
Undergraduate Topics in Computer
Science

Series Editor

Ian Mackie, University of Sussex, Brighton, UK

Advisory Editors

Samson Abramsky , Department of Computer Science, University of Oxford,
Oxford, UK

Chris Hankin , Department of Computing, Imperial College London, London, UK

Mike Hinchey , Lero – The Irish Software Research Centre, University of
Limerick, Limerick, Ireland

Dexter C. Kozen, Department of Computer Science, Cornell University, Ithaca,
NY, USA

Andrew Pitts , Department of Computer Science and Technology, University of
Cambridge, Cambridge, UK

Hanne Riis Nielson , Department of Applied Mathematics and Computer Science,
Technical University of Denmark, Kongens Lyngby, Denmark

Steven S. Skiena, Department of Computer Science, Stony Brook University, Stony
Brook, NY, USA

Iain Stewart , Department of Computer Science, Durham University, Durham, UK

https://orcid.org/0000-0003-3921-6637
https://orcid.org/0000-0001-9149-8577
https://orcid.org/0000-0001-5110-561X
https://orcid.org/0000-0001-7775-3471
https://orcid.org/0000-0002-2484-5580
https://orcid.org/0000-0002-0752-1971


‘Undergraduate Topics in Computer Science’ (UTiCS) delivers high-quality
instructional content for undergraduates studying in all areas of computing and
information science. From core foundational and theoretical material to final-year
topics and applications, UTiCS books take a fresh, concise, and modern approach
and are ideal for self-study or for a one- or two-semester course. The texts are all
authored by established experts in their fields, reviewed by an international advisory
board, and contain numerous examples and problems, many of which include fully
worked solutions.

The UTiCS concept relies on high-quality, concise books in softback format, and
generally a maximum of 275–300 pages. For undergraduate textbooks that are likely
to be longer, more expository, Springer continues to offer the highly regarded Texts
in Computer Science series, to which we refer potential authors.

More information about this series at http://www.springer.com/series/7592

http://www.springer.com/series/7592


123

Programming for Beginners

Noel Kalicharan 

Julia - Bit by Bit 



Noel Kalicharan 

Department of Computing and IT 

University of the West Indies 

St. Augustine, Trinidad and Tobago 

 

 

ISSN 1863-7310   ISSN 2197-1781 (electronic) 

Undergraduate Topics in Computer Science 

ISBN 978-3-030-73935-5  ISBN 978-3-030-73936-2 (eBook) 

https://doi.org/10.1007/978-3-030-73936-2 
 
© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2021 

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or 

part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, 
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and 

retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter 

developed. 
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, 

even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations 
and therefore free for general use. 

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to 

be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, 
expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been 

made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. 

 
This Springer imprint is published by the registered company Springer Nature Switzerland AG 

The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland 

https://doi.org/10.1007/978-3-030-73936-2


Dedication 
James & Clara 

Claudette & Samuel 

Jeff & Jenny 

Margaret & Stephen 

Kenrick & Debbie 

Jennifer & Andrew 

Anushka & Michael 

Saskia & Vaishnavi 

 

 

Special Thanks 

Hubert Dupont 

Shellyann Sooklal 

 

For their meticulous, insightful and 
helpful comments  on the manuscript. 
Their eye for detail was truly 
impressive. Each brought their special, 
but different, strengths to bear, making 
this a better book than it would have 
been without their input. 



 

Preface 

 

Julia—Bit by Bit attempts to teach computer programming to the complete beginner using 

Julia—a relatively new programming language. Created in 2009 by Jeff Bezanson, Stefan 

Karpinski, Viral B. Shah and Alan Edelman, Julia was launched in 2012. Their goal?  "To create 

a free language that was both high-level and fast." Since its launch, Julia has undergone several 

version changes. As of November 9, 2020, it had matured to Version 1.5.3. 

The book assumes you have no knowledge whatsoever about programming. And if you are 

worried that you are not good at high-school mathematics, don’t be. It is a myth that you must 

be good at mathematics to learn programming. In this book, a knowledge of primary school 

mathematics is all that is required—basic addition, subtraction, multiplication, division, finding 

the percentage of some quantity, finding an average or the larger of two quantities.  

Some of our most outstanding students over the last forty years have been people with little 

mathematics background from all walks of life—politicians, civil servants, sports people, 

housewives, secretaries, clerical assistants, artists, musicians and teachers. On the other hand, 

we’ve had professionals like engineers and scientists who didn’t do as well as might be 

expected. So it's not about how "qualified" you are. 

What will be an asset is the ability to think logically or to follow a logical argument. If you are 

good at presenting convincing arguments, you will probably be a good programmer. Even if 

you aren’t, programming is the perfect vehicle for learning logical thinking skills. You should 

learn it for these skills even if you never intend to become a serious programmer. 

The main goal of this book is to teach fundamental programming principles using Julia, one of 

the fastest growing programming languages in the world today. Julia can be classified as a 

"modern" language, possessing many features not available in more popular languages like C 

and Java. 

Best of all, Julia is easy to learn. In fact, I would go so far as to say that, of all the many 

languages I have learnt and taught over the last forty years, Julia is the easiest to learn. This is 

particularly important for someone learning programming for the first time. You can concentrate 

on acquiring problem-solving skills without being overwhelmed by the language. I've known 

many students who got turned off learning programming because they found the basics of the 

language too difficult to grasp.  

Julia strips away the "fluff" of most languages, the "overhead" you need to write even the 

simplest programs. It's not fussy about things like semi-colons or having to "declare" the type 

of every variable you need to use. You just use it the way you want—Julia will figure out the 

type for you. But if you really want Julia to enforce "typing", it can do that as well. 

Nevertheless, this book is as much about teaching basic problem-solving principles as it is about 

teaching Julia.  Remember, a language is useless if you can't use it to solve a problem. But once 

you learn the principles well, they can be applied to any language. 

Chapter 1 gives an overview of the programming process. It shows you how to write your first 

Julia program and introduces some of the basic building blocks needed to write programs. 

Chapter 2 is all about numbers—integers, floating-point, operators, expressions—how to work 

with them and how to print them. It also explains how to write programs that use sequence 

logic—statements are executed one after the other, from first to last. 

Chapter 3 shows how to write programs which can make decisions. It explains how to use if 

and if…else statements. 

vii



Chapter 4 explains the notion of ‘looping’ and how to use this powerful programming idea to

solve more interesting problems. Looping is implemented using for and while statements. We 

also explain how to read data from a file and write results to a file. 

Chapter 5 formally treats with functions. These enable a (large) program to be broken up into 

smaller manageable units but which work together to solve a given problem. 

Chapter 6 is devoted to Characters and Strings. These present some difficulty in other languages 

but, in Julia, we can work with them as seamlessly as we do numbers. 

Chapter 7 tackles the nemesis of many would-be programmers—array processing. However, 

this is significantly easier in Julia than other languages. Master array processing and you would 

add to your repertoire a tool that will significantly increase the range of problems you can solve. 

Chapter 8 is mainly about sorting and searching techniques. Sorting puts data in an order that 

can be searched more quickly/easily, and makes it more palatable for human consumption.  

Chapter 9 introduces structures. These enable us to group data in a form that can be manipulated 

more easily an a unit. 

Chapter 10 deals with two useful data structures—dictionaries and sets. These enable us to solve 

certain kinds of problems more easily and conveniently than we can without them. 

The first step in becoming a good programmer is learning the syntax rules of the programming 

language. This is the easy part and many people mistakenly believe that this makes them a 

programmer. They get carried away by the cosmetics— they learn the features of a language 

without learning how to use them to solve problems. Of course, you must learn some features. 

But it is far better to learn a few features and be able to use them to solve many problems rather 

than learn many features but can’t use them to solve anything. For this reason, this book 

emphasizes solving many problems from just a few features. 

This book is intended for anyone who is learning programming for the first time, regardless of 

age or institution. The presentation is based on our experience that many people (though not all) 

have difficulty learning programming. To try and overcome this, we use an approach which 

provides clear examples, detailed explanations of very basic concepts and numerous interesting 

problems (not just artificial exercises whose only purpose is to illustrate some language feature). 

While computer programming is essentially a mental activity and you can learn a fair amount 

of programming from just reading the book, it is important that you “get your hands dirty” by 

writing and running programs. One of life’s thrills is to write your first program and get it to run 

successfully on a computer. Don’t miss out on it.   

But do not stop there. The only way to learn programming well is to write programs to solve 

new problems. The end-of-chapter exercises are a very rich source of problems, a result of  the 

author’s more than 40 years in the teaching of  programming. 

Thank you for taking the time to read this book. I hope your venture into programming is a 

successful and enjoyable one. 

 

Noel Kalicharan 

 

 

viii Preface



 

Contents 

  

ix

           

 Chapter 1 Elementary Concepts
    1.1 Programs, Languages and Compilers

    1.2 How a Computer Solves a Problem

     1.2.1 Define the Problem

     1.2.2 Analyze the Problem  

     1.2.3 Develop an Algorithm to Solve the Problem  

      1.2.3.1 Data and Variables

      1.2.3.2 Example – Develop the Algorithm

     1.2.4 Write the Program for the Algorithm  

     1.2.5 Test and Debug the Program

     1.2.6 Document the Program  

     1.2.7 Maintain the Program

    1.3 How a Computer Executes a Program   
    1.4 Data Types

    1.5 Characters  

    1.6 Welcome to Julia Programming  

    1.7 A Program With Input  

    1.8 Writing Output with print/println      
     1.81 The Newline Character, \n (backslash n)      
     1.8.2 println()      
     1.8.3 Escape Sequences      
    1.9 Print the Value of a Variable      
    1.10 Comments      
    1.11 Julia Basics      
     1.11.1 The Julia Alphabet      
     1.11.2 Julia Tokens      
     1.11.3 Reserved Words      
     1.11.4 Identifiers      
     1.11.5 Some Naming Conventions      
    Exercises 1      
 

 Chapter 2 Numbers
    2.1 Introduction      
    2.2 How to Read Integers      
    2.3 How to Read Floating-Point Numbers      
    2.4 Example - Average      
    2.5 Example - Square a Number      
    2.6 Example - Banking      
    2.7 Example - Football Tickets     
    2.8 Integers - Int      
     2.8.1 Integer Expressions      
     2.8.2 Precedence of Operators      
     2.8.3 Print an Integer Using a Field Width      
    2.9 Floating-point Numbers      
     2.9.1 Print Float64 and Float32 Variables      
     2.9.2 Assignment Between Float64 and Float32      

2 9 3 Floating-point Expressions     

 

 

 

13

14

15

15

16

17

18

18

18

20

20

21
22

23

23

25

26

27

28

31

34

36

37

38

40

41

43

42

1

3

3 
3

4

4

5

5

7  
8 
8

8

9  
10

11

12

1

23



x Contents

 2.9.4 Mixed Expressions      
2.10 Assignment Operator      
2.11 Updating Operators      
2.12 trunc, ceil, floor, round      
Exercises 2      

Chapter 3 Selection Logic
3.1 Introduction      
3.2 Boolean Expressions      
 3.2.1 AND, &&      
 3.2.2 OR, ||      
 3.2.3 NOT, !      
3.3 The type Bool      
3.4 The if Statement      
 3.4.1 Find the Sum of Two Lengths      

3.5 The if…else Statement      
 3.5.1 Calculate Pay      
3.6 On Program Testing      
3.7 Symbolic Constants      
3.8 The if…elseif…else Statement      
 3.8.1 Print a Letter Grade      
 3.8.2 Classify a Triangle      
Exercises 3      

Chapter 4 The for and while Statements
4.1 Introduction      
4.2 The for Statement      
 4.2.1 Multiplication Tables      
 4.2.2 Temperature Conversion      
4.3 The Expressive Power of for     
4.4 break/continue in for      
4.5 Read Data From File      
 4.5.1 Keep a Count      
 4.5.2 Find Average      
4.6 Find Largest Number      
 4.6.1 Find 'Largest' Word      
 4.6.2 Find Longest Word      
 4.6.3 Find Smallest Number      
4.7 Nested for Statement      
4.8 Read Data From File, Cont'd      
4.9 The while Statement      
 4.9.1 Sum of Numbers (Prompt)      
 4.9.2 Sum, Count, Average (Prompt)      

 4.9.3 Greatest Common Divisor      
4.10 Send Output to a File      
4.11 Payroll      
4.12 break/continue in while      
Exercises 4      

Chapter 5  Functions
5.1 Introduction      
5.2 Function Basics      

44

45

45

46

51

53

53

54

55

55

56

56

59

61

63

64

65

66

67

68

69

72

72

75

78

80

82

83

85

85

86

88

89

89

90

92

95

97

98

99

100

101

104

106

109

110

53

72

109



  

xiContents

     5.2.1 How an Argument Is Passed to a Function      

    5.3 Function - Examples      
     5.3.1 How to Swap Two Variables      
     5.3.2 Yesterday, Today and Tomorrow      
     5.3.3 GCD, Greatest Common Divisor      
     5.3.4 Using GCD to Find LCM      
     5.3.5 Factorial and Big Integers      
     5.3.6 Combinations      
     5.3.7 Calculate Pay     
     5.3.8 Sum of Exact Divisors      
     5.3.9 Perfect, Abundant or Deficient      
     5.3.10 Letter Position in Alphabet      
    5.4 Introduction to Recursion      
     5.4.1 GCD, Greatest Common Divisor      
     5.4.2 Fibonacci Numbers      
     5.4.3 Decimal to Binary      
     5.4.4 Towers of Hanoi      
     5.4.5 The Power Function      
     5.4.6 Find Path Through Maze      
    Exercises 5  
 

Chapter 6  Characters & Strings
    6.1 Character Sets      
    6.2 Character Constants and Values      
    6.3 The Type Char      
    6.4 Some Char Functions      
     6.4.1 Uppercase To/From Lowercase  

    6.5 Read and Print Characters      
    6.6 Count Space Characters      
    6.7 Compare Characters      
    6.8 Echo Input, Number Lines      
    6.9 Convert Digit Characters to Integer      
    6.10 String Basics      
    6.11 Compare Strings      
    6.12 Index Into a String      
    6.13 Example - Sum of Distances      
    6.14 Concatenation      
    6.15 Example - Get Words From Random Data      
    6.16 Example - Palindrome      
    6.17 A Flexible getString Function      
    6.18 Example - Geography Quiz Program      
    6.19 Other String Functions      
     6.19.1 findfirst      
     6.19.2 findlast      
     6.19.3 findnext      
     6.19.4 findprev      
     6.19.5 occursin      
    6.20 Array of Characters      
    6.21 For the Curious Reader      
    Exercises 6      

113

114

114

115

116

118

118

121

123

123

124

125

126

128

128

129

130

132

133

137

140

141

142

143

144

146

148

149

150

151

154

156

157

159

161

162

164

166

167

169

170

171

171

173

174

174

176

180

140



 

    

xii Contents

 

Chapter 7  Arrays
    7.1 Introduction      
    7.2 Simple vs Array Variable      
    7.3 Array Declaration      
    7.4 Store Values in an Array      
    7.5 Average and Differences from Average      
    7.6 Letter Frequency      
    7.7 Array as Argument to a Function      
    7.8 Name of Day Revisited      
    7.9 Find Largest, Smallest in Array      
     7.9.1 min, max, minimum, maximum      
    7.10 A Voting Problem      
     7.10.1 How to Handle Any Number of Candidates      

     7.10.2 How to Sort the Results      
    Exercises 7      

 

Chapter 8  Searching, Sorting and Merging
    8.1 Sequential Search      
    8.2 Selection Sort      
     8.2.1 Analysis of Selection Sort      
    8.3 Insertion Sort      
     8.3.1 Analysis of Insertion Sort      
     8.3.2 Sort Unlimited Data      
    8.4 Sort Parallel Arrays      
    8.5 Binary Search      
    8.6 Word Frequency Count      
    8.7 Merge Sorted Lists      
    Exercises 8      

 

Chapter 9  Structures
    9.1 The Need for Structures      
    9.2 How to Write a struct Declaration      
     9.2.1 Pass struct as Argument to a Function      
    9.3 Array of Structures      
     9.3.1 Sort struct Array      
    9.4 Nested Structures      
    9.5 Fractions      
     9.5.1 Manipulate Fractions      
     9.5.2 Rational Numbers      
    9.6 Voting Problem Revisited      
     9.6.1 On using isless in sort      
    Exercises 9      
 

    

181

182

182

186

190

191

194

194

195

197

198

202

202

205

207

209

211

212

216

216

217

219

221

224

228

230

231

232

234

236

238

239

240

241

243

247

250

181

207

230



 xiiiContents

      

        
      

      

    Exercises 10      
 

Appendix A  Install Julia/Atom/Juno
 

Index
 

 277

10.3 Thesaurus      
10.4 Scrabble      

264

267

279

286

Chapter 10  Dictionaries & Sets
    10.1 Dictionaries      
     10.1.1 Letter-Frequency      
     10.1.2 Dict Functions - haskey, in, delete!      
    10.2 Sets      
     

     

252

254

256

257

252

10.2.1 Set Operations   
10.2.2 Find All Unique Words      263

258


	Preface
	Contents

