Skip to main content

Composite Surrogate for Likelihood-Free Bayesian Optimisation in High-Dimensional Settings of Activity-Based Transportation Models

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12695))

Abstract

Activity-based transportation models simulate demand and supply as a complex system and therefore large set of parameters need to be adjusted. One such model is Preday activity-based model that requires adjusting a large set of parameters for its calibration on new urban environments. Hence, the calibration process is time demanding, and due to costly simulations, various optimisation methods with dimensionality reduction and stochastic approximation are adopted. This study adopts Bayesian Optimisation for Likelihood-free Inference (BOLFI) method for calibrating the Preday activity-based model to a new urban area. Unlike the traditional variant of the method that uses Gaussian Process as a surrogate model for approximating the likelihood function through modelling discrepancy, we apply a composite surrogate model that encompasses Random Forest surrogate model for modelling the discrepancy and Gaussian Mixture Model for estimating the its density. The results show that the proposed method benefits the extension and improves the general applicability to high-dimensional settings without losing the efficiency of the Bayesian Optimisation in sampling new samples towards the global optima.

This work has been supported by the European Commission through the H2020 project Finest Twins (grant No. 856602).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Code available at: https://version.aalto.fi/gitlab/kuzmanv1/bolfiwcsm-preday.

References

  1. Adnan, M., et al.: Simmobility: a multi-scale integrated agent-based simulation platform. In: 95th Annual Meeting of the Transportation Research Record (2016)

    Google Scholar 

  2. An, Z., Nott, D.J., Drovandi, C.: Robust bayesian synthetic likelihood via a semi-parametric approach. Stat. Comput. 30(3), 543–557 (2020)

    Article  MathSciNet  Google Scholar 

  3. Aushev, A., Pesonen, H., Heinonen, M., Corander, J., Kaski, S.: Likelihood-free inference with deep gaussian processes. arXiv preprint arXiv:2006.10571 (2020)

  4. Basak, K.: SimMobility demo data (2019). https://github.com/smart-fm/simmobility-prod/wiki/Demo-Data. Accessed 1 Aug 2020

  5. Ben-Akiva, M., Lerman, S.R.: Discrete Choice Analysis: Theory and Application to Travel Demand. Transportation Studies (2018)

    Google Scholar 

  6. Benaglia, T., Chauveau, D., Hunter, D., Young, D.: mixtools: an R package for analyzing finite mixture models. J. Stat. Softw. 32(6), 1–29 (2009)

    Google Scholar 

  7. Blum, M., et al.: Comparative review of dimension reduction methods in approximate bayesian computation. Stat. Sci. 28(2), 189–208 (2013)

    Google Scholar 

  8. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  9. Brochu, E., Cora, V.M., De Freitas, N.: A tutorial on bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. arXiv preprint arXiv:1012.2599 (2010)

  10. Chen, B., Castro, R., Krause, A.: Joint optimization and variable selection of high-dimensional gaussian processes. arXiv preprint arXiv:1206.6396 (2012)

  11. Chu, Z., Cheng, L., Chen, H.: A review of activity-based travel demand modeling. In: CICTP 2012: Multimodal Transportation Systems, pp. 48–59 (2012)

    Google Scholar 

  12. Davis, R.A., Lii, K.-S., Politis, D.N.: Remarks on some nonparametric estimates of a density function. Selected Works of Murray Rosenblatt. SWPS, pp. 95–100. Springer, New York (2011). https://doi.org/10.1007/978-1-4419-8339-8_13

    Chapter  Google Scholar 

  13. Day, N.: Estimating the components of a mixture of normal components. Biometrika 56(3), 463–474 (1969)

    Article  MathSciNet  Google Scholar 

  14. Gutmann, M.U., Corander, J.: Bayesian optimization for likelihood-free inference of simulator-based statistical models. J. Mach. Learn. Res. 17(1) (2016)

    Google Scholar 

  15. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 507–523. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25566-3_40

    Chapter  Google Scholar 

  16. Izbicki, R., Lee, A.B., Pospisil, T.: ABC-CDE: Toward approximate bayesian computation with complex high-dimensional data and limited simulations. J. Comput. Graph. Stat. 28(3), 481–492 (2019)

    Article  MathSciNet  Google Scholar 

  17. Järvenpää, M., Gutmann, M.U., Pleska, A., Vehtari, A., Marttinen, P., et al.: Efficient acquisition rules for model-based approximate bayesian computation. Bayesian Anal. 14(2), 595–622 (2019)

    Article  MathSciNet  Google Scholar 

  18. Järvenpää, M., Gutmann, M.U., Vehtari, A., Marttinen, P., et al.: Gaussian process modelling in approximate bayesian computation to estimate horizontal gene transfer in bacteria. Ann. Appl. Stat. 12(4), 2228–2251 (2018)

    Article  MathSciNet  Google Scholar 

  19. Jolliffe, I.T., Cadima, J.: Principal component analysis: a review and recent developments. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 374(2065), 20150202 (2016)

    Google Scholar 

  20. Leclercq, F.: Bayesian optimization for likelihood-free cosmological inference. Phys. Rev. D 98(6), 063511 (2018)

    Google Scholar 

  21. Liaw, A., et al.: Classification and regression by random forest. R. news 2(3), 18–22 (2002)

    MathSciNet  Google Scholar 

  22. Lintusaari, J., Gutmann, M., Dutta, R., Kaski, S., Corander, J.: Fundamentals and recent developments in approximate Bayesian computation. Syst. Biol. 66, e66–e82 (2017)

    Google Scholar 

  23. Lu, Y., et al.: Simmobility mid-term simulator: a state of the art integrated agent based demand and supply model. In: 94th Annual Meeting of the Transportation Research Board (2015)

    Google Scholar 

  24. Marin, J.M., Pudlo, P., Robert, C.P., Ryder, R.J.: Approximate Bayesian computational methods. Stat. Comput. 22(6), 1167–1180 (2012)

    Article  MathSciNet  Google Scholar 

  25. Meinshausen, N.: Quantile regression forests. JMLR 7, 983–999 (2006)

    MathSciNet  MATH  Google Scholar 

  26. Močkus, J.: On Bayesian methods for seeking the extremum. In: Marchuk, G.I. (ed.) Optimization Techniques 1974. LNCS, vol. 27, pp. 400–404. Springer, Heidelberg (1975). https://doi.org/10.1007/3-540-07165-2_55

    Chapter  Google Scholar 

  27. Nott, D., Fan, Y., Marshall, L., Sisson, S.: Approximate Bayesian computation and bayes’ linear analysis: toward high-dimensional ABC. J. Comput. Graph. Stat. 23(1), 65–86 (2014)

    Article  MathSciNet  Google Scholar 

  28. Oh, S., Seshadri, R., Azevedo, C., Ben-Akiva, M.E.: Demand calibration of multimodal microscopic traffic simulation using weighted discrete SPSA. Trans. Res. Rec. 2673(5), 503–514 (2019)

    Article  Google Scholar 

  29. Petrik, O., Adnan, M., Basak, K., Ben-Akiva, M.: Uncertainty analysis of an activity-based microsimulation model for Singapore. Future Gener. Compt. Syst. (2018)

    Google Scholar 

  30. Price, L.F., Drovandi, C.C., Lee, A., Nott, D.J.: Bayesian synthetic likelihood. J. Comput. Graph. Stat. 27(1), 1–11 (2018)

    Article  MathSciNet  Google Scholar 

  31. Qurashi, M., Maa, T., Chaniotakis, E., Antoniou, C.: PC-SPSA: employing dimensionality reduction to limit SPSA noise in DTA model calibration. In: 2nd Symposium on Management of Future motorway and Urban Traffic Systems (2018)

    Google Scholar 

  32. Raynal, L., Marin, J., Pudlo, P., Ribatet, M., Robert, C., Estoup, A.: ABC random forests for bayesian parameter inference. Bioinformatics 35(10), 1720–1728 (2019)

    Google Scholar 

  33. Reynolds, D.A.: Gaussian mixture models. Encycl. Biometrics 741, 659–663 (2009)

    Google Scholar 

  34. Saltelli, A., Tarantola, S., Campolongo, F., Ratto, M.: Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models. vol. 1. Wiley Online Library (2004)

    Google Scholar 

  35. Schultz, L., Sokolov, V.: Bayesian optimization for transportation simulators. Procedia Comput. Sci. 130, 973–978 (2018)

    Article  Google Scholar 

  36. Sha, D., Ozbay, K., Ding, Y.: Applying Bayesian optimization for calibration of transportation simulation models. Transp. Res. Record 2674(10), 215–228 (2020)

    Google Scholar 

  37. Sisson, S.A., Fan, Y., Beaumont, M.: Handbook of Approximate Bayesian Computation. CRC Press (2018)

    Google Scholar 

  38. Snoek, J., Larochelle, H., Adams, R.: Practical Bayesian optimization of machine learning algorithms. In: NIPS, pp. 2951–2959 (2012)

    Google Scholar 

  39. Thomas, O., Pesonen, H., Sá-Leão, R., de Lencastre, H., Kaski, S., Corander, J.: Split-BOLFI for for misspecification-robust likelihood free inference in high dimensions. arXiv preprint arXiv:2002.09377 (2020)

  40. Todorović, M., Gutmann, M., Corander, J., Rinke, P.: Bayesian inference of atomistic structure in functional materials. NPJ Comput. Mater. 5(1), 1–7 (2019)

    Google Scholar 

  41. Wang, Z., et al.: Bayesian optimization in high dimensions via random embeddings. In: IJCAI, pp. 1778–1784 (2013)

    Google Scholar 

  42. Wood, S.N.: Statistical inference for noisy nonlinear ecological dynamic systems. Nature 466(7310), 1102–1104 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Kuzmanovski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kuzmanovski, V., Hollmén, J. (2021). Composite Surrogate for Likelihood-Free Bayesian Optimisation in High-Dimensional Settings of Activity-Based Transportation Models. In: Abreu, P.H., Rodrigues, P.P., Fernández, A., Gama, J. (eds) Advances in Intelligent Data Analysis XIX. IDA 2021. Lecture Notes in Computer Science(), vol 12695. Springer, Cham. https://doi.org/10.1007/978-3-030-74251-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-74251-5_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-74250-8

  • Online ISBN: 978-3-030-74251-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics