Skip to main content

Intelligent Structural Damage Detection: A Federated Learning Approach

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12695))

Abstract

Data-driven machine learning models, compared to numerical models, shown promising improvements in detecting damage in Structural Health Monitoring (SHM) applications. In data-driven approaches, sensors’ data are used to train a model either in a centralized server or locally inside each sensor unit node (decentralized model similar to edge computing). The centralize learning model suffers from issues including wireless transmission costs and data sensitive data vulnerability. The decentralized model also poses different challenges such as feature correlations and relationships loss in decentralized learning. To handle the shortcomings of both models, we proposes a new Federated Learning model augmented with tensor data fusion to detect damage in SHM. Our approach enables the central machine learning model to gain experience from diverse datasets located at different sensor locations. It also trains a shared centralized machine learning model using datasets stored and distributed across multiple sensor nodes. Our experimental results on real structural datasets demonstrate promising damage detection accuracy without the need to transmit the actual data to the centralized learning model. It also shows that the data correlations and relationship from all participating sensors are preserved.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Anaissi, A., Lee, Y., Naji, M.: Regularized tensor learning with adaptive one-class support vector machines. In: Cheng, L., Leung, A.C.S., Ozawa, S. (eds.) ICONIP 2018. LNCS, vol. 11303, pp. 612–624. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04182-3_54

    Chapter  Google Scholar 

  2. Anaissi, A., Makki Alamdari, M., Rakotoarivelo, T., Khoa, N.: A tensor-based structural damage identification and severity assessment. Sensors 18(1), 111 (2018)

    Article  Google Scholar 

  3. Anaissi, A., Suleiman, B., Zandavi, S.M.: Necpd: an online tensor decomposition with optimal stochastic gradient descent. arXiv preprint arXiv:2003.08844 (2020)

  4. Anaissi, A., Suleiman, B., Zandavi, S.M.: Online tensor decomposition with optimized stochastic gradient descent: an application in structural damage identification. In: IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1257–1264. IEEE (2020)

    Google Scholar 

  5. Bader, B.W., Harshman, R.A., Kolda, T.G.: Temporal analysis of semantic graphs using ASALSAN. In Seventh IEEE international conference on data mining (ICDM 2007), pp. 33–42. IEEE (2007)

    Google Scholar 

  6. Bro, R., Kiers, H.A.: A new efficient method for determining the number of components in PARAFAC models. J. Chemometr. 17(5), 274–286 (2003)

    Article  Google Scholar 

  7. Dai, X., et al.: Hyper-sphere quantization: communication-efficient SQD for federated learning. arXiv preprint arXiv:1911.04655 (2019)

  8. Doebling, S.W., Farrar, C.R., Prime, M.B., Shevitz, D.W.: Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: a literature review. Tech. rep, Los Alamos National Laboratory, NM, USA (1996)

    Google Scholar 

  9. Farrar, C.R., Worden, K.: Structural Health Monitoring: A Machine Learning Perspective. John Wiley & Sons (2012)

    Google Scholar 

  10. Guha, N., Talwalkar, A., Smith, V.: One-shot federated learning. arXiv preprint arXiv:1902.11175 (2019)

  11. Hanzely, F., Richtárik, P.: Federated learning of a mixture of global and local models. arXiv preprint arXiv:2002.05516 (2020)

  12. Hard, A., et al.: Federated learning for mobile keyboard prediction. arXiv preprint arXiv:1811.03604 (2018)

  13. Kairouz, P., et al.: Advances and open problems in federated learning. arXiv preprint arXiv:1912.04977 (2019)

  14. Khoa, N.L.D., Anaissi, A., Wang, Y.: Smart infrastructure maintenance using incremental tensor analysis. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 959–967. ACM (2017)

    Google Scholar 

  15. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM review 51(3), 455–500 (2009)

    Article  MathSciNet  Google Scholar 

  16. Konečnỳ, J., McMahan, H.B., Yu, F.X., Richtárik, P., Suresh, A.T., Bacon, D.: Federated learning: strategies for improving communication efficiency. arXiv preprint arXiv:1610.05492 (2016)

  17. Lin, T., Stich, S.U., Patel, K.K., Jaggi, M.: Don’t use large mini-batches, use local sgd. arXiv preprint arXiv:1808.07217 (2018)

  18. Makki Alamdari, M., Anaissi, A., Khoa, N.L., Mustapha, S.: Frequency domain decomposition-based multisensor data fusion for assessment of progressive damage in structures. Struct. Control Health Monit. 26(2), e2299 (2019)

    Google Scholar 

  19. McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, pp. 1273–1282. PMLR (2017)

    Google Scholar 

  20. Reisizadeh, A., Mokhtari, A., Hassani, H., Jadbabaie, A., Pedarsani, R.: FEDPAQ: a communication-efficient federated learning method with periodic averaging and quantization. In: International Conference on Artificial Intelligence and Statistics, pp. 2021–2031 (2020)

    Google Scholar 

  21. Stich, S.U.: Local SGD converges fast and communicates little. arXiv preprint arXiv:1805.09767 (2018)

  22. Dinh, C.T., Tran, N., Nguyen, T.D.: Personalized federated learning with moreau envelopes. In: Advances in Neural Information Processing Systems, p. 33 (2020)

    Google Scholar 

  23. Wang, J., Joshi, G.: Cooperative SGD: a unified framework for the design and analysis of communication-efficient SGD algorithms. arXiv preprint arXiv:1808.07576 (2018)

Download references

Acknowledgements

The authors wish to thank the Roads and Maritime Services (RMS) in New South Wales, New South Wales Government in Australia and Data61 (CSIRO) for provision of the support and testing facilities for this research work. Thanks are also extended to Western Sydney University for facilitating the experiments on the cable-stayed bridge.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Anaissi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Anaissi, A., Suleiman, B., Naji, M. (2021). Intelligent Structural Damage Detection: A Federated Learning Approach. In: Abreu, P.H., Rodrigues, P.P., Fernández, A., Gama, J. (eds) Advances in Intelligent Data Analysis XIX. IDA 2021. Lecture Notes in Computer Science(), vol 12695. Springer, Cham. https://doi.org/10.1007/978-3-030-74251-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-74251-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-74250-8

  • Online ISBN: 978-3-030-74251-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics