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Abstract. Infectious disease surveillance is of great importance for the
prevention of major outbreaks. Syndromic surveillance aims at develop-
ing algorithms which can detect outbreaks as early as possible by mon-
itoring data sources which allow to capture the occurrences of a certain
disease. Recent research mainly focuses on the surveillance of specific,
known diseases, putting the focus on the definition of the disease pat-
tern under surveillance. Until now, only little effort has been devoted to
what we call non-specific syndromic surveillance, i.e., the use of all avail-
able data for detecting any kind of outbreaks, including infectious dis-
eases which are unknown beforehand. In this work, we revisit published
approaches for non-specific syndromic surveillance and present a set of
simple statistical modeling techniques which can serve as benchmarks
for more elaborate machine learning approaches. Our experimental com-
parison on established synthetic data and real data in which we injected
synthetic outbreaks shows that these benchmarks already achieve very
competitive results and often outperform more elaborate algorithms.

Keywords: Syndromic Surveillance · Outbreak Detection · Anomaly
Detection

1 Introduction

The early detection of infectious disease outbreaks is of great significance for
public health. The spread of such outbreaks could be diminished tremendously
by applying control measures as early as possible, which indeed can save lives
and reduce suffering. For that purpose, syndromic surveillance has been intro-
duced which aims to identify illness clusters before diagnoses are confirmed and
reported to public health agencies [6].

The fundamental concept of syndromic surveillance is to define indicators for
a particular infectious disease on the given data, also referred to as syndromes,
which are monitored over time to be able to detect unexpectedly high numbers of
infections which might indicate an outbreak of that disease. Syndromic data can
be obtained from clinical data sources (e.g., diagnosis in an emergency depart-
ment), which allow to directly measure the symptoms of individuals, as well as
alternative data sources (e.g., internet-based health inquiries), which indirectly
capture the presence of a disease [6].

http://arxiv.org/abs/2101.12246v1
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In general, the definition of syndromes is a challenging task since symptoms
are often shared by different diseases and a particular disease can have differ-
ent disease patterns in the early phase of an infection. Moreover, this kind of
filtering is a highly handcrafted approach and only allows to monitor known
infectious diseases. Rather than developing highly specialized algorithms which
are based on a specific disease and assume particular characteristics of outbreak
shapes [8], we argue that the task of outbreak detection should be viewed as
a general anomaly detection problem where an outbreak alarm is triggered if
the distribution of the incoming data changes in an unforeseen and unexpected
way. Therefore, we distinguish between specific syndromic surveillance, where
factors related to a specific disease are monitored, and non-specific syndromic
surveillance, where general, universal characteristics of the stream of data are
monitored for anomalies. While specific syndromic surveillance is a well-studied
research area, we found that only little research has been devoted to non-specific
syndromic surveillance with only very few algorithms available. In particular, the
close relation to anomaly detection motivated us to investigate the problem of
non-specific syndromic surveillance from a machine learning perspective and to
make the task more approachable for the anomaly detection community.

In this paper, we revisit algorithms for non-specific syndromic surveillance
and compare them to a broad range of anomaly detection algorithms. Due to
little effort on implementing baselines in previous works on non-specific syn-
dromic surveillance, we propose a set of benchmarks relying on simple statistical
assumptions which nonetheless have been widely used before in specific syn-
dromic surveillance. We experimentally compare the methods on an established
synthetic dataset [3, 11] and real data from a German emergency department
in which we injected synthetic outbreaks. Our results demonstrate that the sim-
ple statistical approaches, which have not been considered in previous works,
are quite effective and often can outperform more elaborate machine learning
algorithms.

2 Non-Specific Syndromic Surveillance

2.1 Problem Definition

Syndromic data can be seen as a constant stream of instances of a population C.
Each instance c ∈ C is represented by a set of attributes A = {A1, A2, . . . , Am}
where each attribute can be either categorical (e.g., gender), continuous (e.g.,
age) or text (e.g., chief complaint). Following the notation of Wong et al. [11],
we refer to these attributes as response attributes. To be able to detect changes
over time, instances are grouped together according to pre-specified time slots
(e.g., all patients arriving at the emergency department in one day). Hence, the
instances for a specific time slot t are denoted as C(t) ⊂ C.

In addition, each group C(t) is associated with an environmental setting
e(t) ∈ E1 ×E2 × . . .×Ek where E = {E1, E2, . . . , Ek} is a set of environmental
attributes. Environmental attributes are independent of the response attributes
and represent external factors which might have an influence on the distribution
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of instances C(t) (e.g., during the winter flu-like symptoms are more frequent). In
particular, a specific characteristic of syndromic data is seasonality, in machine
learning also known as cyclic drift [10]. Environmental variables can help the al-
gorithm to adapt to this kind of concept drift. Thus, the information available for
time slot t can be represented by the tuple (C(t), e(t)) and the information about
prior time slots can be denoted as H = ((C(1), e(1)), . . . , (C(t− 1), e(t− 1))).

The main goal of non-specific syndromic surveillance is to detect anomalies
in the set C(t) of the current time slot t w.r.t. the previous time slots H as
potential indicators of an infectious disease outbreak. Therefore, the history H
is used to fit a model fH(e(t), C(t)) which is able to generate a score for time
slot t, representing the likelihood of being in an outbreak.

Viewed from the perspective of specific syndromic surveillance, the non-
specific setting can be seen as the monitoring of all possible syndromes at the
same time. The set of all possible syndromes can be defined as

S =

{

∏

i∈I

Ai | Ai ∈ A ∧ I ⊆ {1, 2, . . . ,m} ∧ |I| ≥ 1

}

where
∏

i∈I Ai for |I| = 1 is defined as {{a} | a ∈ A ∧ A ∈ A}. In addition, we
denote S≤n = {s | s ∈ S ∧ |s| ≤ 2} as the set of all possible syndromes having a
maximum of n conditions and Hs = (s(1), s(2), . . . , s(t − 1)) as the time series
of counts for a particular syndrome s ∈ S.

2.2 Evaluation

To evaluate a data stream it is split into two parts, namely a training part,
containing the first time slots which are only used for training, and a test part,
which contains the remaining time slots of the data stream. The evaluation is
performed on the test part incrementally which means that for evaluating each
time slot t the model will be newly fitted on the complete set of previously
observed data points H = ((C(1), e(1)), . . . , (C(t − 1), e(t − 1))). Alarms raised
during an outbreak are considered as true positives while all other raised alarms
are considered as false positives.

For measuring the performance, we rely on the activity monitor operating
characteristic (AMOC) [4]. AMOC can be seen as an adaptation of the receiver
operating characteristic in which the true positive rate is replaced by the de-
tection delay, i.e., the number of time points until an outbreak has been first
detected by the algorithm. In case the algorithm does not raise an alarm dur-
ing the period of an outbreak, the detection delay is equal to the length of the
outbreak. Moreover, for syndromic surveillance we are interested in a very low
false alarm rate for the algorithms and therefore only report the partial area
under AMOC-curve for a false alarm rate less than 5%, to which we refer to
as AAUC5%. Note that contrary to conventional AUC values in this case lower
values represent better results. Since one data stream does normally not contain
enough outbreaks to draw conclusions, the evaluation is usually performed on a
set of data streams. To obtain a final score for the set, we take the average over
the computed AAUC5% results which are computed on each data stream.
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3 Machine Learning Algorithms

In a survey of the relevant literature we have identified only a few algorithms
which relate to non-specific syndromic surveillance, described in Sections 3.1 to
3.3. In Section 3.4 we introduce a way how common anomaly detection algo-
rithms can be applied in the setting of non-specific syndromic surveillance.

3.1 Data Mining Surveillance System (DMSS)

One of the first algorithms able to identify new and interesting patterns in syn-
dromic data was proposed by Brossette et al. [1] who adopted the idea of as-
sociation rule mining [12] to the field of public health surveillance. In order to
detect an outbreak for time slot t, an association rule mining algorithm needs to
be run on C(t) and a reference set of patients R ⊂ C is created by merging the
instances of a selected set of previous time slots. For each association rule the
confidence of the rule on C(t) is compared to the confidence of the rule computed
on R using a χ2 or a Fisher’s test. If the confidence has significantly increased
on C(t), the finding is reported as an unexpected event. In order to reduce the
complexity, the authors propose to focus only on mining high-support associa-
tion rules. An aggregation of the observations for one time slot is not performed
and environmental attributes are not considered by this approach.

3.2 What is strange about recent events? (WSARE)

The family of WSARE algorithms has been proposed by Wong et al. [11]. All
algorithms share the same underlying concept, namely to monitor all possible
syndromes having a maximum of two conditions S≤2 simultaneously. The three
WSARE algorithms only differ in the way how the reference set of patients R is
created on which the expected proportion for each syndrome is estimated. Each
expected proportion is compared to the proportion of the respective syndrome
observed on the set C(t) using the χ2 or Fisher’s exact test. In order to aggregate
the p-values of the statistical tests for one time slot, a permutation test with 1,000
repetitions is performed. The following three versions have been considered:

WSARE 2.0 merges the instances of a selected set of prior time slots together
for the reference set R. Since their evaluation was based on single-day time
slots, they combined the instances of the previous time slots 35, 42, 49 and
56 to consider only instances of the same weekday.

WSARE 2.5 merges the instances of all prior time slots together which share
the same environmental setting as for the current day e(t). This has the
advantage that the expected proportions are conditioned on the environ-
mental setting e(t) and that potentially more instances are contained in the
reference set R, allowing to have more precise expectations.

WSARE 3.0 learns a Bayesian network over all recent data H from which
10,000 instances for the reference set R are sampled given the environmental
attributes e(t) as evidence.
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3.3 Eigenevent

The key idea of the Eigenevent algorithm proposed by Fanaee-T and Gama
[3] is to track changes in the data correlation structure using eigenspace tech-
niques. Instead of monitoring all possible syndromes, only overall changes and
dimension-level changes are observed by the algorithm. Therefore, a dynamic
baseline tensor is created using the information of prior time slots H which
share the same environmental setting e(t). In the next step, information of the
instances C(t) and the baseline tensor are decomposed to a lower-rank subspace
in which the eigenvectors and eigenvalues are compared to each other, respec-
tively. Any significant changes in the eigenvectors and eigenvalues between the
baseline tensor and the information of instances C(t) indicate an outbreak.

3.4 Anomaly Detection Algorithms

A direct application of point anomaly detection is in general not suitable for syn-
dromic surveillance [11] because these methods aim to identify single instances
c ∈ C as outliers and could thus, e.g., be triggered by a patient who is over a
hundred years old. In order to still apply point anomaly detectors to discover
outbreaks, we form a dataset D using the syndromes s ∈ S as features and the
respective syndrome counts Hs as values. Hence, each instance represents the
occurrence counts of all syndromes for one particular time slot and the dataset
contains t−1 instances in total. This dataset can be used to fit an anomaly detec-
tor which can be then applied to the instance of syndrome counts for time slot t.
Hence, an outbreak could be identified by an unusual combination of syndrome
counts. In this work, we consider the following anomaly detection algorithms.
Due to space restrictions, we refer to Chandola et al. [2] and Zhao et al. [13] and
the references therein for a comprehensive review of the methods.

One-Class SVM extends the support vector machine algorithm to perform
outlier detection by separating instances D from the complement of D.

Local Outlier Factor computes the outlier score for an instance based on how
isolated the instance is with respect to the surrounding neighborhood.

Gaussian Mixture Models approximate the distribution of the dataset D us-
ing a mixture of Gaussian distributions. The outlier score is based on how
dense the region of the evaluated instance is.

Copula-Based Outlier Detection (COPOD) creates an empirical copula for
the multi-variate distribution of D on which tail probabilities for an instance
can be predicted to estimate the outlier score.

Isolation Forest constructs an ensemble of randomly generated decision trees
in which anomalies can be identified by counting the number of splittings
required to isolate an instance.

Autoencoder learns an identity function of the data through a network of
multiple hidden layers. Instances which have a high reconstruction error are
considered to be anomalous.

Multiple-Objective Generative Adversarial Active Learning (GAAL)
constructs multiple generators having different objectives to generate outliers
for learning a discriminator which can assign outlier scores to new instances.
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4 Basic Statistical Approaches

In addition to the machine learning models introduced in Section 3, we also
include statistical techniques, which are commonly used for specific syndromic
surveillance, into our comparison and adapt them to a non-specific syndromic
surveillance setting. The key idea of these adaptations is to monitor all possi-
ble syndromes S simultaneously. For the purpose of monitoring syndromes, a
parametric distribution Ps(x) is fitted for each single syndrome s ∈ S using the
empirical mean µ and the empirical variance σ2 computed over Hs:

µ =
1

|Hs|

|Hs|
∑

i=0

s(i) σ2 =
1

|Hs| − 1

|Hs|
∑

i=0

(s(i)− µ)2

On the fitted distribution Ps(x), a one-tailed significance test is performed in
order to identify a suspicious increase of cases. For a particular observed count
s(t), the p-value is computed as the probability

∫∞

s(t)
Ps(x)dx of observing s(t)

or higher counts. Thus, for evaluating a single time slot t, we obtain |S| p-values
which need to be aggregated under consideration of the multiple-testing problem.
Following Roure et al. [7], we only report the minimum p-value for each time
slot t because the Bonferroni correction can be regarded as a form of aggregation
of p-values based on the minimum function. In particular, note that scale-free
anomaly scores are sufficient for the purpose of identifying the most suspicious
time slots. The complement of the selected p-value represents the anomaly score
reported for time slot t. For our benchmarks we have considered the following
distributions:

Gaussian. Not tailored for count data but often used in syndromic surveillance
is the Gaussian distributionN(µ, σ2). This distribution will serve as reference
for the other distributions which are specifically designed for count data.

Poisson. The Poisson distribution Pois(λ) is directly designed for count data.
For estimating the parameter λ, we use the maximum likelihood estimate
which is the mean µ.

Negative Binomial. To be able to adapt to overdispersion, we include the
negative binomial distribution NB(r, p). We have estimated the parameters

with r = µ2

σ2−µ
and p = r

r+µ
.

Our preliminary experiments showed that statistical tests on rare syndromes
are often too sensitive to changes, causing many false alarms. In addition, out-
breaks are usually associated with a high number of infections. Therefore, we
set the standard deviation σ2 to a minimum of one before fitting the Gaussian
distribution and for the Poisson and the negative binomial distribution we set
the mean µ to a minimum of one. We leave the standard deviation untouched
for the negative binomial distribution since manipulating the overdispersion can
lead to extreme distortions in the estimation.
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Table 1. Information about the
attributes of the synthetic data.

attribute type #values

age response 3
gender response 2
action response 3
symptom response 4
drug response 4
location response 9

flu level environmental 4
day of week environmental 3
weather environmental 2
season environmental 4

Table 2. Information about the attributes
of the real data.

attribute type #values

age response 3
gender response 2
mts response 28
fever response 2
pulse response 3
respiration response 3
oxygen saturation response 2
blood pressure response 2

day of week environmental 7
season environmental 4

5 Experiments and Results

The goal of the experimental evaluation reported in this section is to provide an
overview of the performance of non-specific syndromic surveillance methods in
general, and in particular, to re-evaluate the established methods in context of
the proposed base statistical approaches and the anomaly detection algorithms.
We conducted experiments on synthetic data, which already have been used for
the evaluation of the algorithms Eigenevent and WSARE [3, 11], and on real
data of a German emergency department (cf. Section 5.3). As the emergency de-
partment data do not contain any information about real outbreaks, we decided
to inject synthetic outbreaks which is common practice in the area of syndromic
surveillance, allowing us to evaluate and compare the algorithms in a controlled
environment.

5.1 Evaluation Setup

Synthetic Data. The synthetic data consists of 100 data streams, generated with
the synthetic data generator proposed by Wong et al. [11]. The data generator
is based on a Bayesian network and simulates a population of people living in a
city of whom only a subset are reported to the data stream at each simulated
time slot. Detailed information about the attributes in the data stream is given
in Table 1. Each data stream captures the information about the people on a
daily basis over a time period of two years, i.e., each time slot C(t) contains the
patients of one day. In average 34 instances are reported per time slot and 275
possible syndromes are contained in the set S≤2. The first year is used for the
training part while the second year serves as the test part. Exactly one outbreak
is simulated in the test part which starts at a randomly chosen day and always
lasts for 14 days. During the outbreak period, the simulated people have a higher
chance of catching a particular disease.

Real Data. We rely on routinely collected, fully anonymized patient data of a
German emergency department, captured on a daily basis over a time period of
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Table 3. Results for the AAUC5% measure on the synthetic data.

name rerun min. p-value permutation test imported p-values

Eigenevent 4.993 – – 4.391
WSARE 2.0 – 2.963 3.805 4.925
WSARE 2.5 – 1.321 1.614 1.931
WSARE 3.0 – 0.899 1.325 1.610

two years. We have extracted a set of response attributes and added two envi-
ronmental attributes (cf. Table 2). Continuous attributes, such as respiration,
have been discretized with the help of a physician into meaningful categories. In
addition, we include the Manchester-Triage-System (MTS) [5] initial assessment
which is filled out for every patient on arrival. To reduce the number of values
for the attribute MTS, we group classifications which do not relate to any in-
fectious disease, such as various kinds of injuries, into a single value. In average
165 patients are reported per day and in total 574 syndromes can be formed for
the set |S≤2|. In preparation for the injection of simulated outbreaks, we repli-
cated the data stream 100 times. For each data stream, we used the first year
as the training part and the second year as the test part in which we injected
exactly one outbreak. In order to simulate an outbreak, we first uniformly sam-
pled a syndrome from S≤2. In a second step, we sampled the size of the outbreak
from a Poisson distribution with mean equal to the standard deviation of the
daily patient visits and randomly selected the corresponding number of patients
from all patients that exhibit the sampled syndrome. To avoid over-representing
outbreaks on rare syndromes, only 20 data streams contain outbreaks with syn-
dromes that have a lower frequency than one per day. In total, 29 outbreaks are
based on syndromes with one condition and 71 with two.

Additional Benchmarks. We also include the control chart, the moving aver-
age and the linear regression algorithms into our analysis. Compared to our
syndrome-based statistical benchmarks, these global statistical benchmarks only
monitor the total number of instances per time slot and therefore can only give
a very broad assessment of outbreak detection performance. For a detailed ex-
planation of these algorithms, we refer to Wong et al. [11].

Implementation and Parameterization. For the Eigenevent algorithm we rely
on the code provided by the authors.3 All other algorithms are implemented in
Python.4 Parameters for the DMSS and the anomaly detection algorithms have
been tuned in a grid search using 1000 iterations of Bootstrap Bias Corrected
Cross-Validation [9] which allows to integrate hyperparameter tuning and reli-
able performance estimation into a single evaluation loop. The evaluated param-
eter combinations can be found in our repository. The WSARE, the Eigenevent,
the COPOD and the statistical algorithms do not contain any parameters which
need to be tuned.
3 https://github.com/fanaee/EigenEvent
4 Our code is publicly available at https://github.com/MoritzKulessa/NSS

https://github.com/fanaee/EigenEvent
https://github.com/MoritzKulessa/NSS
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5.2 Preliminary Evaluation

In a first experiment, we replicated the experiments on the synthetic data of [3].
More specifically, we imported and re-evaluated the outlier scores for the syn-
thetic data from the Eigenevent repository (imported p-values) and compare
these to our own results with rerunning the Eigenevent algorithm (rerun) and
to our implementation of the WSARE algorithms. For the latter, we additionally
evaluate the results of just reporting the minimal p-value for each time slot (min.
p-value, cf. Section 4) instead of performing an originally proposed permutation
test with 1000 repetitions (permutation test). The results are shown in Table 3.

Our rerun of the Eigenevent algorithm returned slightly worse results than
the imported p-values, which could be caused by the random initialization. For
the WSARE algorithms, we can observe that our implementation achieves bet-
ter results than the imported p-values, probably due to the different Bayesian
network used. In particular, the results for the minimal p-value were better than
those for the more expensive permutation test. Thus, we chose to only report
the minimal p-value for the WSARE algorithms in the following experiments.

5.3 Results

The results on the synthetic and real data are both shown in Table 4. For
syndrome-based algorithms, the results for monitoring S≤1 and S≤2 are reported
in the respective columns while results for the other methods are reported in the
columns none. Note that the worst possible result on the synthetic data is 14

Table 4. Results for the AAUC5% measure on the synthetic and real data.

category algorithm name
synthetic data real data

none S≤1 S≤2 none S≤1 S≤2

non-specific
syndromic
surveillance

WSARE 2.0 – 3.028 2.963 – 0.661 0.590
WSARE 2.5 – 1.099 1.321 – 0.917 0.867
WSARE 3.0 – 0.803 0.899 – 0.882 0.847
DMSS 2.430 – – 0.953 – –
Eigenevent 4.993 – – 0.878 – –

anomaly
detectors

one-class SVM – 1.043 1.262 – 0.468 0.495
local outlier factor – 2.000 2.260 – 0.642 0.610
Gaussian mixture model – 1.117 3.547 – 0.444 0.791
isolation forest – 4.576 4.948 – 0.873 0.835
COPOD – 5.216 5.032 – 0.816 0.800
autoencoder – 1.521 1.643 – 0.550 0.576
GAAL – 7.024 6.766 – 0.792 0.866

global
benchmarks

control chart 5.086 – – 0.891 – –
moving average 7.012 – – 0.910 – –
linear regression 3.279 – – 0.819 – –

syndrome-based
benchmarks

Gaussian – 0.806 0.941 – 0.328 0.267
Poisson – 1.294 1.347 – 0.598 0.486
negative binomial – 0.895 0.958 – 0.299 0.216
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while for the real data the worst result is 1. In the first paragraphs, we will
discuss the results without specifically considering the size of the syndrome sets
unless needed. The effect of using S≤1 or S≤2 is discussed in the last paragraph.

Comparison between Non-Specific Syndromic Surveillance Algorithms. Firstly,
we analyze the results of the non-specific syndromic surveillance approaches
which have been presented in Section 3.1 to 3.3. In general, the WSARE algo-
rithms outperform the other algorithms in the group. In particular, the results
of the modified versions WSARE 2.5 and WSARE 3.0 on the synthetic data
show that the use of environmental attributes can be beneficial. However, the
results on the real data indicate the opposite. We further investigated this find-
ing by rerunning WSARE 3.0 on the real data without the use of environmental
variables and observed a substantial improvement of the results to 0.613 for S≤1

and 0.570 for S≤2, respectively. Therefore, we conclude that the modelling of the
environmental factors should be done with care since it can easily lead to worse
estimates if the real distribution does not follow the categorization imposed by
defined attributes.

The results of the DMSS algorithm suggest that monitoring association rules
is not as effective as monitoring syndromes. In particular, the space of possible
association rules is much greater than the space of possible syndromes S which
worsens the problem of multiple testing. Especially on the real data this results
in a bad performance since the high number of instances per time slot yields
too many rules. Conversely, by monitoring only rules with very high support
most of the outbreaks remain undetected since the disease pattern could not be
captured anymore. In contrast to the results reported by Fanaee-T and Gama [3],
the Eigenevent algorithm performs poorly compared to the WSARE algorithms.
A closer analysis reveals that the difference in these results can be explained by
the used evaluation measure. Fanaee-T and Gama [3] consider only p-values in
the range [0.02, 0.25] to create the AMOC-curve. However, exactly the omitted
low p-values are particularly important when precise predictions with low false
positive rates are required which is why we explicitly included this range into
the computation of the AMOC-curve.

Comparison to the Anomaly Detection Algorithms. Regarding the synthetic
data, which was specifically created in order to evaluate the WSARE algo-
rithms, we can observe that no anomaly detection algorithm can reach com-
petitive AAUC5% scores to WSARE 3.0. Considering the gap to WSARE 2.0,
which in comparison to 3.0 does not distinguish between environmental set-
tings, one reason could be that the anomaly detection algorithms are not able
to take the environmental variables into account. Another reason could be the
low number of training instances (one for each day) which might have caused
problems, especially for the neural networks. Only the SVM, which is known to
work well with only few instances, and the Gaussian mixture model are able to
achieve acceptable results. These two approaches are in fact able to outperform
the WSARE variants on the real data for which we already found evidence that
the environmental information might not be useful.
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Comparison to the Benchmarks. In the following, we will put the previously
discussed results in relation to the benchmarks. For the global benchmarks, we
can observe that monitoring the total number of cases per time slot is not suffi-
cient to adequately detect most of the outbreaks. Notably, many of the machine
learning approaches do in fact not perform considerably better than these simple
benchmarks. The comparison to our proposed statistical benchmarks applied on
each possible syndrome separately allow further important insights. Our main
observation is that, despite its simplicity, they outperform most of the previously
discussed, more sophisticated approaches. In fact, in the case of the real data the
Gaussian and the negative binomial benchmarks achieve the best scores. On the
synthetic data they are able to achieve results that are competitive to WSARE
3.0 even though the benchmarks do not take the environmental attributes into
account. We were also surprised by the good results of the Gaussian benchmark
since this modelling is not specifically designed for count data. The advantage
may be explained with the context of multiple testing and the generation of
smoother, less extreme estimates and hence more reliable outlier scores for the
time slots. However, the results on the real data, which obviously contain a more
realistic representation of count data than the completely generated synthetic
data, show that the negative binomial benchmark can improve over the Gaussian
benchmark.

Comparison between S≤1 and S≤2. We can make two basic observations regard-
ing the complexity of the monitored syndromes: Firstly, the outbreaks in the
synthetic data are better detected by the algorithms and benchmarks for non-
specific syndromic surveillance when monitoring single condition syndromes S≤1

while for the real data we benefit from pair patterns S≤2. Secondly, almost no
anomaly detector is able to profit from the explicit counts for S≤2 regardless of
the dataset. For understanding the first effect, we take a closer look at the results
of our proposed benchmarks. These approaches can only take co-occurrences be-
tween conditions into account if explicitly given or if the S \S≤1 patterns greatly
affect the counts for the composing conditions. Hence, monitoring a larger set
of syndromes increases the sensitivity of detecting outbreaks with complex dis-
ease patterns. However, it comes at the cost of a higher false alarm rate due to
multiple testing. For the real dataset, for which we know that it contains more
outbreaks based on two than on one condition, the higher sensitivity is able to
outweigh the increased false alarm rate. On the other hand, the results on the
synthetic dataset suggests that most of the outbreaks in the synthetic data are
lead by single indicators, resulting in more false alarms when monitoring S≤2.

In contrast to the non-specific syndromic surveillance approaches, only some
anomaly detectors benefit and only slightly from the explicit counts for S≤2, such
as the local outlier factor algorithm and the isolation forests. This indicates that
the remaining approaches, such as SVM and neural networks, already adequately
consider correlations between attributes. Especially remarkable is the case of
Gaussian mixture models, which achieves the best results in the group when
monitoring S≤1 but is strongly affected by the S≤2 patterns.
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6 Conclusion

In this work, we presented non-specific syndromic surveillance from the perspec-
tive of machine learning and gave an overview of the few approaches addressing
this task. Furthermore, we introduced a way of how anomaly detection algo-
rithms can be applied on this problem and a set of simple statistical algorithms
which we believe should serve as reference points for future experimental com-
parisons. In an experimental evaluation, we revisited the non-specific syndromic
surveillance approaches in face of the previously not considered statistical bench-
marks and a variety of anomaly detectors. Eventually, we found that these bench-
marks outperform most of the more sophisticated techniques and are competitive
to the best approaches in the field.
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