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Abstract. In this paper, we predict the Ro (reproductive number) of
COVID-19 by computing the entropy of the mobility graph during the
first peak of the pandemic. The study was performed by the COVID-19
Data Science Task Force at the Comunidad Valenciana (Spain) during
70 days. Since mobility graphs are naturally attributed, directed and be-
come more and more disconnected as more and more non-pharmaceutical
measures are implemented, we discarded spectral complexity measures
and classical ones such as network efficiency. Alternatively, we turned
our attention to embeddings resulting from random walks and their links
with stochastic matrices. In our experiments, we show that this leads to
a poweful tool for predicting the spread of the virus and to assess the
effectiveness of the political interventions.
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1 Introduction

Motivation The outbreak of COVID-19 in Spain activated several research
groups addressed to propose non-pharmacologic measures such as: (a) track the
impact of global/local lockdowns and (b) model the impact of lockdowns in the
progress of the infection. These are part of the objectives of the COVID-19 Data
Science Task Force. This task force is formed by 20 interdisciplinar scientists
of the main universities of the Comunidad Valenciana (CV). Our mission is to
interpret, aggregate and make reports to policy makers. It has four areas: mobile
data analysis (collect and geolocate anonymized cell phone data), epidemiological
models (formulation and fitting of metapopulation models such as SIR or SEIR
and agents-based ones, state of hospitals and ICUS), predictive models (hotspot
detection, risk-priority maps, etc) and citizen’s science (covid impact survey).

* BBVA Foundation, Banco de Santander and Spanish Government.
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Outline of the paper The purpose of this paper is to show the link between
the Rog number of the SARS-CoV-2 and the complexity of the mobility graph.
The Ry (basic reproduction number) quantifies how many infectious cases are
generated by a single one. Therefore for Ry > 1 we have a spreading infection.
The larger it is the more difficult is to control the infection. According to the
Imperial College’s Report on March 30, 2020%, Ry ~ 5 in Spain by March 9,
2020, when social distancing was implemented. This number was reduced to
Ry =~ 1 after the complete lockdown.

Global or partial lockdowns address the point of stopping the spread of the
virus by reducing the mobility of people. This is why in the COVID-19 Data
Science Task Force we started to work with anonymized mobility data. One
of the objectives was to find a proxy of the spread of the virus by looking at
mobility graphs. In principle, we wanted to enrich the prediction power of our
stochastic epidemiological model (Section 2) where the effects of mobility where
shadowed by the big numbers of the metapopulation model.

Then, we turn our attention to look at the topology of the mobility graphs.
We followed two complementary strategies. One team studied the degree of frag-
mentation of the communities as the political measures were implemented. The
second team (ours) interpreted the graph in a different way. More precisely, we
looked at the stochastic matrices that encode the random walks potentially run-
ning on the network. Instead of dealing with a weighted digraph which is difficult
to analyze by spectral means, we looked at the powers of the transition matrices.
These matrices are the core to several recent embeddings such as node2veec [3],
Glove [5] and Deep Walk [8] among others. Their unifying principle is to extract
pairs of co-visted nodes and use these statistics (either by deep/shallow learning
or SVD factorization) to find vectorial representations of the nodes. With these
vectors at hand, one can use a vectorial complexity measure to find a correlation
between Ry and the topology of the graph. In Section 3 we show how the factor-
ization of the expected co-ocurrence matrix leads to an informative embedding.
This information is given by the rank of the co-occurrence matrix and this rank
has deep implications in the complexity of several models of graphs. The key idea
here is to relate the rank with the degrees of freedom of the topology. Summariz-
ing, disconnected mobility graphs lead to low rank (i.e. redundant embeddings)
since the random walks running on them are too constrained (they perform a
few distinctive hitting patterns). However, more complex graphs are endowed
with high-rank embeddings. Herein, the use of vectorial entropy estimator is a
computational trick to bypass robust rank estimation.

In Section 4, we show our experiments with the SEIR model and the link
between Ry and the square of the vectorial entropy. In Section 5, we summarize
our conclusions.

* https://spiral.imperial.ac.uk:8443/handle/10044/1/77731
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2 Mobility in Epidemiological Models

We use cell-phone geolocation data® to track the spread of the SARS-CoV-2
within the Comunidad Valenciana (CV) in Spain. We build mobility networks
to map 6.8 million people of 324 census block groups (CBGs) between March 15
and May 23, 2020. Each GBG has at least 5,000 people.

Stochastic SEIR We overlay a metapopulation SEIR model in order to track
the infection trajectories, predict the Ry number and monitor the epidemiological
status of the 24 Health Departments of the CV. Each CBG maintains four sub-
population: susceptible (S), exposed (E), infectious (I), and removed (R). The
differential equations governing these sub-populations are:
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where X,Y and Z are binomial distributions:
X, ~B(nS;_1,e Pl=1) Y, ~ B(nE;_1,e7 %), Z; ~B(nl_1,e™ ). (2)

and: n is the population, 0 = 1/5.1, v = 1/12 and 8 = Ry~y. The most impor-
tant parameter is Ry, the reproduction rate (or reproduction number), which
indicates the expected number of infectious cases generated by one case. In
order to incorporate mobility to the model, we have to consider that the pop-
ulation is divided into N CBGs. As a result we have the conservation rule:
St+Et+It+Rt :So+E0+I0+RO = 1 fOI‘ alltand
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The above decomposition applies also for the binomial distributions and we have:
N o N N o
X =Y X0y, =3y 2, =3 x (4)
i=1 i=1 i=1

where the superscript (¢ — j) denotes how many movers in the corresponding
state for the i—th CBG move to the i—th CBG.
Using this model we predict the infectious cases for the whole CV (see Fig. 1).

® Provided the INE (National Institute of Statistics) due to an agreement between
the Spanish Government and the main phone operators. These data are anonymized
and register displacements between INE-GBGs
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Mobility Graphs and Radiation Model The daily movers between CBGs
create a mobility graph Gy = (V, &, W,) where |[V| = N, and an edge ¢;; € &
exists when Wy (i, j) = % > 0, where M;(i, j) are the movers from node
1 to node j at time t.

However, as we have only 324 CGBs we must introduce as much information
as possible in order to model mobility fluxes properly. Therefore we use the
so called radiation model [11] which takes into account the populations of the
commuting CGBs as well as the populations of the CGBs in between. In this
model W,(4, 7) is multiplied by

N;N; (5)
(Ni +5i;)(Ni + Nj + Sij)
where: N; and N; are the populations of CGBs ¢ and j, and S;; is the number
of people in a circle centered at i with radius r;;. This model is parameter-
free (wrt to others such as the gravitational one) and it predicts better thr

probability of observing a flux given the known distribution of the populations
(origin, destination, in-between).
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Fig. 1. SEIR model: Observed vs predicted cases

3 Entropy of Mobility Graphs

3.1 Embeddings and Random Walks
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Fig. 2. Correlation between Ry and Graph Entropy.

Expected Random Walks Following the standard factorization approach for
network embedding [6], the latent representations for nodes of G = (V, E) are
obtained from the SVD of Mg = log(max(Mg, 1)), where Mg is the Pointwise
Mutual Information (PMI) matrix. More recently, Qiu et al. [9] show that Mg
can be posed in the following terms

vol(QG) 1 & - _1
Mg = —~"8q, S = (TZPG) D', (6)

r=1

where Pg = D(_;IWG is the transition matrix of GG. This emphasizes the role of
the random walks (RWs) in the resulting embedding. For instance, following [2]
, S can be seen as the expectation of the the co-ocurrence matriz Og € RV*N
where the Og,; entry contains the number of times nodes i and j are co-visited
within a context distance T', i.e. the number of times that a random walk starting
an any node hits both ¢ and j at most T steps. The hyperparameter T is called
the window size and it controls the extent of a nodal context. Thus, for a fixed
T Abu-El-Haija et al. define:

T

E[O¢;T] = (Z Pr(c> r)Pg) P, (7)
r=1

where Pr(c > r) is the probability that node ¢ belonging to the context of any

anchor node is reached after r steps. Consequently, S¢ = E[O; T] results from

assuming: (a) Pr(c > r) = %, and (b) P% = DZ'. These simplifying assump-

tions lead respectively to: (a) Nodes within a context are chosen uniformly and
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independently of how deep are the random walks, and (b) The probability that
a random walk starts at a given node i are inversely proportional to its degree
d;. Then, looking at S we can interpret E[Og;T] in light of the powers P, of
the transition matrix. More precisely, since the embedding relies on the SVD of
S, we herein propose to relate the entropy of G with the rank of Sg.

Rank and Complexity We commence by exploring random graphs G(N, p, Q)
with a community structure. The rank of E(P¢) relies on that of E(A¢g) which
in turn is upper bounded by the rank of the K x K communicability matriz Q,
where K is the number of communities. The parameter p is a discrete probability
distribution, i.e. Zszl pr = 1, at it induces a node generator 7, where a given
node belongs to the k—th community with probability py. In addition, there is an
edge between two nodes 7 and j there is an edge between them with probability
Q:(i),r(j)- This is the so called Stochastic Block Model (SBM) [1] and its used
for community detection. We consider two cases:

a) If Q is symmetric we have rank(E(A¢)) < K because the adjacency matrices
generated via SBMs have a block structure. One effective way of increasing
the latter upper bound is to minimize the entropy of p. This leads to (almost)
full-connected (complete) dis-assortative graphs with rank(E(Ag)) ~ N.
This includes ego-nets, that is networks that code social circles with a large
overlap between them such as the Facebook net [7].

b) If Q is not symmetric it is the degree of asymmetry what determines whether
rank(E(Ag)) = N (the larger the better) or not, independently of the en-
tropy of p. This includes citation networks such as Cora [10] ¢, CiteSeer for
Document Classification [10] 7, and Wiki &).

Summarizing, dense strictly directed graphs achieve the largest ranks for Ag
and consequently for Pg. This is the case of the mobility networks studied in
this paper. This is key, because usually rank(S¢) <rank(P¢g) (matrix powers
and matrix addition do not preserve, in general, the rank).

The above facts lead us to interpret rank(S¢g) = rank(E[Og;T]) as a proxy
of the complezity of G:

a) Low complexity. The rank determines the number of independent subspaces
of the expected co-ocurrence matrix. Thus, rank(E[O¢g;T]) = p with p <
N indicates that the hitting patterns of the RWs are highly redundant,
i.e. they collapse in a small number of p clusters, jointly visiting the same
nodes in each cluster. Such a redundancy reveals that the random walks are
constrained to hit the same subset of nodes independently of how far are

5 Citation network containing 2708 scientific publications with 5278 links between
them. Each publication is classified into one of 7 categories.

" Citation network containing 3312 scientific publications with 4676 links between
them. Each publication is classified into one of 6 categories.

8 Contains a network of 2405 web pages with 17981 links between them. Each page is
classified into one of 19 categories. https://github.com/thunlp/MMDW/
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them from their anchors. As a result, low rank means also low transport
efficiency (and also low graph complexity) without relying on the inverse
lengths of the shortest paths.

b) High complexity. When p is large (ideally p = N) the co-occurrence patterns
are linearly independent because the RWs are less constrained. The absence
of bottlenecks favors transport efficiency due to the higher complexity of the
graph.

Rank and Entropy Since rank estimation can be shadowed by numerical
errors [12], p typically over-estimates the number of real co-ocurrence clusters.
We herein address this problem by estimating the entropy of the embedding.
Therefore,

(1) Embedding. Let Eq = Ugyv/X4 the embedding matrix given by the rank—d
approximation of log(max(Mg, 1)) &~ Uy X, V] where Mg relies on S¢ (see
Eq. 6) i.e. on E[Og; T]. Then, the i—th row e; of E¢ is the d—dimensional
embedding of the ¢ — th node of G.
(2) Bypass Entropy. Given N d—dimensional points, their «—Rényi entropy H,,
with a > 1 is consistently estimated by the following functional [4]:
7 1 LP<F )

Ha:1ioélogj\/_17p/d7 (8)

where: p = d(1 — ), F = (V,€) is a k—nn graph whose vertices are the
x; = €; the embedding vectors, the edges &;; are provided by the £-nn rule.

Therefore we have
Lp(F) =Y |xi — %1 9)
Eij

and 7y is a normalization constant that can be estimated by generating a large
sample of points in [0, 1]% and running the estimator in its k—nn graph.
Thus, given the embedding, the bypass entropy returns its entropy. It is
desirable to choose « &~ 1 (close to the Shannon entropy). In this work we
set: @« = 0.99, p = 2 and k = 4. The embedding vectors are also normalized
before computing the entropy.

4 Experiments

Setting: Mobility Flows Following the INE protocol®, for each CBG, a cell
phone operator provides the number of terminals that are going to be considered
as living poputation: owners of cell phone who spend most of the time at that
CBG from 00:00-6:00am. This is the source CGB, whereas the destination CGB
is the most visited CGB from 10:00am-16:00pm if the owner is there at least
for 2 hours. The operators (Telefénica, Orange, Vodafone) report the number
of movements to the destination CGB if there are at least 10 — 15 movements
(depending on the operator).

9 National Institute of Statistics: https://www.ine.es/covid/covid_movilidad.htm
(Techical Project).
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Predicting Ry Our stochastic SEIR model fits well the infection cases (see
Fig. 1). However, in absence of any other information the Ry parameter must
be adjusted daily and specially after imposing a non-pharmaceutical measure
(social distancing, lockdown). In practice, Ry can be seen as control parameter
that encodes all the measures implemented to slow down the propagation of
the virus. However, as most of these measures are somewhat related to mobility
we conjectured that there should be a mathematical relationship between the
entropy of the embedding (which reflects the degrees-of-freedom of mobility) and
Ry. After experimentation, we found that

Ry o (Hy)? . (10)

as we show in Fig. 2, where we plot Ry and the above estimator at several
milestones during the lockdown. We give more details of the milestones and the
curve fitting of the entropy in Fig. 3.

With this mathematical tool at hand we could monitor not only the global
evolution of the CV but also the evolution of each of its 24 Health Departments
during the first peak of the pandemic.

5 Conclusions

In this paper, we have proposed and successfully tested a proxy of the Ry number
via the complexity of the mobility graph. Such a complexity measure is closely
related to the rank of state-of-the-art matrices which encode co-visiting statistics.
The key idea is to relate the complexity of a graph with the degrees-of-freedom
of the random walks running on it. It these random walks are constrained then
the graph is simple (e.g. fragmented as it the COVID-19 mobility graph after
political interventions); otherwise the graph is complex. We bypass the robust
estimation of the rank by using a vectorial entropy estimator.

Future work includes the validation of this model in larger graphs as well as
exploring the links between the proposed complexity and other alternatives. The
underlying idea is to make this proxy much closer to an early warning system.
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