Skip to main content

Z-Hist: A Temporal Abstraction of Multivariate Histogram Snapshots

  • Conference paper
  • First Online:
Book cover Advances in Intelligent Data Analysis XIX (IDA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12695))

Included in the following conference series:

Abstract

Multivariate histogram snapshots are complex data structures that frequently occur in predictive maintenance. Histogram snapshots store large amounts of data in devices with small memory capacity, though it remains a challenge to analyze them effectively. In this paper, we propose Z-Hist, a novel framework for representing and temporally abstracting histogram snapshots by converting them into a set of temporal intervals. This conversion enables the exploitation of frequent arrangement mining techniques for extracting disproportionally frequent patterns of such complex structures. Our experiments on a turbo failure dataset from a truck Original Equipment Manufacturer (OEM) demonstrate a promising use-case of Z-Hist. We also benchmark Z-Hist on six synthetic datasets for studying the relationship between distribution changes over time and disproportionality values.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allen, J.F.: Maintaining knowledge about temporal intervals. CACM 26(11), 832–843 (1983)

    Article  Google Scholar 

  2. Billard, L., Diday, E.: Symbolic Data Analysis: Conceptual Statistics and Data Mining. Wiley, Hoboken (2007)

    MATH  Google Scholar 

  3. Bornemann, L., Lecerf, J., Papapetrou, P.: STIFE: a framework for feature-based classification of sequences of temporal intervals. In: Calders, T., Ceci, M., Malerba, D. (eds.) DS 2016. LNCS (LNAI), vol. 9956, pp. 85–100. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46307-0_6

    Chapter  Google Scholar 

  4. Evans, S., Waller, P.C., Davis, S.: Use of proportional reporting ratios (PRRs) for signal generation from spontaneous adverse drug reaction reports. PDS 10(6), 483–486 (2001)

    Google Scholar 

  5. Forero, M.G., Arias-Rubio, C., González, B.T.: Analytical comparison of histogram distance measures. In: Vera-Rodriguez, R., Fierrez, J., Morales, A. (eds.) CIARP 2018. LNCS, vol. 11401, pp. 81–90. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-13469-3_10

    Chapter  Google Scholar 

  6. Gurung, R.B.: Adapted random survival forest for histograms to analyze NOx sensor failure in heavy trucks. In: Nicosia, G., Pardalos, P., Umeton, R., Giuffrida, G., Sciacca, V. (eds.) LOD 2019. LNCS, vol. 11943, pp. 83–94. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-37599-7_8

    Chapter  Google Scholar 

  7. Irpino, A., Verde, R., De Carvalho, F.D.A.: Dynamic clustering of histogram data based on adaptive squared Wasserstein distances. Expert Syst. Appl. 41(7), 3351–3366 (2014)

    Article  Google Scholar 

  8. Karlsson, I., Papapetrou, P., Asker, L., Boström, H., Persson, H.E.: Mining disproportional itemsets for characterizing groups of heart failure patients from administrative health records. In: PETRA, pp. 394–398. ACM (2017)

    Google Scholar 

  9. Le-Rademacher, J., Billard, L.: Principal component analysis for histogram-valued data. Adv. Data Anal. Classif. 11(2), 327–351 (2016). https://doi.org/10.1007/s11634-016-0255-9

    Article  MathSciNet  MATH  Google Scholar 

  10. Lee, Z.: Z-Hist repository (2020). https://github.com/zedshape/zhist

  11. Lee, Z., Lindgren, T., Papapetrou, P.: Z-miner: an efficient method for mining frequent arrangements of event intervals. In: KDD, pp. 524–534 (2020)

    Google Scholar 

  12. Li, X., et al.: Meningioma grading using conventional MRI histogram analysis based on 3D tumor measurement. Eur. J. Radiol. 110, 45–53 (2019)

    Article  Google Scholar 

  13. Lin, J., Keogh, E., Wei, L., Lonardi, S.: Experiencing sax: a novel symbolic representation of time series. DMKD 15(2), 107–144 (2007)

    MathSciNet  Google Scholar 

  14. Liu, L., Wang, S., Hu, B., Qiong, Q., Wen, J., Rosenblum, D.S.: Learning structures of interval-based Bayesian networks in probabilistic generative model for human complex activity recognition. PR 81, 545–561 (2018)

    Google Scholar 

  15. Montastruc, J.L., Sommet, A., Bagheri, H., Lapeyre-Mestre, M.: Benefits and strengths of the disproportionality analysis for identification of adverse drug reactions in a pharmacovigilance database. BJCP 72(6), 905 (2011)

    Google Scholar 

  16. Papapetrou, P., Kollios, G., Sclaroff, S., Gunopulos, D.: Discovering frequent arrangements of temporal intervals. In: ICDM, pp. 8-pp. IEEE (2005)

    Google Scholar 

  17. Prytz, R., Nowaczyk, S., Rögnvaldsson, T., Byttner, S.: Predicting the need for vehicle compressor repairs using maintenance records and logged vehicle data. Eng. Appl. Artif. Intell. 41, 139–150 (2015)

    Article  Google Scholar 

  18. van Puijenbroek, E.P., Bate, A., Leufkens, H.G., Lindquist, M., Orre, R., Egberts, A.C.: A comparison of measures of disproportionality for signal detection in spontaneous reporting systems for adverse drug reactions. PDS 11(1), 3–10 (2002)

    Google Scholar 

  19. Schäfer, P.: The boss is concerned with time series classification in the presence of noise. DMKD 29(6), 1505–1530 (2015)

    MathSciNet  MATH  Google Scholar 

  20. Schweizer, B.: Distributions are the numbers of the future. In: Proceedings of the Mathematics of Fuzzy Systems Meeting, pp. 137–149 (1984)

    Google Scholar 

  21. Sheetrit, E., Nissim, N., Klimov, D., Shahar, Y.: Temporal probabilistic profiles for sepsis prediction in the ICU. In: KDD, pp. 2961–2969 (2019)

    Google Scholar 

  22. Yang, L., et al.: Rectal cancer: can T2WI histogram of the primary tumor help predict the existence of lymph node metastasis? Eur. Radiol. 29(12), 6469–6476 (2019)

    Article  Google Scholar 

  23. Yu, Y., Zhu, Y., Wan, D., Liu, H., Zhao, Q.: A novel symbolic aggregate approximation for time series. In: Lee, S., Ismail, R., Choo, H. (eds.) IMCOM 2019. AISC, vol. 935, pp. 805–822. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19063-7_65

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zed Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lee, Z., Anton, N., Papapetrou, P., Lindgren, T. (2021). Z-Hist: A Temporal Abstraction of Multivariate Histogram Snapshots. In: Abreu, P.H., Rodrigues, P.P., Fernández, A., Gama, J. (eds) Advances in Intelligent Data Analysis XIX. IDA 2021. Lecture Notes in Computer Science(), vol 12695. Springer, Cham. https://doi.org/10.1007/978-3-030-74251-5_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-74251-5_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-74250-8

  • Online ISBN: 978-3-030-74251-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics