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Abstract Safe learning and optimization deals with learning and optimiza-
tion problems that avoid, as much as possible, the evaluation of non-safe input
points, which are solutions, policies, or strategies that cause an irrecoverable
loss (e.g., breakage of a machine or equipment, or life threat). Although a
comprehensive survey of safe reinforcement learning algorithms was published
in 2015, a number of new algorithms have been proposed thereafter, and re-
lated works in active learning and in optimization were not considered. This
paper reviews those algorithms from a number of domains including rein-
forcement learning, Gaussian process regression and classification, evolution-
ary computing, and active learning. We provide the fundamental concepts
on which the reviewed algorithms are based and a characterization of the
individual algorithms. We conclude by explaining how the algorithms are
connected and suggestions for future research.

Keywords: safe learning · safe optimization · Markov decision process ·
black-box optimization · expensive optimization

1 Introduction

Standard learning and optimization algorithms are generally concerned with trad-
ing off exploration and exploitation of an objective function such that approxima-
tion of the objective function is performed efficiently for learning problems, and
such that an optimal solution, policy and/or strategy is discovered within as few
evaluations as possible for optimization problems. This paper is concerned with
learning/optimization problems where the evaluation of unsafe solutions imply some
significant loss, such as damage of experimental equipment or personal injury.

Safe learning and optimization scenarios typically arise in black-box problems,
particularly expensive ones. In black-box problems, no explicit mathematical model
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of the safety constraints is available and the value of the safety constraint function
can only be known after a solution has been evaluated. If the number of total evalu-
ations is very limited, from ten to a few thousands, due to limited time or available
resources, then the problem is also called expensive. Such scenarios arise often when
the evaluation of a solution requires a simulation [11] or a real-world experiment, as
in closed-loop optimization [1, 19]. This paper provides an overview of the research
carried out in the area of safe learning and optimization, primarily, for black-box
and expensive problems.

Algorithms designed for solving expensive (black-box) problems exploit infor-
mation obtained through a series of expensive evaluations to select the next input
point (i.e., solution) for evaluation. In such problems, an evaluation is akin to ex-
ecuting a physical, chemical or biological experiment, and thus, involves the use of
resources, such as raw materials, machines, operators, etc. Problems that require
time-consuming computer simulations can be seen as another example of expensive
problems [1, 4, 11, 23, 28]. As mentioned above, in expensive problems, the evalua-
tion of an unsafe solution can lead to a waste of resources, such as damage/loss of
equipment, of which we may have limited availability.

A large body of research has been carried out around algorithm design for ex-
pensive problems. Arguably, Bayesian optimization (also called surrogate-assisted
optimization, meta-model and response surface methods) [12, 29] has become the
default approach for tackling expensive optimization problems. However, research
around non-standard problem features and their implications, such as safety, fair-
ness, and dynamic problem aspects, remains dispersed across the different areas of
machine learning, AI and optimization.

García and Fernández [13] provided a survey on safe reinforcement learning (safe
RL), including constrained criterion-based optimization, which is relevant to this
survey. In constrained criterion-based optimization, the safe domain of policies (i.e.,
of input points) is approximated by several constraints. There are several approaches
in constrained criterion-based optimization. The most typical approach constraints
a safety function above a certain threshold. Other approaches evaluate only input
points that preserve ergodicity [13, 21] or ensure that evaluations are only allowed
when the expected variance of their output does not exceed a certain threshold [13].
Classical ergodicity means that we can get from every state to every other state with
positive probability. However, in the context of safe RL, the ergodicity assumption
differentiates between safe and unsafe states, and the concepts of reachability (an
input point is safe only if it can be reached without evaluating any unsafe input
points) and returnability (an input point is safe if there is a sequence of transitions
via safe input points that reaches any of a given safe state set) are limited to being
able to move between safe states only [33–35]; hence, in the remainder of this paper,
ergodicity refers to this notion from safe RL.

In this paper, we define a safe learning and optimization problem as one subject
to one or more safety constraints and/or the preservation of ergodicity as defined
above. An input point that violates a safety constraint or ergodicity is deemed un-

safe. The goal when tackling such problems may be to identify an optimal input
point, learn some unknown function, explore a search space or determine the bound-



A Survey on Safe Learning and Optimization Techniques 3

aries of the safe input space, while constraining the evaluation of unsafe input points
up to a maximum budget, which is often zero if no unsafe evaluations are allowed at
all. Thus, we review algorithms that aim to satisfy all safety constraints and/or pre-
serve ergodicity, the latter mostly applies to safe RL algorithms designed for learning
tasks. Furthermore, we review several related algorithms in active learning and op-
timization communities such as Bayesian optimization and evolutionary computing,
which were not covered in [13].

The remainder of the paper is organized as follows. In Section 2, we propose a
general formal definition of safe optimization problems that generalizes many of the
formulations found in the literature, and discuss the scope of this survey. Section 3
provides a brief summary of several fundamental concepts related to safe learning and
optimization. Section 4 reviews existing safe learning and optimization algorithms
that have been proposed after the survey by García and Fernández [13], originating
from evolutionary computing, active learning, reinforcement learning and Bayesian
optimization. Finally, Section 5 discusses links between these algorithms and provides
ideas for future research.

2 Problem statement

This section provides a formal definition of a general safe optimization problem and
discusses various special cases.

In a safe optimization problem, we are given an objective function f : Rm →
R that is typically both black-box and expensive (e.g., costly, time-consuming,
resource-intense etc.). The goal is to discover a feasible and safe m-dimensional in-
put point x = (x1, . . . , xm) ∈ R

m that maximizes the objective function f(x) while
avoiding the evaluation of unsafe input points as much as possible. The objective
function may represent reward, efficiency or cost, and input points may represent
policies, strategies, states/actions (of an agent/system) or solutions. Formally,

Maximize f(x) x ∈ R
m

subject to gi(x) ≤ 0 i = 1, . . . , q

sj(x) ≥ hj j = 1, . . . , p,

(1)

where gi(x) ≤ 0 are q feasibility constraints, sj(x) are p safety functions [14] and hj

are p safety thresholds (constants). We explicitly separate the safety thresholds from
the safety functions since, depending on the application at hand, either the function
is black-box [30] or the threshold is unknown a priori [26], meaning we only know
whether a solution is safe during or after its evaluation. A common special case arises
when the safety function is the same as the objective function, that is, there is only
one safety constraint (p = 1) such that s1(x) = f(x) ≥ h [2, 30, 33].

There is a key difference between (hard and soft) feasibility and safety constraints:
Feasibility constraints model aspects that are relevant for an input point solution
to be of practical use, such as bounds of instrument settings, physical limitations or
design requirements. Depending on the application, an input point that violates a
feasibility constraint can or cannot be evaluated (hard vs soft constraints) [20] but if a
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feasibility constraint is violated by a solution, then this has no serious consequences.
On the other hand, evaluating an input point that violates a safety constraint leads
to an unsafe situation, e.g., an experimental kit breaks or a human dies. That is,
prior to evaluating a solution, an optimizer needs to have as much certainty about
its safety status as possible, based either on a continuous measure [18] or binary
property of solutions. It is important to note that an input point can be feasible but
unsafe, or vice versa.

An input point that violates any safety constraint is unsafe. The evaluation of
an unsafe input point is counted as a failure. Let us assume that a given budget of
failures is allowed, nfailure ∈ N0. After this budget is consumed, the algorithm has
failed and cannot continue. We can distinguish two special cases in the literature.
In one case, evaluating unsafe input points encountered during the search process is
endurable only a limited number of times [2, 4, 18, 23–26]; thus, nfailure > 0. When
a failure represents a relatively innocuous event, such as the crash of an expensive
simulation [4, 23], a relatively large number of failures may be allowed, but each of
them has a cost. However, in other cases, the assumption is that no unsafe input
point should be evaluated ever (nfailure = 0) [6–8, 10, 30, 31, 33, 35].

In some safe optimization and learning problems, a safety constraint can be
violated if the associated safety function sj(x) cannot be evaluated because the
unsafe input point represents an incomplete experiment or expensive simulation [4,
23] or physical damage to the input point [2] that prevents measuring the value of
the safety function. Thus, it is only known whether the constraint was violated, but
not by how much. Within the above definition of safe optimization problem (Eq. 1),
such cases are equivalent to the following safety constraint:

s′j(x) ≥ 0 where s′j(x) =

{

sj(x) if sj(x) ≥ hj (safe)

−1 if sj(x) < hj (unsafe)
(2)

where only the value s′j(x) is observable, whereas sj(x) is not directly observable.
Moreover, in some contexts [4], the evaluation of an unsafe input point may also
prevent the objective function (or feasibility constraints) to be evaluated, even if
different from the safety function.

The above optimization model also covers optimal parameter control, if the prob-
lem may be modelled as online optimization or multi-arm bandit [7]. Furthermore,
the above model can be adapted easily to safe learning and RL. In safe learning, the
goal becomes to discover a feasible and safe input point that minimizes the largest
amount of uncertainty. Thus, the objective function may represent uncertainty about
a performance or safety function. Uncertainty may be measured in different ways,
e.g., variance and width of confidence interval. In the particular case of safe RL, a
Markov decision process (MDP) is typically used for modelling the problem, such
that an agent (e.g., rover or quadrotor) needs to explore the state or state-action
space in an uncertain environment [8, 33–35]. The sequence of input points (states or
state-action pairs) is determined by a transition function, which is often unknown.
In this context, a safe input point must also satisfy ergodicity, i.e., it needs to satisfy
the properties of reachability and returnability to a safe state [33–35]. Here, return-
ability is allowed to be met in n steps, however, reachability is problem-specific, as
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we will explain in more detail later. In the context of MDP, the goal may be to
optimize a reward function [15, 35] or to find the largest set of safe input points
(safe exploration) [8, 33, 34]. In either case, the objective function in Eq. (1) may
be adapted to reflect those goals.

3 Fundamental concepts in safe learning and optimization

Safe learning and optimization is a domain that is spread across several research
communities, each approaching the problem from a different angle, though there
are overlaps in methodologies. This section provides an overview of the main con-
cepts underpinning the different methodologies including Markov decision process
(MDP), Gaussian process regression (GPR), Evolutionary algorithm (EA), safe set

operator (which examines safety of input points based on L-Lipschitz continuity),
and optimistic expander operator and optimistic safe set operator (which is operated
based on a safe set established by safe set operator followed by naive confidence in-
terval and intersectional confidence interval applied to the operators). In addition,
classifiers, such as Gaussian process classifier (GPC) [4, 26] and least-squares sup-
port vector machine (LS-SVM) [23], have been used for inferring the safety of input
points, however, we do not introduce them here for brevity.

We distinguish between function exploration in safe learning and safe MDP ex-
ploration in RL. In function exploration, the goal is to learn some unknown function,
while avoiding unsafe input points. By contrast, in safe MDP exploration, an agent
explores the state space of the MDP. Hence, the problem definition includes a reach-
ability constraint, which ensures that safe input points are reachable in one step of
the MDP (one-step reachability [33, 35]) or in several steps (n-step reachability [34]),
and a returnability constraint, which ensures that the agent can return to any of a
given safe state set, usually, in several steps (n-step returnability [8, 33–35]). Details
about RL and MDPs can be found in [32].

GPR is a regression method that learns a function using Gaussian processes.
GPR can be used for function exploration, exploitation and exploration-exploita-
tion [3, 27]. Following most recent research in safe learning and optimization, we fo-
cus here on learning (function exploration) and optimization (function exploration-
exploitation) subject to safety constraints, which we denote as safe learning and safe
optimization, respectively. Arguably, the majority of safe learning and optimization
approaches make use of GPR in one way or the other, primarily to infer (i) an objec-
tive function, as generally used in expensive learning/optimization, and/or (ii) safety
function(s), which provides information about the likelihood of an input point being
safe. For general information about GPR, the reader is referred to [9, 22, 27].

The literature also reports some applications of Evolutionary Algorithms
(EAs) [5] to safe optimization problems. EAs are heuristic optimization methods
inspired by biological evolution. Loosely defined, EAs evolve a population of indi-
viduals (solutions) through the application of variation operators (mutation and/or
crossover) and selection of the fittest. Naive variation operators involve a great deal
of (guided) randomness to generate innovative solutions and thus cover a larger part
of the search space. Moreover, naive EAs do not account for the expected mean and
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uncertainty of a solution before evaluating it, unlike GPR. The combination of be-
ing too innovative and unconscious about the safety of a solution prior to evaluation
may explain their limited application to problems with safety constraints.

In the literature on safe learning and optimization, two kinds of methods are
mostly used for determining the level of safety of input points: L-Lipschitz con-
tinuity and classifiers. The concept of L-Lipschitz continuity is often used in
combination with problems where a known constant safety threshold h is available
to the learning/optimization algorithm. An evaluation that yields an output value
above the threshold would deem the input point as safe. More formally, given a
Lipschitz constant L, the L-Lipschitz continuity assumption is met if

d(f(x), f(x′)) ≤ L · d(x,x′), (3)

where both x and x
′ ∈ R

m, and d(·, ·) denotes the distance between two input points,
typically, the Euclidean distance [8]. Then, given a set of safe input points S ⊂ R

m,
an input point x ∈ R

m is deemed safe if ∃x′ ∈ S such that

l(x′)− L · d(x′,x) ≥ h, (4)

where l(x′) is the lower bound of the confidence interval for x′, and L is the Lipschitz
constant [30]. Using the lower bound makes the above inequality more strict when
compared to using the mean or upper bound, thus preventing unsafe evaluations
resulting from noisy measurements (i.e., an input point x that satisfies the above
inequality is highly likely to be safe even if a noisy measurement affects its output
value). We refer to Eq. (4) as safe set operator.

Having derived a set of safe solutions using the safe set operator, next, what is
called an optimistic expander operator can be used to select input points from
that set. The selected points could potentially expand the safe set by helping to
classify additional input points (at least one) as safe in the next iteration. That is,
an input point x, not known to be safe, may be classified as safe if the following
condition is satisfied:

u(xsafe)− L · d(xsafe,x)− ǫ ≥ h, (5)

where ǫ = 0 and the evaluation of the safe input point x
safe gives a value equal

to u(xsafe), the upper bound of the confidence interval for the safety function of
x

safe [30] (optimistic attitude). The optimistic expander operator would select
input points that are expected to be safe and also increase the size of the safe set
if evaluated. Finally, an optimistic safe set operator uses the condition (Eq. 5),
but x can be any input point in R

m and ǫ is the parameter representing the noise
of a safety function, constructs an optimistic safe set consisting of x.

Some algorithms calculate naive confidence interval and intersectional con-
fidence interval [34], respectively defined as:

lt = µt−1(x) − βtσt−1(x), ut = µt−1(x) + βtσt−1(x) (6)

lt = max(lt−1, µt−1(x)− βtσt−1(x)), ut = min(ut−1, µt−1(x) + βtσt−1(x)), (7)

where βt is a parameter that determines the width of the confidence interval and σt−1

is the predicted standard deviation at point x [27] at iteration t of the algorithm.
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4 Algorithms

This section provides an overview of existing safe learning and optimization algo-
rithms, and relationships between them (Tables 1 and 2). The tables can be seen as
a first attempt of a classification of these algorithms.

Table 1 classifies the safe learning and optimization algorithms according to their
aim, either optimization, which is subdivided by the type of method (EA and/or
GPR), or learning, which is subdivided into RL or active learning. For each algo-
rithm, the column Method shows key features of the algorithm (PSO denotes particle
swarm optimization). We notice that most published works use either L-Lipschitz
continuity or a classifier to infer the safety of input points. VA [18] and GoOSE [34]
are methods that augment other algorithms to handle the safety of input points.

Table 2 divides the algorithms by the environment they assume: MDP or non-
MDP. For each algorithm, the column Initial safe seed shows whether it requires
at least one starting input point known to be safe. The column Safety likelihood

presents the form in which safety of unobserved input points is predicted, either
using labels derived from a classifier (safe vs unsafe) or safety constraint(s) (safe set
vs the others) (Label), probability of safety estimated from a classifier (Probability),
or none (safety is not inferred: NI ). As shown in the table, classifiers are used to
both predict safety labels of input points and calculate probability of safety. The
column Number of objectives gives the number of objective functions considered by
the algorithm. For example, the number of objectives that GoOSE [34] can handle
is problem-specific as the algorithm is augmented onto algorithms that do not have
a built-in approach to cope with safety constraints (similar to VA [18]) and thus is
driven by the number of objectives that the underlying algorithm is dealing with.
The column Safety constraints show how many safety constraint(s) can be handled
by the algorithm, noticing that some algorithms are limited to a single safety con-

straint. MDP problems additionally include various forms of ergodicity as a safety
requirement.

4.1 Evolutionary algorithms (EAs)

Arguably, the evolutionary computation community was one of the first to investigate
safety issues as defined in this paper. The work of Kaji et al. [18] in 2009 introduced
the violation avoidance (VA) method, a classification tool that is augmented onto
an EA, while the work of Allmendinger and Knowles [2] in 2011 investigated the
impact of safety issues on different stochastic optimizers (TGA, RBS, PHC). VA is
able to deal with either binary or continuous input variables, while the optimizers
considered in [2] assumed binary input variables.

The purpose of the Violation Avoidance (VA) method [18] is to avoid risky eval-
uations by replacing the ordinary offspring generation process of EAs. It applies the
nearest neighbors method (NNs) using a weighted distance to decide over the safety
of an input point prior to evaluating it. VA assumes the safety label of an input
point to be same as the label of the nearest previously evaluated input point.3

3 The notion of risk is considered more formally in SAL [26], discussed in Section 4.3.
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Table 1. Characterization of existing safe learning and optimization algorithms (Part 1).

Discipline Paper Year Algorithm Method Comment

Optimization

EA Kaji et al. [18] 2009 VA NNs VA is a classifier augmented onto other EAs re-
placing their offspring generation process.

Allmendinger and Knowles [2] 2011 TGA, RBS and PHC Various EAs were proposed.

GPR Sui et al. [30] 2015 SafeOpt L-Lipschitz
continuity

Inspired several safe algorithms [6, 7, 10, 31, 33–
35].

Berkenkamp et al. [7] 2016 Modified SafeOpt Lipschitz constant-free model.

Berkenkamp et al. [6] 2016 SafeOpt-MC L-Lipschitz
continuity

Multiple safety constraints are dealt with.

Duivenvoorden et al. [10] 2017 Swarm-based SafeOpt PSO Lipschitz constant-free model.

Schillinger et al. [24] 2017 SBO Application of SAL [26] to optimization problem.

Sui et al. [31] 2018 StageOpt L-Lipschitz
continuity

Multiple safety constraints are dealt with. Op-
timization is performed in two independent pro-
cesses: learning and optimization stages.

Bachoc et al. [4] 2020 EFI GPC sign GPC A problem-specific GPC was proposed.

GPR with EA Sacher et al. [23] 2018 EGO-LS-SVM LS-SVM GPR is used combined with EA.

Learning

Reinforcement
Learning

Turchetta et al. [33] 2016 SafeMDP MDP, GPR,
L-Lipschitz
continuity

Application of SafeOpt to exploration task.

Wachi et al.[35] 2018 SafeExpOpt-MDP MDPs,
GPR, L-
Lipschitz
continuity

Extension of SafeMDP made to maximize cu-
mulative reward while safely exploring the state
space.

Turchetta et al. [34] 2019 GoOSE GPR,
L-Lipschitz
continuity

The algorithm is augmented onto other unsafe ex-
ploration algorithms.

Bıyık et al.[8] 2019 SEOFUR MDP,
L-Lipschitz
continuity

Transition functions are unknown.

Active Learning Schreiter et al. [26] 2015 SAL GPR, GPC A problem-specific GPC was introduced.

Schillinger et al. [25] 2018 SAL GPR Application of SAL to high pressure fuel supply
system (HPFS).
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Table 2. Characterization of existing safe learning and optimization algorithms (Part 2).

Environment Algorithm Initial safe

seed

Safety

likelihood

Number of

objectives

Safety constraints

Non-MDP VA[18] Not required Label Single/
Multiple

One or multiple

TGA, RBS, and PHC [2] Not required NI Single One

SafeOpt [30] Required Label Single One

Modified SafeOpt [7] Required Label Single One

SafeOpt-MC [6] Required Label Single One or multiple

Swarm-based SafeOpt [10] Required Label Single One or multiple

StageOpt [31] Required Label Single One or multiple

SAL [26] Required Label Single One

SBO [24] Required Label Single One

SAL [25] Required Label Single One

EGO-LS-SVM [23] Not required Probability/
Label

Single One or multiple

EFI GPC sign [4] Not required Probability Single One

MDP SafeMDP [33] Required Label Single One safety constraint
Ergodicity: One-step reachability and returnability

SafeExpOpt-MDP [35] Required Label Single One safety constraint
Ergodicity: One-step reachability and returnability

SEOFUR [8] Required Label Single Multiple safety constraints
Ergodicity: Returnability

GoOSE [34] Required Label Single/Multiple One safety constraint

Ergodicity: n-step reachability and returnability



10 Y. Kim, R. Allmendinger and M. López-Ibáñez

Allmendinger and Knowles [2] studied reconfigurable, destructible and unreplace-
able experimental platforms in closed-loop optimization using EAs. Three types of
EAs were investigated varying in the way offspring are generated and the level of col-
laboration of the individuals in a population. The EAs optimized a single objective
function, while avoiding trials that have an output value less than a pre-defined (but
unknown to the optimizer) lethal threshold, i.e. the safety threshold (hj) in Eq. (1).
An optimization run was terminated if a predefined number of unsafe input points
was evaluated or a maximum number of function evaluations reached. No mechanism
was put in place to determine safety of an input point prior to evaluating it, but any
evaluated unsafe input point was banned from entering the population as a way to
guide the population away from the unsafe region in the search space.

4.2 Algorithms related to SafeOpt

Several safe learning and optimization algorithms are based on GPR, L-Lipschitz
continuity and set theory. SafeOpt [30] was the first algorithm of this type, and has
inspired others to follow, such as modified SafeOpt [7], SafeOpt-MC [6], Swarm-
based SafeOpt [10], StageOpt [31], SafeMDP [33], SafeExpOpt-MDP [35],
Safe Exploration Optimized For Uncertainty Reduction (SEOFUR [8]) and GoOSE [34].

SafeOpt [30] was proposed in 2015 for safe optimization aiming to avoid eval-
uating any unsafe input points altogether during the search, i.e., the number of
allowed failures is zero. Roughly speaking, the algorithm uses a GP to model the ob-
jective function, which together with a known safety threshold is taken as the safety
constraint, and the algorithm selects an input point that has the maximum width of
confidence interval among those belonging to a maximizers set or expanders set. The
algorithm constructs a safe set using the safe set operator (Eq. 4), and to construct
the expanders set it uses the optimistic expander operator (Eq. 5). That is, given
an input point deemed to be safe and whose evaluation could potentially help to
classify additional input points as safe, then (i) it belongs to the expanders set and
(ii) the maximizers set will comprise input points belonging to the safe set whose
upper confidence bound is greater than the greatest lower confidence bound among
those calculated for all input points in the safe set. Intuitively speaking, generating
expanders set and maximizers set corresponds to classifying input points in the safe
set into (i) safe set expansion, which is expected to expand the safe set at the next
iteration, and (ii) safe set exploitation, which is likely to yield high output value at
the current iteration, by evaluating an input point in the set at the current iteration.
Generally, whether to expand or exploit is decided at each step of the algorithm.
SafeOpt [30] uses intersectional confidence intervals (Eq. 7), and the same is done
by SafeMDP [33], SafeExpOpt-MDP [35], StageOpt [31] and GoOSE [34].

In general, algorithms inspired by SafeOpt [30] share the fundamental struc-
ture of SafeOpt [30]: Constructing the safe set first, and then using it to con-
struct the expanders set and maximizers set. However, there are some distinctive
features between the algorithms. In 2016, three algorithms were proposed: Modified
SafeOpt [7], SafeOpt-MC [6] and SafeMDP [33]. Unlike the original SafeOpt

approach [30], the modified SafeOpt [7] estimates the safe, maximizers and ex-

panders sets without the specification of a Lipschitz constant. The safe set consists
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of input points whose lower confidence bound is greater than a safety threshold. To
estimate the expanders set, the algorithm constructs a GP based on both previously
evaluated input points and an artificial data point (with a noiseless measurement
of the upper confidence bound) selected from the safe set (as opposed to using
previously evaluated input points only as done in the original SafeOpt approach).
SafeOpt-MC can deal with multiple constraints, and SafeMDP applies SafeOpt

to RL problems. Swarm-based SafeOpt [10], proposed in 2017, applies a variant
of PSO to SafeOpt, where multiple independent swarms (sets of input points)
are used to construct the maximizers set and expanders set. The objective function
differs across swarms to reflect the different goals when constructing the maximiz-

ers and expanders set. Initialized with initial safe seeds, it updates the safe set only
when the input points (also referred to as particles in PSO), found at each run of the
PSO, are sufficiently far away from the safe input points in the safe set. Here, input
points whose lower confidence bound is greater than a safety threshold are assumed
to be safe. The input points in the safe set are used to decide the initial positions
of the particles at each iteration. As in typical PSO, the particles move toward new
positions by considering their current positions and velocities. In 2018, Sui et al.
[31] and Wachi et al. [35] proposed the algorithms StageOpt and SafeExpOpt-
MDP, respectively. StageOpt can deal with multiple safety constraints and divides
the process in two independent stages: Safe region expansion stage and optimization
stage corresponding to safe set exploration and safe set exploitation [31], respec-
tively. SafeExpOpt-MDP is an extension of SafeMDP (e.g., unsafe set, uncertain
set, etc), and its goal is to maximize the cumulative reward rather than safe set

expansion (i.e., the safety function is not the objective function). Lastly, in 2019,
the RL community proposed the algorithm GoOSE [34], which is augmented onto
other unsafe algorithms as a way to control the selection of safe input points.

Algorithms able to handle problems with multiple safety constraints, e.g., Safe-

Opt-MC [6] and StageOpt [31], model the individual safety constraints, as well
as the objective function, using independent GPs. Then, the safe set is the inter-
section of safe sets estimated from the safety functions, where the safe set operator

(Eq. 4) is applied to each safety function separately. Now let us remind that the max-

imizers set is used for safe set exploitation, meaning this set is constructed based
on the objective function values of input points in the current safe set (ignoring
information from the safety functions). Since there is one objective function only,
the algorithms SafeOpt and SafeOpt-MC construct the maximizers set using
the same approach. However, it is not required for StageOpt, as it has its own
independent stage devoted for safe set exploitation, and optimization is dealt with
by input point selection criterion in that stage. Lastly, optimistic expander operator

(Eq. 5) is applied to each safety constraint, and all of them should be met when
including an input point from the safe set into the expanders set. However, Safe-

Opt-MC and StageOpt apply the structure in slightly different ways, e.g., they
define Lipschitz constant(s) and safety threshold(s) differently. When SafeOpt is
applied to RL problems [33, 35], the set of states allowed to visit is restricted by
ergodicity. This means that the suggested states should be reachable in one-step and
returnable to states in the safe set, established at the previous iteration, in several
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steps. However, GoOSE [34] applies n-step expansion until convergence of safe set
and expanders set at each algorithm iteration by applying n-step reachability and
returnability. GoOSE is augmented onto an unsafe RL or Bayesian optimization al-
gorithm (i.e., one that is not designed to deal with safety constraints). The unsafe
algorithm suggests an input point x

∗ that belongs to an optimistic safe set. Then,
GoOSE evaluates input points from the expanders set, until x

∗ is inferred to be
safe. Otherwise, GoOSE asks for another input point from the unsafe algorithm. In
GoOSE, however, additional conditions are used with optimistic expander operator

for constructing expanders set.
SEOFUR [8] is an algorithm for safe exploration of deterministic MDPs with un-

known transition functions. Starting from a known safe state set and a list of actions
that connect the safe states, and assuming that the unknown transition function is
L-Lipschitz continuous over both states and actions, the algorithm tries to efficiently
and safely explore the search space. The learned (known) transitions are represented
in form of a (deterministic) transition function, while an uncertain transition func-
tion is defined to handle unknown states. The uncertain transition function maps
each state-action pair to all of its possible outcomes, and if there is a state-action
pair whose possible outcomes constitute a subset of the known safe state set, then
the state is deemed safe. This problem-specific safe set expansion method is repeated
at each algorithm iteration until it converges (n-step returnability). The algorithm
removes uncertainty as much as possible at each iteration by greedily optimizing
an expected uncertainty reduction measure. The paper [8] applies SEOFUR to a
simulation problem with safety constraints.

4.3 Safe learning and optimization with a classifier

In addition to the VA method [18] (Section 4.1), there are three more algorithms that
use a classification method for safety inference of input points: Safe Active Learn-
ing (SAL) [26], EGO-LS-SVM [23] and EFI GPC sign [4]. In particular, EGO-LS-
SVM [23] and EFI GPC sign [4] were proposed to avoid simulations from crashing.

SAL [26] is an algorithm for learning a regression model when unknown regions
of the input space can be unsafe. SAL builds two GPs to approximate an objective
function and a discriminative function, mapped to the unit interval to describe the
class (i.e., safe or unsafe) likelihood, for a problem-specific Gaussian Process classifier
(GPC). SAL assumes that each evaluated input point x provides two additional
output values: A negative (unsafe) or positive (safe) label c(x) ∈ {−1,+1} and
the value of a black-box, possibly noisy function h : X → (−1, 1), where X ⊂ R

m

for m-dimensional input points. The function h(x) provides a noisy risk value for
evaluated safe points x ∈ X (i.e., c(x) = +1) close to the unknown boundary of
the safe input region, while it provides no useful information for unsafe points, i.e.,
c(x) = −1. SAL also assumes an upper bound for the expected number of failures.
At each iteration, the algorithm selects an input point with the highest conditional
variance given previous observations among those expected to be safe according to
the GPC. Safe Bayesian Optimization (SBO) [24] is fundamentally the same as SAL
with the core difference being that, at each iteration of the algorithm, it selects an
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input point whose lower confidence bound is the minimum, assuming minimization
of the loss function. Another difference between SAL and SBO is that in SBO a
standard GP regression, which is trained with discriminative function values only, is
used for the discriminative function, while the use of class labels (safe vs unsafe) for
training GPC is also an option for SAL. Training a standard GP with discriminative
function values only was also the approach adopted in [25], where SAL was applied
to safe learning of a high pressure fuel supply system.

EGO-LS-SVM [23] has been designed for safe optimization of complex systems,
where simulations are subject to abrupt terminations due to unphysical configura-
tions, ill-posed problems or lack of numerical robustness. That is, it assumes that
there is a non-computable sub-domain in the search domain that cannot be ex-
pressed by inequality constraints, and thus, applies a binary classifier (least-squares
support vector machine or LS-SVM) for this sub-domain. However, the classifier
may be used with some inequality constraints that define other non-computable
sub-domains. EGO-LS-SVM constructs an independent GP to model an objective
function, and assigns observations into the safe or unsafe class, which represent
computable and non-computable input points, respectively. Based on the safety la-
bels attached to the previous observations, LS-SVM predicts the probability that
an input point belongs to the safe/unsafe class. The paper [23] also proposed four
different selection criteria for the next input point that combine this probability
with the augmented expected improvement (AEI) acquisition function [17], which is
an input point selection function for Bayesian optimization. Another interesting as-
pect of the algorithm is that it uses the Covariance Matrix Adaptation Evolutionary
Strategy (CMA-ES) [16] to estimate the hyper-parameters of the kernel function for
GP regression and for LS-SVM.

Lastly, EFI GPC sign [4] was also designed to prevent simulation crashes; thus, it
aims to progress an optimization process by efficiently avoiding input points that are
likely to fail. In this context, the safety function is binary (safe/unsafe) and a failure
implies that the objective function cannot be evaluated. The approach differs from
EGO-LS-SVM in that it cannot construct multiple models for safety constraints.
EFI GPC sign constructs a GP for learning binary inputs, representing safe/unsafe
evaluations, that is different from the classical GPC and more appropriate for deter-
ministic safety functions. In addition, GPR is used to model the objective function
by keeping only the safe input points. Finally, EFI GPC sign selects an input point
by considering the probability of non-failure multiplied by the standard expected
improvement acquisition function.

5 Discussion and future research

In this paper, we reviewed and contextualized 18 algorithms designed for safe learn-
ing and optimization.

Two studies in the area of evolutionary computing [2, 18] proposed algorithms
(VA [18] and modified versions of EAs [2]) designed for safe optimization. In partic-
ular, VA [18] is a flexible approach that can be augmented onto other EAs.
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Except for SEOFUR [8] and the aforementioned EAs, the other safe learning and
optimization algorithms reviewed in this survey are based on GP regression. How-
ever, we are able to observe a trend and can divide these algorithms into categories.
The first division we observe is that algorithms adopt the L-Lipschitz continuity
assumption [6, 8, 30, 31, 33–35], use the lower confidence bound [7, 10], or apply a
classifier to measure the safety of input points [4, 23–26]. Interestingly, it was found
that modified SafeOpt [7] and Swarm-based SafeOpt [10] share a similar struc-
ture with algorithms using the L-Lipschitz continuity assumption, but are free from
deciding the Lipschitz constant. Furthermore, SEOFUR [8] is based on a method
that applies the L-Lipschitz continuity assumption for the problems where transi-
tion functions are unknown. Also, while some algorithms [4, 7, 24–26, 30, 33–35] deal
with one safety constraint, others [6, 10, 23, 31] can handle multiple ones. Lastly,
while ergodicity and safety constraint(s) were classified as different concepts applied
to distinctive approaches in a previous survey in 2015 [13], we observed that they
are used together in SafeMDP [33], SafeExpOpt-MDP [35] and GoOSE [34].

Given the above observations, we envision several open questions for future re-
search. First, how to estimate the Lipschitz constant and safety threshold when these
are a priori unknown. Second, are there real-world applications that would bene-
fit/require alternative formulations of the problem, such as safety thresholds being
a function of the input variables and/or change over time, i.e., use hj(x), hj(t) or
hj(x, t) instead of a fixed constant hj . Finally, it is not clear how to apply multiple
safety constraints to MDP problems.
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