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Abstract. The dimension of the space underlying real-world networks
has been shown to strongly influence the networks structural properties,
from the degree distribution to the way the networks respond to diffusion
and percolation processes. In this paper we propose a way to estimate the
dimension of the manifold underlying a network that is based on Weyl’s
law, a mathematical result that describes the asymptotic behaviour of
the eigenvalues of the graph Laplacian. For the case of manifold graphs,
the dimension we estimate is equivalent to the fractal dimension of the
network, a measure of structural self-similarity. Through an extensive set
of experiments on both synthetic and real-world networks we show that
our approach is able to correctly estimate the manifold dimension. We
compare this with alternative methods to compute the fractal dimension
and we show that our approach yields a better estimate on both synthetic
and real-world examples.
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1 Introduction

Graphs have long been used as natural representations for a variety of real-world
systems, from biological systems [7] to transportation networks [6] and human
interactions [10, 2]. These graphs often display non-trivial topological features
and are hence referred to as complex networks. The ultimate goal when analysing
these networks is that of establishing a link between the structural properties
of the networks and their function. To this end, a large number of techniques,
from node centralities [13, 9] to entropy measures [11], have been introduced to
capture the local and global structural properties of a network [18, 17, 15, 14].

Many real-world networks are embedded in either a two-dimensional or a
three-dimensional space, such as the network of collaborations between soft-
ware developers across the world [10] or railway networks [6]. It has been shown
that the structural properties of these networks are strongly influenced by the
geometry of the underlying space. In the case where the underlying space is hy-
perbolic, Krioukov et al. [8] have shown that heterogeneous degree distributions
and strong clustering naturally emerge as consequences of the negative curva-
ture and metric property of the space. When the underlying space is Euclidean,



2 Rossi and Torsello

the network is often referred to as a spatially embedded network and it’s been
observed that the probability of establishing a connection between two nodes
tends to decay exponentially as the distance between them increases [5].

Daqing et al. [5] proposed a way to measure the dimension of spatially em-
bedded networks. This is achieved under the assumption that the Euclidean
distance between the nodes is known and it requires measuring the average
distance between the nodes of subgraphs of increasing radius centered around
randomly chosen seed nodes. What Daqing et al. compute is effectively the frac-
tal dimension of the network [18], a measure of the self-similarity of the network
structure. It’s easy to show that the fractal dimension of a network is equiva-
lent to the dimension of the embedding space on regular lattices or in general
manifold graphs, i.e., graphs that can be seen as discrete representations of the
continuous underlying manifold. Interestingly, Daqing et al. [5] showed that the
dimension of the network is intimately related to the properties of diffusion and
percolation processes on the network.

Song et al. [17] explored instead two alternative methods to estimate the
fractal dimension of a network. The first method is very similar to [5] and involves
repeatedly sampling a set of random nodes in the network which are used to grow
clusters of nodes whose size is used to ultimately estimate the fractal dimension
of the network. In practice, this approach is shown to perform poorly in networks
with inhomogeneous degree distributions. A second method estimates the fractal
dimension of a network based on the box covering algorithm. This is however an
NP-hard problem so heuristics are needed to find an approximate solution [17].

In this paper, we propose an alternative way to estimate the manifold di-
mension of a weighted network, where the weights are not restricted to repre-
sent Euclidean distances between the nodes as in [5]. Specifically, we propose to
estimate the manifold dimension of a network using Weyl’s law [21]. In spectral
theory, Weyl’s law describes the asymptotic behaviour of the eigenvalues of the
Laplacian associated to a bounded domain Ω ∈ Rd, establishing a power-law re-
lation between the eigenvalues and their indices. Crucially, the exponent of this
power-law relation depends on the dimension of the underlying manifold. As a
result, given a network, we are able to estimate the dimension of the underlying
manifold from the spectrum of its Laplacian.

The remainder of the paper is organised as follows: Section 2 provides a brief
overview of the two most commonly used approaches to compute the fractal di-
mension of a graph. Section 3 reviews Weyl’s law and introduces our methodology
for estimating the manifold dimension of a network, which is then evaluated on
both synthetic and real-world networks in Section 4. Finally, Section 5 concludes
the paper.

2 Background

Similarly to the more general concept of fractal dimension of a set, the fractal
dimension of a network tells us something about how the structure of the network
changes as we view it under lenses of varying size. In other words, the fractal



Network Manifold Dimension through Weyl’s Law 3

dimension of a network is a measure of how invariant or self-similar a network
is under a length-scale transformation [18].

Existing approaches to estimate the fractal dimension of a network are based
either on the box counting method or the cluster growing method. For a given
network G and box size lB , the box counting method (also known as box covering
method) defines a box as a set of nodes such that the distance between any two
nodes in the set is smaller than lB . The number of boxes of size lB required to
cover the network is NB(lB) and the goal of the box counting method is to find
the minimum value of NB(lB) for any value of lB . As shown in [17], this problem
can be mapped to the NP-hard graph colouring problem, so it’s typically solved
using a number of different heuristics. Given the optimal values of NB(lB) for a
varying number of box sizes, the fractal dimension dB of the network is given by

NB(lB) ≈ l−dBb . (1)

Note that, as a consequence of the heuristic nature of the algorithms used to
approximate the solution of the box covering problem, the minimum number of
boxes for a given size is likely to be overestimated and thus the fractal dimension
is instead underestimated.

The cluster growing method instead selects a number of seed nodes at ran-
dom. For each seed, a cluster is defined as the set of nodes a distance less or
equal to lC from the seed. For each cluster we compute the mass MC(lC) as the
number of nodes in the cluster. Then the fractional dimension dC is given by

MC(lC) ≈ ldCC , (2)

where MC(lC) is the average mass of the clusters for a given value of lC [18].
The main drawback of this approach is that it performs poorly on networks
with inhomogeneous degree distributions. This is because by choosing the seeds
at random there is a high probability of including hubs in the clusters, leading
to a biased estimate of the fractal dimension [17].

3 Weyl’s law and the manifold dimension of a network

Let Ω ∈ Rd be a bounded domain and λj denote the j-th eigenvalue of the
Laplacian on this domain. Weyl’s law [21] states that

lim
λ→∞

N(λ)

λ
d
2

=
ωdvol(Ω)

(2π)d
(3)

where N(λ) = #{λj ≤ λ} is a function that counts the number of eigenvalues
less than or equal to λ and ωd is the volume of the unit ball in Rd. Eq. 3 tells
us that, for sufficiently large λ,

N(λ) ≈ kλ d
2 (4)
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Fig. 1: Estimating the manifold dimension of a two-dimensional 20 × 20 grid
graph. The blue dots correspond to the (logN(λj), log λj/2) pairs computed on
the eigenvalues λ1, · · · , λ400 of the graph Laplacian. The manifold dimension is
estimated on a selected range of eigenvalues (highlighted in red) to take into
account the conditions of Weyl’s law and compensate for the boundary effects.

where we used k to group the constants wrt to λ. Taking the logarithm of both
sides of Eq. 4 and ignoring the constant term, we get

logN(λ) ≈ d log λ

2
. (5)

3.1 Estimating the manifold dimension of a network

Let G be a manifold graph, or in other words a graph that accurately models
the topology of an underlying manifold of dimension d. Then Eq. 3 holds for
the eigenvalues of the Laplacian L of G and we can estimate the dimension d
from Eq. 5. Specifically, we use the slope of the regression line on the points
(logN(λj), log λj/2) as an estimate of d.

Fig. 1 shows the values of the function in Eq. 5 sampled on the Laplacian
spectrum of a two-dimensional 20 × 20 grid graph. The slope of the regression
line in Fig. 1 is ∼ 2, confirming that in this instance our approach is able to
accurately capture the graph manifold dimension.

Note that the linear regression is best computed over a selected range of the
spectrum (highlighted in red in the toy example of Fig. 1) which excludes the
lowest and highest regions. This is because Eq. 3 doesn’t hold for low frequencies
and high frequencies end up capturing the local variations of the dimension near
the graph boundary.

Dealing with edge weights and node attributes Our approach can easily
take into account potential information on edge weights and node attributes
by incorporating them into the Laplacian. To this end, we turn distances and
dissimilarities between the nodes into similarities through a negative exponential
transformation.
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Fig. 2: Sample two-dimensional Delaunay graph (right) over 200 nodes and cor-
responding log-log plot (left). The slope of the regression line is d = 2.08.

4 Experimental evaluation

We perform an extensive set of experiments on both synthetic and real-world
networks to evaluate the proposed approach. We compare our results with those
obtained using the Maximum-Excluded-Mass-Burning (MEMB) algorithm of
Song et al. [17]. Specifically, we used the implementation made available by
Akiba et al. [1] at https://github.com/kenkoooo/graph-sketch-fractality. Unfor-
tunately we were unable to find any implementation of MEMB or alternative
algorithms that could take edge weights into account. To our understanding, it
should be relatively simple to extend MEMB and similar algorithms to deal with
networks where the distance between the nodes is available. Indeed Wei et al.
discuss such an extension in [20] but fail to provide an implementation of their
algorithm. For this reason, in the following experiments when comparing our
method with MEMB we show the results both with and without edge weights.

Finally, as discussed in Section 3, our method requires selecting a range of the
sorted eigenvalues to sample the values of the function in Eq. 5 and estimate the
manifold dimension. Unless otherwise stated, all the experiments in this paper
are performed keeping only the eigenvalues in the 7% to 20% range (see Fig. 1).

4.1 Synthetic networks

Delaunay graphs We sampled 200 points uniformly on a two-dimensional plane
and we computed their Delaunay triangulation. We repeated this process 100
times and obtained 100 Delaunay graphs. Fig. 2 shows one sample Delaunay
graph and the eigenvalues plot computed according to Eq. 5. The weights on
the edges of these graphs correspond to the Euclidean distance between the cor-
responding pair of points. Note that these are manifold graphs embedded on a
two-dimensional space, so their manifold dimension is 2.
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Table 1: Manifold dimension estimated by our method and MEMB [17] for two-
dimensional Delaunay graphs and hypercubes of increasing dimension.

Network Delaunay (d=2) Hypercube (d=2) Hypercube (d=3) Hypercube (d=4)

Weyl 2.12 ± 0.01 2.00 3.07 4.05
MEMB 1.66 ± 0.01 1.32 1.83 2.16

Table 2: Manifold dimension estimated by our method and MEMB [17] on (u, v)-
flower networks with increasing fractal dimension.

Network (2, 2)-flower (2, 3)-flower (2, 4)-flower (2, 5)-flower (2, 6)-flower

Weyl 2.01 1.91 1.74 1.67 1.62
MEMB 1.37 1.58 1.69 1.86 2.01

Hypercubes We construct three hypercubes of increasing dimension: 1) one two-
dimensional hypercube of side 10, for a total of 100 nodes, 2) one three-dimensional
hypercube of side 8, for a total of 512 nodes, and 3) one four-dimensional hy-
percube of side 6, for a total of 1296 nodes. The manifold dimension of the
hypercubes is 2, 3, and 4, respectively.

Table 1 shows the values of the manifold dimension estimated by our method
and MEMB [17] on the synthetic datasets. For the Delaunay graphs we report
the average value of the dimension ± standard error. Note that MEMB con-
sistently underestimates the manifold dimension of the graphs. As explained
in Section 2, this is because computing the optimal box covering is NP-hard
and thus the solution found by heuristic approaches like MEMB is likely to
overestimate the number of boxes, leading to an underestimation of the mani-
fold dimension. The value estimated with our method, instead, consistently falls
very close to the ground truth. This is true even if we drop the edge weights in
the Delaunay graphs. In this case, the average manifold dimension is estimated
to be 2.31± 0.01.

(u, v)-flowers We also compare our method and MEMB on an additional set of
synthetic graphs where the fractal dimension can be computed analytically [16].
Starting from a cycle graph consisting of u+ v nodes, new nodes and edges are
iteratively added by replacing each edge by two parallel paths, u and v edges
long. When 2 ≤ u < v, it can be shown that the network has a finite fractal
dimension equal to ln(u + v)/ ln(u). By fixing u = 2 and letting v grow, we
can create networks of increasing fractal dimension. While this trend is correctly
captured by MEMB, the dimension estimated with our method decreases as v
increases, as Table 2 shows. This isn’t surprising, as by fixing u and letting v
grow we are effectively creating a network that contains increasingly long uni-
dimensional string-like structures (see for example Fig. 2a in [16]). Indeed, the
flower graphs are fractal but not manifold, so our method cannot be applied.
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(d) New York
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(e) Seoul
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(f) Venice

Fig. 3: Graphs (top) and corresponding log-log plots (bottom) for the urban
street networks of Bologna (d = 1.93), London (d = 2.11), New Delhi (d = 1.80),
New York (d = 2.09), Seoul (d = 2.03), and Venice (d = 2.00).

4.2 Urban street networks

We consider 6 urban street networks corresponding to 1-square mile maps of
Bologna (541 nodes and 771 edges), London (488 nodes and 729 edges), New
Delhi (252 nodes and 328 edges), New York (248 nodes and 418 edges), Seoul (869
nodes and 1,307 edges), and Venice (1,840 nodes and 2,397 edges) [4, 9]. The edge
weights of these graphs correspond to the length of the road segment connecting
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Table 3: Manifold dimension estimated by our method and MEMB [17] on the
urban street networks of 6 cites around the world.

Network Bologna London New Delhi New York Seoul Venice

Weyl 1.93 (2.05 ) 2.11 (2.11 ) 1.80 (1.78 ) 2.09 (2.12 ) 2.03 (2.07 ) 2.00 (2.00 )
MEMB 1.60 1.55 1.56 1.52 1.59 1.50

the two endpoints. Fig. 3 shows the graph of the 6 cities and the corresponding
log-log plots. Table 3 shows the value of the manifold dimension estimated by our
method and MEMB. In all 6 cases our method gives a result that is significantly
closer to what we expect to be ground truth for these networks (2), with New
Delhi having the lowest dimension. This in turn may be due to the particular
structure of the part of New Delhi captured in this dataset, with large areas
covered only by a small number of long roads, effectively lowering the estimated
dimensionality. As observed for the Delaunay graphs, removing the edge weights
has only a minimal effect on the estimate (italic in Table 3).

4.3 Other real-world networks

US power grid This network represents the high-voltage power grid of the US
(Western states). The nodes (4,941) are transformers, substations, and gener-
ators, and the edges (6,594) represent transmission lines [19]. No edge weight
information or node coordinates were available for this network. The range of
the eigenvalues used to fit the regression line is 1% to 20%.

Dickens This network represents the most commonly used adjectives and nouns
in the novel David Copperfield by Charles Dickens. The network has 112 nodes
with 425 edges connecting pairs of adjacent words in the text [12]. The edge
weights represent the Levenshtein distance between the words. The range of the
eigenvalues used to fit the regression line is 2% to 70%.

C. elegans This is an unweighted network representing the Caenorhabditis el-
egans neuronal network, consisting of 279 nodes representing nonpharyngeal
neurons and 2,287 edges representing synaptic connections [19, 9]. The range of
the eigenvalues used to fit the regression line is 7% to 50%.

US airports This is the network of flight connections between the 500 US air-
ports with the highest traffic [3, 9]. Each node (500) corresponds to an airport
and each edge (2,980) has an integer weight corresponding to the total number
of seats available on all the direct routes between the two endpoints within a
year. The range of the eigenvalues used to fit the regression line is 1% to 30%.

Fig. 4 shows the log-log plots for these networks and Table 4 lists the estimated
manifold dimensions. While US power grid and Dickens are clearly manifold,
this is less obvious for C. elegans, where it is harder to distinguish between
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(c) C. elegans
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Fig. 4: Log-log plots for the Powergrid (d = 2.13), Dickens (d = 1.65), C. elegans
(d = 3.75), and Airports networks (3.19).

Table 4: Manifold dimension estimated by our method and MEMB [17] on the
Powergrid, Dickens, C. elegans, and Airports networks.

Network Powergrid Dickens C. elegans Airports

Weyl 2.13 1.65 (1.70 ) 3.75 3.19 (3.62 )
MEMB 2.34 2.58 2.98 2.93

boundary effects and non-manifold behaviour. The log-log plot for Airports, on
the other hand, shows at least two separate linear trends, suggesting that this
is not a manifold network and thus our approach cannot be applied. In general,
note that the more manifold the graph is, the more robust the estimation of the
dimension wrt the chosen spectral range is.

5 Conclusion

We proposed a way to estimate the manifold dimension of a network using
Weyl’s law, a mathematical result that describes the asymptotic behaviour of
the eigenvalues of the graph Laplacian. We showed through an extensive set
of experiments on both synthetic and real-world networks that our approach is
able to correctly estimate the manifold dimension, yielding better estimates than
an alternative method based on box counting. Future work will investigate the
possibility of automatically selecting the spectral range to fit when estimating
the manifold dimension. Having access to larger urban networks, it would also
be interesting to see if the local manifold dimension of different subgraphs and
communities can be related to other quantities of interest.
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