leads
to node z′. From there the gadget will be connected to the sink node t somewhere outside
the gadget. The path from ¬x to z has infinite capacity3, while the path from x to z consists
of one edge with capacity 1 followed by one edge of infinite capacity with a node y between
the two edges. The first edge can be bypassed by a path of length 3 and infinite capacity.
From the middle node y there is also a path leaving the gadget towards t via some node s2
outside the gadget. This path has a total length of one more than the path via z and z′ to t.

We will have a copy of this gadget for every variable of the given 3SAT-formula. Similarly
to the clause gadget we will interpret the variable x to be set to true if a flow of volume

3Throughout this construction whenever we say that an edge has “infinite capacity” by that we mean some
arbitrary capacity high enough such that no queues will ever form on this edge. Since the network we
construct will be acyclic such capacities can be constructed inductively similarly to the constant Le in the
proof of Claim 7

22



at least 4 traverses node x and the variable to be set to false if a flow volume of at least 4
passes through node ¬x. If both happens at once, i.e. both x and ¬x each are traversed
by a flow of volume at least 4 over the span of a time interval of length 1, we interpret this
as an inconsistent setting of the variables. In this case a flow of volume more than 1 will
leave the gadget via the edge ys2 during the unit length time interval three time steps later.
To verify this, assume that the flow enters at nodes x and ¬x during [0, 1]. Then the flow
entering through ¬x will start to form a queue on edge zz′ two time steps later. This queue
will have reached a length of at least 2 at time 3 and, thus, still has a length of at least 1
at time 4. The flow entering through x at first only uses edge xy until a queue of length 2
has build up there. After that, flow will only enter this edge at a rate of 1 to keep the queue
length constant, while the rest of the flow travels through the longer path towards y. This
flow (of volume at least 1) as well as some non-zero amount of flow from the queue on edge
xy will arrive at node y during the interval [3, 4]. Because of the queue on edge zz′ all of
this flow (of volume more than 1) will be diverted towards s2. If, on the other hand, flow
travels through only one of these two nodes over the course of an interval of length 1 than
all this flow will be forced to travel to t via z. The third option, i.e. flow entering the gadget
through both nodes but with a volume of less than 4 at at least one of them, will not be
relevant for the further proof.
We can now transform a 3SAT-formula into a network as follows: Take one copy of the

clause gadget C for every clause of the formula (each with an inflow rate of 12 during the
interval [0, 1] at its respective node c), one copy of the variable gadget V for every variable
and connect them in the obvious way with edges of infinite capacity and unit travel time (e.g.
if the first literal of some clause is ¬x1 connect the node `1 of this clause’s copy of C with the
node ¬x of the variable x1’s copy of V and so on). Then add a sink node t and connect the
nodes z′ of all variable gadgets to t via edges of travel time 1 and infinite capacity. Finally,
connect the node s2 (which is the same for all variable gadgets) to t by first an edge s2v of
travel time 1 and then another edge vt of travel time 2 and infinite capacity. The resulting
network (see Figure 8) has an IDE flow not using edge s2v if and only if the 3SAT-formula
is satisfiable: Namely, if the formula is satisfiable, take one satisfying interpretation and
define a flow as follows: In every clause gadget choose one literal satisfied by the chosen
interpretation and send all flow from this gadget over this literal’s corresponding edge. This
ensures that in the variable gadgets all flow will enter through only one of the two possible
entry nodes x and ¬x and, as noted before, will then leave the gadget exclusively over node
z′. If, on the other hand, the 3SAT-formula is unsatisfiable every IDE flow will sent a flow
volume of more than 1 over edge s2v during the interval [4, 5] since in this case any flow has
to have at least one variable gadget where flow volumes of at least four enter at node x as
well as node ¬x (otherwise such a flow would correspond to a satisfying interpretation of the
given 3SAT-formula). This shows that the first problem stated in Theorem 4.9 is NP-hard.
In order to show that the other problems are NP-hard as well, we will introduce a third

type of gadget: The indicator gadget I (see Figure 9). We can construct such a gadget
for any given single-source single-sink network N with constant inflow rate over the interval
[0, θ0] at its source node. It consists of a new source node s1 with the same inflow rate as N ’s
source node shifted by 5 time steps. The node s1 is connected to the sink node t (outside the
gadget) by two paths: One through the network N (entering it at its original source node
sN and leaving it from its sink node tN ) and one through two additional nodes s2 and v and
an edge of capacity and travel time 1 between them. All other edges outside N have infinite
capacity. The two outgoing edge from s1 both have a length of θ0. The path through the
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s2

v

t

V2V1 . . . Vn

C1 . . . Ck

Figure 8.: Schematic representation of the whole network corresponding to a 3SAT-formula with
clauses C1, . . . , Ck in variables x1, . . . , xn. The triangles are clause gadgets (cf. fig. 6),
the rectangles are variable gadgets (cf. fig. 7).

gadget has length one more than the path via s2 and v. The node s2 has a constant network
inflow rate of 1 starting at time 4 and ending at time 5 + θ0. When embedding this gadget
into a larger network (with sink t) the gadget is connected to the larger network by one or
more incoming edges into s2.
If no flow ever enters the gadget via this edge, all flow generated at s1 will travel through

the path containing s2v. If, on the other hand, a flow of volume more than 1 comes through
this edge before the inflow at node s1 starts, all the flow generated there will travel through
the subnetwork N . Adding this gadget to the network constructed from the 3SAT-formula
as described above results in a network with the following properties (see Figure 10 for an
example):
• If the 3SAT-formula is satisfiable there exists an IDE flow where the subnetwork N inside

gadget I is never used but edge s1s2 is used.
• If the 3SAT-formula is unsatisfiable every IDE flow will be such that its restriction to the

subnetwork N inside I is a (time shifted) IDE flow in the original stand alone network
N and the edge s1s2 is never used.

Accordingly, if for example we use the network from Figure 4 as sub-network we have a
reduction from 3SAT to the fourth problem from Theorem 4.9. Any network N gives us a
reduction to the second problem (with edge s1s2 as the special edge). And just an edge with
a very small capacity allows a reduction to the third problem. Alternatively, one could also
use a network wherein flow gets caught in cycles for a long time before it reaches the sink
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s1

us1 ≡ uN · 1[5,5+θ0]

s2 us2 ≡ 1[4,5+θ0]

v

t

sN

tN

N

I

Figure 9.: The indicator gadget I for a single-source
single-sink network N with network inflow rate
uN1[0,θ0]. All bold edges have infinite capacity,
the edge s2v has capacity 1. The edges s1sN and
s1s2 both have travel time θ0, edge s2v has a travel
time of 1 and the edges tN t and vt can have any
travel time such that the shortest s1-t path through
N has a length of exactly one more than the s1-t
path using edge s2v. If within the interval [4, 5]
a flow of volume more than 1 arrives at s2 over
the dashed edge, all flow entering the network at
s1 will travel trough N (it will arrive at that sub-
networks source node sN at a rate of uN during
the interval [5 + θ0, 5 + 2θ0]). If, on the other
hand, a flow volume of at most 1 reaches s2 via
the dashed edge up to time 5 + θ0 all flow origi-
nating at s2 will bypass N using edge s2v and N
will forever remain empty.

as, for example, the network constructed to prove the lower bound on the termination time
of IDE in [10].

c1

`11 `12 `13

c2

`21 `22 `23

c3

`31 `32 `33

x1

y1

¬x1 x2

y2

¬x2 x3

y3

¬x3 x4

y4

¬x4

t

s1

s2sN

tN

N

Figure 10.: The whole network for the 3SAT-formula (x1∨x2∨¬x3)∧ (x1∨¬x2∨x4)∧ (¬x1∨x3∨x4).
The bold edges have infinite capacity, while all other edges have capacity 1. The solid edges
have a travel time of 1, the dashdotted edges may have variable travel time (depending on
the subnetwork N ).
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Remark 4.10. Combining a construction similar to the one above with the single-source multi-
sink network constructed in the proof of [11, Theorem 6.3] to show that multi-commodity
IDE flows may cycle forever, shows that the problem to decide whether a given multi-sink
network has an IDE terminating in finite time is NP-hard as well.
Remark 4.11. The above construction also shows the following aspect of IDE flows: While
a network may trivially contain edges that are never used in any IDE, edges that are only
used in some IDE flows and edges that are used in every IDE, there can also be edges that
are either not used at all or used for some flow volume of at least c, but never with any flow
volume strictly between 0 and c.

5. Conclusions and Open Questions
We showed that Instantaneous Dynamic Equilibria can be computed in finite time for single-
sink networks by applying the natural α-extension algorithm. The obtained explicit bounds
on the required number of extension steps are quite large and we do not think that they are
tight. Thus, further analysis is needed here.
We then turned to the computational complexity of IDE flows. We gave an example of a

small instance which only allows for IDE flows with rather complex structure, thus, implying
that the worst case output complexity of any algorithm computing IDE flows has to be
exponential in the encoding size of the input instances. Furthermore, we showed that several
natural decision problems involving IDE flows are NP-hard by describing a reduction from
3SAT.
One common observation that can be drawn from many proofs involving IDE flows (in

this paper as well as in [11] and [10]) is that they often allow for some kind of local analysis
of their structure – something which seems out of reach for Dynamic Equilibrium flows. This
local argumentation allowed us to analyse the behavior of IDE flows in the rather complex
instance from Section 4.2 by looking at the local behavior inside the much simpler gadgets
from which the larger instance is constructed. At the same time, this was also a key aspect
of the positive result in Section 3 where it allowed us to use inductive reasoning over the
single nodes of the given network. We think that this local approach to the analysis of IDE
flows might also help to answer further open questions about IDE flows in the future. One
such topic might be a further investigation of the computational complexity of IDE flows.
While both our upper bound on the number of extension steps as well as our lower bound
for the worst case computational complexity are superpolynomial bounds, the latter is at
least still polynomial in the termination time of the constructed flow, which is not the case
for the former. Thus, there might still be room for improvement on either bound.
Cominetti et al. [4] showed (using convergence to a steady-state) that the queue length of

dynamic equilibria with infinitely lasting inflow rates are bounded (provided that the inflow
rate is at most the capacity of a minimal cut). As shown in Theorem 4.5, convergence to
a steady state is not guaranteed for IDE flow. Therefore, we can not deduce much about
the long term behavior of queue lengths in IDE flows. On the one hand, it seems intuitive
that they should remain bounded as well, since, whenever queue lengths grow to high, flow
particles will take a different path until the queue length has decreased again. On the other
hand, the instance in Figure 4 shows that there may exist infinitely many phases, where the
inflow into the sink is smaller than the network inflow rate while at the same time there
are no phases, where the inflow rate into the sink is larger than the network inflow rate.
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Accordingly, the queue lengths are growing higher every cycle – although in this specific
example they are still bounded by 3.
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A. The Waterfilling Algorithm
In order to find a possible extension of a given partial IDE at a single node we have to
determine a solution to (OPT-b−v (θ)), i.e. find a distribution of the flow coming into this
node to outgoing active edges in such a way that all used edges remain active for some
proper time interval. As shown in [11] this can be done by a simple water filling procedure
([11, Algorithm 1 (electronic supplementary material)]), which we will restate here for the
convenience of the reader. The basic idea of this procedure is to first determine for every
outgoing active edge vw and all possible future constant edge inflow rates z the right side
derivative of the resulting shortest instantaneous travel time towards the sink for particles
starting with this edge, i.e.

ge(z)
νe

+ ∂+`w(θ),

where ge(z) := z−νe, if qe(θ) > 0 and ge(z) := max { z − νe, 0 }, otherwise. Seen as functions
in z these are continuous monotonic increasing functions starting with a constant part (if the
edge has no queue to begin with) followed by an affine linear part. Thus, they can always
be written in the form

k(z) =
{
β, z ≤ γ
β + 1

α(z − γ), z ≥ γ

for appropriately chosen constants α, β, γ. The goal is now to distribute the current gross
node inflow rate to the outgoing edges such that for all edges getting a non-zero part of this
flow rate their respective functions k evaluated at these rates coincide, while the k functions
of all other edges are at least as high when evaluated at a flow rate of 0. This can be
accomplished by ordering the edges with increasing value of k for inflow rate 0 and then
simultaneously filling the available node inflow into the edges with currently lowest value of
k until all flow is distributed. This is exactly what is accomplished by Algorithm 4.
Algorithm 4: Water filling procedure for flow distribution
Input : A number b−v (θ) ≥ 0 and functions ki : R≥0 → R≥0 with αi > 0 for

i = 1, . . . , p :=
∣∣δ+
v ∩ Eθ

∣∣ and β1 ≤ β2 ≤ · · · ≤ βp.
Output: Values zi ≥ 0 such that

∑p
i=1 zi = b−v (θ) and for some r′ ≤ p satisfying

k0(z0) = · · · = kr′(zr′) ≤ βr′+1, zi > 0 for i ≤ r′ and zi = 0 for i > r′.

1 Find the maximal r ∈ { 0, 1, . . . , p } with
∑r
i=1 max { z | ki(z) ≤ βr } ≤ b−v (θ)

2 if r < p and ∑r
i=1 max { z | ki(z) ≤ βr+1 } ≤ b−v (θ) then

3 Set zi ←


max { z | ki(z) ≤ βr+1 } , i ≤ r
b−v (θ)−

∑
i<r zi, i = r + 1

0 i > r + 1
4 else

5 Set zi ←
{

max { z | ki(z) ≤ βr } , i ≤ r
0 i > r

and b′ ← b−v (θ)−
∑p
i=1 zi

6 Set zi ← zi + αi∑r−1
j=1 αj

b′ for all i ≤ r.

7 end if
8 return z1, . . . , zp

The correctness of this approach has been proven in [11, electronic supplementary material,
Lemma 1].
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Observation A.1. The flow distribution obtained by using Algorithm 4 at a given node only
depends on the set of active edges, which subset of those currently has a non-zero queue, the
gross node inflow rate and the label functions `wi .
Observation A.2. If all input data for Algorithm 4 (i.e. b−v (θ) as well as all αi, βi and γi) is
rational, so is the output (i.e. the zi).
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