
Incremental Search Space Construction for
Machine Learning Pipeline Synthesis

Marc-André Zöller1, Tien-Dung Nguyen2, and Marco F. Huber3,4

1 USU Software AG, Rüppurrer Str. 1, Karlsruhe, Germany marc.zoeller@usu.com
2 University of Technology Sydney, Sydney, Australia

TienDung.Nguyen-2@student.uts.edu.au
3 Institute of Industrial Manufacturing and Management IFF, University of Stuttgart

4 Center for Cyber Cognitive Intelligence CCI, Fraunhofer IPA, Nobelstr. 12,
Stuttgart, Germany marco.huber@ieee.org

Abstract. Automated machine learning (AutoML) aims for construct-
ing machine learning (ML) pipelines automatically. Many studies have
investigated efficient methods for algorithm selection and hyperparame-
ter optimization. However, methods for ML pipeline synthesis and opti-
mization considering the impact of complex pipeline structures contain-
ing multiple preprocessing and classification algorithms have not been
studied thoroughly. In this paper, we propose a data-centric approach
based on meta-features for pipeline construction and hyperparameter op-
timization inspired by human behavior. By expanding the pipeline search
space incrementally in combination with meta-features of intermediate
data sets, we are able to prune the pipeline structure search space ef-
ficiently. Consequently, flexible and data set specific ML pipelines can
be constructed. We prove the effectiveness and competitiveness of our
approach on 28 data sets used in well-established AutoML benchmarks
in comparison with state-of-the-art AutoML frameworks.

Keywords: Pipeline Structure Search · Meta-Learning · AutoML.

1 Introduction

AutoML promises to automate the synthesis of ML pipelines, handling hyperpa-
rameter optimization (HPO), algorithm selection and pipeline structure search.
Many publications have proven the superiority of Bayesian optimization for HPO
and algorithm selection, formulated as combined algorithm selection and hyper-
parameter optimization (CASH), over classic approaches like grid or random
search [2,10]. More recently, methods for composing complete ML pipelines from
a set of algorithms have been proposed. Those methods have a holistic view
on pipeline synthesis: pipeline structure search is considered as an extension
of CASH where, instead of a single algorithm, a combination of multiple algo-
rithms is selected and optimized simultaneously. Due to the exponential growth
in complexity, the pipeline structure space is usually not evaluated thoroughly.

In contrast to current AutoML approaches, data scientists often create an
ML pipeline in several small distinct steps. Starting from an empty pipeline, data

ar
X

iv
:2

10
1.

10
95

1v
1

 [
cs

.L
G

]
 2

6
Ja

n
20

21

2 M. Zöller et al.

scientists add algorithms to an ML pipeline incrementally by taking a detailed
look at how the data set evolves in a pipeline in combination with their profound
experience. Only if a pipeline structure performs well enough, a fine-tuning via
hyperparameters is performed.

In this paper, we propose an alternative data-centric view on pipeline struc-
ture synthesis inspired by human behavior that allows an adaption of a pipeline
to a specific data set. Through extensive use of meta-learning, we are able to dy-
namically prune the pipeline structure search space depending on meta-features
of intermediate data sets. Intermediate data sets are the outputs of the execution
of each individual step in a pipeline. Furthermore, the HPO of a pipeline can-
didate is boosted via knowledge-sharing between different pipelines. The main
contributions of this paper are as follows:

– We reformulate the CASH and pipeline synthesis problem to enable efficient
measures to reduce the pipeline search space and warm-starting CASH.

– We present a data-centric approach for incremental pipeline synthesis and
hyperparameter optimization without expert knowledge inspired by human
behavior called dswizard.

– To ensure reproducibility of the results, we publish our meta-learning base
consisting of 13.5 million unique ML pipelines on 28 data sets.

In Section 2 related work regarding pipeline structure synthesis and meta-
learning in AutoML is discussed. Section 3 describes how we model the pipeline
synthesis and the creation of the meta-learning base. The effectiveness of this
approach is evaluated in Section 4 followed by a short conclusion in Section 5.

2 Preliminary and Related Work

Let a classification task—containing a data set D = {(~x1, y1), . . . , (~xm, ym)}
with ~xi ∈ Xd being the input domain and y ∈ Y ⊂ N the target domain
and a loss function L : Y2 → R—be given. Furthermore, let a fixed set of
algorithms be given as A =

{
A(1), A(2), . . . , A(n)

}
. Each algorithm A(i) is a

transformation φ : Z → Z′ between two arbitrary domains. In case of Z′ = Y
we denote the algorithm as a classifier, otherwise as a preprocessor. Usually A(i)

is configured by hyperparameters ~λ(i) from a domain ΛA(i) . A(i) transforming

a data set D being configured by ~λ is denoted as φ
(i)
~λ

(D). An ML pipeline P
is a sequential combination of algorithms mapping data from an input domain
to a target domain fP : Xd → Y. It consists of a pipeline structure g—usually
modeled as a directed acyclic graph (DAG)—with length |g|, algorithms ~A =

[A1, . . . , A|g|] and the according hyperparameters ~λ = [Λ1, . . . , Λ|g|]. AutoML
aims at generating a pipeline P that optimizes

(g, ~A,~λ)∗ ∈ arg min
g∈G, ~A∈A|g|,~λ∈ΛA1

×···×ΛA|g|

π
(
g, ~A,~λ,D

)
with

π
(
g, ~A,~λ,D

)
=

1

m

m∑
i=1

L(ŷi, yi)

Incremental Search Space Construction for ML Pipeline Synthesis 3

with ŷi being the predicted output on the sample ~xi. We refer to this extension
of the CASH problem as pipeline synthesis and optimization (PSO) problem.

The CASH notation, as originally introduced by [20], extends HPO by in-
troducing an additional categorical meta-hyperparameter that represents an al-
gorithm choice. This approach does not scale well as the search space grows ex-
ponentially with the length of the pipeline [12]. To counter this problem, many
frameworks use a fixed pipeline structure based on best-practices reducing PSO
to CASH, e.g. [13,19]. autosklearn [7] allows the omission of single steps in a
fixed pipeline, effectively replacing a fixed pipeline structure with a small set of
pipeline candidates. Similarly, P4ML [9] uses a set of hand-crafted, best-practice
pipelines for a wide variety of task instances. Appropriate pipeline candidates
are selected based on data set meta-features followed by a fine-tuning via HPO.
Yet, even when selecting from a set of fixed structures, the pipeline structure
cannot be freely adapted to a specific problem instance.

TPOT [17] uses genetic programming to solve the PSO problem. RECEIPE
[18] extends TPOT by incorporating a context-free grammar to guide the con-
struction of pipeline structures. Even though this approach is able to build flex-
ible tree-shaped pipelines, experiments have shown that genetic programming
approaches tend to build pipelines using only one or two algorithms [22].

Multiple approaches that use a Monte Carlo tree search (MCTS) [5] for
pipeline synthesis have been proposed. ML-Plan [15] traverses a hierarchical
task network with a MCTS to perform PSO. By design, the structure is deter-
mined first followed by the HPO. To assess the score of incomplete pipelines,
random path completion is used, which does not scale well to high dimensions
[11]. Similarly, AlphaD3M [6] uses a combination of MCTS and neural networks
to build pipeline structures based on a grammar while ignoring HPO completely.
These approaches are more flexible in comparison to semi-fixed pipelines but still
enforce specific pipeline patterns.

Many AutoML approaches use meta-learning to warm-start CASH or find
promising pairs of preprocessors and classifiers [11]. AlphaD3M uses meta-
features and the algorithms in the current pipeline to predict the performance
of a possible pipeline candidate. However, all those approaches only calculate
meta-features of the initial data set.

3 DSWIZARD Methodology

Our approach, dubbed dswizard, is inspired by the behavior of a human data
scientist creating an ML pipeline. Starting from a very basic pipeline with de-
fault hyperparameters, the pipeline structure is extended gradually based on the
characteristics of the intermediate data sets and the experience from previous
tasks. After obtaining a combination of algorithms, a fine-tuning of the hyper-
parameters is performed. Fig. 1 contains an overview of our proposed approach.

Starting from an empty pipeline and a given data set, at first the meta-
features of the data set are extracted. Based on these meta-features, a suited
algorithm is selected using information from a pre-computed meta-learning base.

4 M. Zöller et al.

Calculate
Meta-Features Select next Algorithm

Transform Data Set
& Calculate Meta-

Features

Pipeline
Complete

Calculate
Performance

yes

Budget
Exhausted

yes

HPO Fine-Tuning

no

no

Empty Pipeline

Construct
Ensemble

Meta-Learning
Base

Hyperparameter Optimization (Sec. 3.2)Meta-Learning (Sec. 3.3)

Pipeline Structure Search (Sec. 3.1)

Fig. 1: General pipeline synthesis procedure in dswizard.

Next, the data set is transformed using the selected algorithm and its default
hyperparameters. Whenever the pipeline ends in a classifier, a fine tuning via
HPO is performed to obtain a performance measure. This procedure is repeated
until a predefined time budget is exhausted. Finally, ensemble selection [4] is
used to create an ensemble of the best performing pipelines.

More formally, we reformulate the pipeline synthesis and optimization prob-
lem as a bilevel optimization problem:

(g, ~A,~λ∗)∗ ∈ arg min
g∈G, ~A∈A|g|

π
(
g, ~A,~λ∗, D

)
s.t. ~λ∗ ∈ arg min

~λ∈ΛA1
×···×ΛA|g|

π
(
g, ~A,~λ,D

)
.

The outer optimization problem is used for pipeline structure search and
algorithm selection. The inner optimization problem performs the HPO of the
selected algorithms. The implementation is publicly available on GitHub.5

3.1 Incremental Pipeline Structure Search

As each pipeline has to have a finite length and the set of algorithms A is finite,
it is possible to enumerate the complete pipeline search space up to a depth d.
The resulting search space can be interpreted as a layered DAG. Each node/state
st represents a pipeline candidate gst , i.e. , a list of algorithms, and a vector of
meta-features of the intermediate data set Dst obtained by applying the (incom-
plete) pipeline candidate to the input data set; each edge/action represents an
algorithm At ∈ A. All nodes in a layer have pipeline candidates with identical
lengths. We use an adapted MCTS [5] to efficiently traverse the search graph.
In contrast to all existing solutions, we explicitly calculate the meta-features of
each intermediate data set and not only the initial data set.

The policy for MCTS’s selection and expansion phase—inspired by polyno-
mial upper confidence trees [1]—is

At ∈ arg max
A∈A

o(st) ·
(
Q(st, A) + c(t) · U(st, A)

)
5 See https://github.com/Ennosigaeon/dswizard.

https://github.com/Ennosigaeon/dswizard

Incremental Search Space Construction for ML Pipeline Synthesis 5

weighting the exploitation Q and exploration U by a function c for a given action
A ∈ A and state st. Exploitation is defined as

Q(st, A) =
P (st, A)

1 +N(st, A)

∑
s′∈st(A)

ν(s′)

with P (st, A) being a prior performance estimate (see Section 3.3), N(st, A)
being the number of times action A was selected in state st, st(A) the state
obtained after applying action A and ν(s′) a previously observed performance
in state s′. Exploration, defined as

U(st, A) =

√∑
b∈AN(st, b)

1 +N(st, A)
,

calculates the multiplicative inverse of the relative number of selections of A, giv-
ing a higher weight to less frequently selected actions. To account for overfitting
we introduce an additional exponential term

o(st) = 1− c|gst |

clmax

that reduces the node reward depending on the current pipeline length, a max-
imum pipeline length lmax and a scaling constant c > 1.

The MCTS procedure is adapted such that selection can be aborted if the
current node has a higher reward than all child nodes. Similarly, expansion can
be skipped. During each expansion step the data set in st is transformed by
At and stored. Usually, MCTS uses a simulation to calculate the reward of st.
However, a few random simulations do not scale well in high dimensional search
spaces and many simulations are prohibitively expensive [11]. Instead, expansion
is repeated recursively until the pipeline candidate ends in a classifier. After e
consecutive expansions the selection of a classifier is enforced. Conceptually,
this is similar to a random simulation. However, as we immediately know the
meta-features of each intermediate data set, the simulation can be guided by the
meta-learning base explained in Section 3.3. This approach explicitly does not
restrict the pipeline structure via a grammar or similar measures.

The reward ν(st+1) is not directly obtained during the MCTS. Instead it is
computed via the HPO procedure described in Section 3.2. Therefore, pipeline
structure search and HPO can be solved independently of each other while still
being tightly coupled.

Finally, it remains to decide how many HPO samples are drawn to deter-
mine the reward of a state. To quickly discard unpromising structures, we wrap
the complete structure search procedure in a multi-fidelity approach similar to
Hyperband [14]. Yet, instead of deterministically calculated budgets—the num-
ber of HPO iterations—we adapt the greediness of the policy depending on the
remaining optimization time

c(t) = w ·
(

exp

(
tmax − t
tmax

)
− 1

)
,

6 M. Zöller et al.

with tmax being the total optimization time and w a non-negative weighting
constant. For each pipeline candidate a small fixed number of HPO iterations is
performed leading to more HPO iterations on well-performing candidates.

Using this procedure, the pipeline structure search space is incrementally ex-
panded whenever a new layer of the graph is visited. Simultaneously, ineffective—
the algorithm does not modify the data set—incompatible or bad performing
transformations can be identified quickly. Consequently, the search graph is
pruned efficiently, often even without any HPO.

3.2 Hyperparameter Optimization

After fixing the pipeline structure, its actual performance has to be assessed. In
general, this step is computationally equally expensive as optimizing the hyper-
parameter for a fixed pipeline. Consequently, an efficient HPO procedure is key
to evaluating various pipeline structures.

Traditional CASH procedures model the problem for a fixed structure g
with—for simplicity—only one algorithm as

~λ∗ ∈ arg min
A(i)∈A,~λ∈Λ

A(i)

πg

(
A(i), ~λ,D

)
.

selecting the actual algorithm and its hyperparameters simultaneously, config-
uring all algorithms accordingly and finally evaluating the performance on the
input data set. This approach has three major drawbacks: 1. The transformation
of the data set being processed is not considered. 2. The algorithms in a pipeline
may be incompatible with each other due to implicit requirements of the used
algorithms on the input data. Selecting and fitting all algorithms at once may
lead to wasted optimization time as incompatibilities are only detected during
fitting [16]. 3. Sharing knowledge about well performing configurations between
different pipeline structures using the same subset of algorithms is not possible.
Instead we propose, to use a distinct optimization instance

~λ∗i ∈ arg min
~λ∈Λ

A(i)

π
(
A(i), ~λ,D

)
for each algorithm only considering HPO. To prevent an improper impact of
previous algorithms and their hyperparameter on the optimization, we addition-
ally require that all meta-features of the transient data set D have to be simi-
lar. Otherwise, a new HPO instance is created. This allows sharing knowledge
about well-performing hyperparameters between identical algorithms in different
pipeline candidates, given that the pipeline prefixes yielded similar data sets.

The hyperparameters of each algorithm can be selected “on-the-fly” in order
of appearance of the algorithms. After selecting the hyperparameters for each
algorithm, the final performance is back-propagated to update each optimizer
leading to a formulation compatible with current CASH formulations

~λ∗ ∈ arg min
~λ1∈Λ1,...,~λ|g|∈Λ|g|

π

(
A|g|, ~λ|g|, φ

(|g|)
~λ|g|

(
φ
(|g−1|)
~λ|g−1|

(
. . . φ

(1)
~λ1

(D)
)))

Incremental Search Space Construction for ML Pipeline Synthesis 7

with ~λ∗ = ~λ1 ∪ · · · ∪ ~λ|g| and ~A being provided via the previously described
structure search. Consequently, the hyperparameter search space for a single
algorithm is significantly smaller than the complete CASH search space. This
imposes two major benefits: 1. Bayesian optimization methods have been proven
to be more powerful for low dimensional search spaces [12]. 2. The small search
space improves the applicability of warm-starting. Based on the meta-features
of the intermediate data set, samples for warm-starting can be extracted from
previously evaluated configurations on different pipeline structure candidates.
Each individual optimization problem can be solved via standard procedures
like SMAC or hyperopt. In the context of this work tree Parzen estimators
[2] are used. Each instance of this procedure yields a new performance measure
ν(st+1) for the MCTS procedure.

3.3 Meta-Learning

Traditional MCTS uses simulations to determine the score of an unvisited node.
As extensive simulations are prohibitively expensive in the context of ML, cur-
rent AutoML tools use a small number of random completions, potentially re-
stricted by a grammar, to estimate the reward of a state, e.g. [15]. We propose
to guide the random completions by considering intermediate meta-features.

To get a diverse foundation for the meta-learning base, we collected 30 unique
data sets from OpenML [21]. Starting from the input data set, each available
algorithm is applied using its default hyperparameters. The transformed data set
is added to the meta-learning base—in case of a classifier, the transformed data
set consists of the input data set with the prediction added as a new feature.
This procedure is repeated exhaustively until the maximum pipeline length of
five algorithms is reached. For each data set in the meta learning base, 40 meta-
features are extracted. As the meta-feature extraction has to be applied in each
stage of the MCTS, a fast calculation of the meta-features is important, which
limits the available meta-features to general, statistical, information-theoretical
and simple model-based meta-features.6

If the applied algorithm comprises a classifier, the current performance is
evaluated. For preprocessing algorithms the performance is estimated using all
subsequent classification algorithms. Using this approach, we extracted the per-
formance of over 13.5 million unique pipelines on 30 diverse data sets.

To account for the stochastic environment, the performance prediction of an
algorithm for a given state is modeled by a normal distribution

P (st, A) ∼ N (RFµ(st, A), RFσ(st, A))

with RFµ and RFσ being two random forest regression models trained on the
mean and standard deviation of the performance, respectively. The complete
meta-learning base, namely the raw data and trained models, is publicly available
alongside the source code but we also plan to publish all pipelines on OpenML.

6 The complete list of all data sets, algorithms and used meta-features is available in
the online Appendix alongside the source code at https://git.io/JIOaJ.

https://git.io/JIOaJ

8 M. Zöller et al.

4 Experiments

To prove the effectiveness and efficiency of our approach, dswizard is compared
with the two best established AutoML tools: autosklearn and TPOT. Addi-
tionally, we perform an ablation study in which we test a variation of dswizard
without meta-learning, dubbed dswizard*, to get a better impression of the
impact of meta-learning during structure synthesis on the final performance.

4.1 Experiment Setup

To ensure fair and comparable results, the existing OpenML AutoML bench-
mark framework [8] is used for all experiments. We reuse the predefined con-
straints of a 60 minute optimization timeout per fold. Experiments are con-
ducted on e2-standard-4 virtual machines on Google Cloud Platform equipped
with Intel Xeon E5 processors with 4 cores and 16 GB memory.

All frameworks are evaluated on 28 publicly available binary and multiclass
classification data sets from established and curated AutoML benchmark suits
[3,8]. More specifically, OpenML tasks are used for each data set. A task provides
information about a data set, for example how train-test splits have to be done
or which loss function to use, to enable comparable results. The performance of
each final configuration is computed using a hold-out validation data set. For
binary and multiclass tasks AUC and logloss are used as metric, respectively.

To eliminate the impact of different search spaces on the final performance,
the existing TPOT and autosklearn adapters are adopted to use the same
search space as dswizard. This includes the available algorithms, hyperparam-
eters per algorithm as well as search ranges.7 The complete search space consists
of 35 algorithms with 38 categorical and 62 numerical hyperparameters. A short
summary of the configuration space is provided in the online Appendix.

To prevent a leaking of information via meta-learning in dswizard, we con-
struct an individual meta-learning base for each data set excluding the data set
under evaluation. The OpenML AutoML benchmark’s autosklearn adapter
always performs label encoding before passing the data to the optimization rou-
tine. Similarly, the TPOT adapter always performs label encoding and an impu-
tation of missing data. As these algorithms are not obtained via an optimization
procedure, they are not further considered.

4.2 Experiment Results

Table 1 and 2 contain the final test performances of all evaluations. For each data
set, the mean performance and standard deviation over 10 folds is reported. Bold
face represents the best mean value for each data set. Results not significantly
worse than the best result, according to a two-sided Wilcoxon signed-rank test
with p = 0.05, are underlined. If a framework consistently failed to yield results
for at least three folds, the performance for that data set is not recorded.

7 At least if supported by the frameworks. For example, TPOT can only handle dis-
cretized continuous hyperparameters.

Incremental Search Space Construction for ML Pipeline Synthesis 9

Table 1: Final test performance for all tested binary classification data sets using
AUC as metric. Larger values are better.

Data Set Autosklearn TPOT dswizard dswizard*

Australian 0.9337 ± 0.0186 0.9380 ± 0.0180 0.9660 ± 0.0125 0.9461 ± 0.0219
ada agnostic 0.9046 ± 0.0161 0.9034 ± 0.0136 0.9138 ± 0.0140 0.9121 ± 0.0171
adult 0.9279 ± 0.0052 — 0.8933 ± 0.0121 0.8921 ± 0.0103
bank-marketing 0.9350 ± 0.0068 — 0.9172 ± 0.0302 0.9090 ± 0.0132
blood-transfusion 0.7288 ± 0.0544 0.7601 ± 0.0664 0.7885 ± 0.0649 0.7310 ± 0.0632
credit-g 0.7719 ± 0.0318 0.7731 ± 0.0517 0.8527 ± 0.0260 0.8050 ± 0.0315
eeg-eye-state 0.9909 ± 0.0033 — 0.9903 ± 0.0041 —
higgs 0.8084 ± 0.0061 0.7902 ± 0.0123 0.7263 ± 0.0844 0.7667 ± 0.0345
jasmine 0.8814 ± 0.0167 0.8880 ± 0.0167 0.9073 ± 0.0177 0.8977 ± 0.0209
kc2 0.8162 ± 0.0931 0.8252 ± 0.1599 0.8911 ± 0.0447 0.7867 ± 0.0522
kr-vs-kp 0.9992 ± 0.0014 0.9975 ± 0.0046 0.9995 ± 0.0009 0.9979 ± 0.0057
nomao 0.9956 ± 0.0009 0.9936 ± 0.0044 0.9939 ± 0.0015 0.9935 ± 0.0018
numerai28.6 0.5291 ± 0.0053 0.5267 ± 0.0042 0.5311 ± 0.0116 0.5286 ± 0.0081
phoneme 0.9629 ± 0.0101 0.9656 ± 0.0082 0.9662 ± 0.0086 0.9638 ± 0.0087
sa-heart 0.7586 ± 0.0485 0.7551 ± 0.1196 0.7968 ± 0.1065 0.8321 ± 0.0651
sylvine 0.9899 ± 0.0037 0.9855 ± 0.0075 0.9903 ± 0.0032 0.9865 ± 0.0042

Table 2: Final test performance for all tested multiclass classification data sets
using logloss as metric. Smaller values are better.

Data Set Autosklearn TPOT dswizard dswizard*

Helena 3.0091 ± 0.1153 — 3.0226 ± 0.0829 3.2283 ± 0.2200
Jannis 0.7016 ± 0.0235 0.7297 ± 0.0417 0.7582 ± 0.0524 0.7861 ± 0.0856
Shuttle 0.0006 ± 0.0004 — 0.0011 ± 0.0013 —
analcatdata auth 0.0691 ± 0.1285 0.0123 ± 0.0210 0.0182 ± 0.0378 0.0073 ± 0.0090
analcatdata dmft 1.7520 ± 0.0233 — 1.7147 ± 0.0288 1.7498 ± 0.0676
car 0.0045 ± 0.0075 0.0033 ± 0.0035 0.0122 ± 0.0295 0.0450 ± 0.1028
connect-4 0.4181 ± 0.0685 — 0.6831 ± 0.1107 0.6989 ± 0.0745
jungle chess 2pc 0.1786 ± 0.0350 0.2390 ± 0.0106 — —
mfeat-factors 0.1061 ± 0.0388 0.1160 ± 0.0488 0.0615 ± 0.0387 0.1122 ± 0.0533
mfeat-morphologic 0.6183 ± 0.0687 0.6560 ± 0.1035 0.5599 ± 0.0780 0.5916 ± 0.0821
segment 0.0737 ± 0.0692 0.0596 ± 0.0379 0.0511 ± 0.0293 0.0696 ± 0.0362
vehicle 0.4525 ± 0.0495 0.4407 ± 0.0898 0.3889 ± 0.0576 0.4329 ± 0.0378

It is apparent that, on average, dswizard outperforms the other frameworks.
However, absolute performance differences are small and, especially for logloss,
often not significant. TPOT and dswizard/dswizard* struggled with some
data sets. For TPOT, single configuration evaluations often exceeded the global
timeout leading to an aborted evaluation. In contrast, dswizard/dswizard*
exceeded the available memory leading to a crash. The results for dswizard*
show that meta-learning is able to significantly boost the results of dswizard
for 16 of 28 data sets. Yet, even without meta-learning the more thoroughly eval-

10 M. Zöller et al.

uation of the pipeline search space yielded configurations outperforming either
TPOT or autosklearn on 13 data sets.

Fig. 2 shows the structure of the final pipelines aggregated over all data
sets and folds. For better readability we substituted each used algorithm by an
abstract algorithm class, namely balancing, classifier, decomposistion, discretiza-
tion, encoding, filtering, generation, imputation, scaling and selection. The as-
signment of algorithm to algorithm class is available in the online Appendix.
Additionally, we treat ensembles of pipelines as sets of individual pipelines. Pos-
sible pipeline starts are indicated by rounded corners. The frequency of node
and edge visits is encoded using a color scheme. Darker colors represent a more
frequent usage. For better readability, edges and nodes that appear in less than
1% of all pipelines are excluded.

Classifier

DecompositionDiscretization

Imputation Filtering

ScalingBalancing

GenerationSelection

Encoding

(a) autosklearn

Classifier

Scaling

Generation

Encoding

Discretization

Decomposition

(b) TPOT

SelectionImputer

Scaling

Encoding

Generation Decomposition

Classifier

Discretization

(c) dswizard

Imputer Selection

Discretization

Classifier

DecompositionGeneration

Encoding

Scaling

(d) dswizard*

Fig. 2: Schematic representation of final structures

In Fig. 2a it is clearly visible that autosklearn uses a semi-fixed pipeline
structure where single steps can be omitted. A strict order of algorithms ex-
ists, from the top left of the graph to the bottom. Imputation, balancing and
classifier are present in each pipeline and the remaining algorithms are roughly
selected with identical frequencies. On average, each pipeline contains 5.48 algo-
rithms. Due to the semi-fixed structure of autosklearn, often ineffective algo-
rithms are present in pipelines, e.g. imputation even though the data set does not
contain missing values. TPOT is able to construct pipelines with highly vary-
ing shapes. However, each pipeline, on average, only contains 1.66 algorithms,
mostly classifiers. Even though more complex pipelines are constructed, those
complex pipelines represent less than 15% of all pipelines leading to the heavily
pruned graph depicted in Fig. 2b. dswizard constructs more diverse pipelines

Incremental Search Space Construction for ML Pipeline Synthesis 11

in terms of selected algorithms and transitions between algorithms. Without
meta-learning (compare Fig. 2c and 2d), structure search is less guided leading
to longer pipelines (2.85 vs. 3.07 algorithms) and a more uniform distribution
of the selected algorithms. Yet, as dswizard* performs worse than dswizard,
the guidance seems to be helpful to find well performing pipeline structures.

Finally, we take a more detailed look at credit-g and higgs, two data sets
where dswizard performs especially well and badly, respectively. For credit-g
71% of the pipelines in the final ensemble have a long complex structure that can
not be created by autosklearn. Most pipelines combine stacked classifiers with
multiple preprocessors. For higgs the meta-learning directs the structure search
in a wrong direction leading to many ineffective transformations. As a result,
only very basic pipelines containing combinations of the same four algorithms
are constructed. Even with HPO, these simple pipelines do not perform well.

In summary, dswizard significantly outperforms either autosklearn or
TPOT on 42% of the data sets. Moreover, it has a similar performance to the
state-of-the-art on 32% of the data sets.

5 Conclusion

We presented a data-centric approach for solving the PSO problem inspired by
human behaviour using MCTS in combination with Bayesian optimization. The
possibility to expand the search space incrementally allows for a dynamic adap-
tation of the pipeline structure to a specific data set. Unpromising regions of
the pipeline search graph can be identified and discarded quickly—often even
without HPO—through the extensive use of meta-features allowing an efficient
traversal of the growing search space. Furthermore, sharing knowledge between
pipeline structures is implemented for warm-starting HPO. This allows a more
thorough exploration of the pipeline structure search space with a dynamic adap-
tation to a specific data set while still obtaining competitive results.

References

1. Auger, D., Couetoux, A., Teytaud, O.: Continuous Upper Confidence Trees with
Polynomial Exploration – Consistency. In: Joint European Conference on Machine
Learning and Knowledge Discovery in Databases. pp. 194–209 (2013)

2. Bergstra, J., Yamins, D., Cox, D.D.: Hyperopt: A python library for optimizing the
hyperparameters of machine learning algorithms. In: Python in Science Conference.
pp. 13–20 (2013)

3. Bischl, B., Casalicchio, G., Feurer, M., Hutter, F., Lang, M., Mantovani, R.G., van
Rijn, J.N., Vanschoren, J.: OpenML Benchmarking Suites and the OpenML100.
arXiv preprint arXiv:1708.03731v1 (2017)

4. Caruana, R., Niculescu-Mizil, A., Crew, G., Ksikes, A.: Ensemble Selection from
Libraries of Models. International Conference on Machine Learning p. 18 (2004)

5. Coulom, R.: Efficient Selectivity and Backup Operators in Monte-Carlo Tree
Search. 5th International Conference on Computer and Games (2006)

12 M. Zöller et al.

6. Drori, I., Krishnamurthy, Y., de Paula Lourenco, R., Rampin, R., Kyunghyun,
C., Silva, C., Freire, J.: Automatic Machine Learning by Pipeline Synthesis using
Model-Based Reinforcement Learning and a Grammar. In: International Confer-
ence on Machine Learning AutoML Workshop (2019)

7. Feurer, M., Klein, A., Eggensperger, K., Springenber, J.T., Blum, M., Hutter, F.:
Efficient and Robust Automated Machine Learning. In: International Conference
on Neural Information Processing Systems. pp. 2755–2763 (2015)

8. Gijsbers, P., LeDell, E., Thomas, J., Poirier, S., Bischl, B., Vanschoren, J.: An Open
Source AutoML Benchmark. In: International Conference on Machine Learning
AutoML Workshop (2019)

9. Gil, Y., Yao, K.T., Ratnakar, V., Garijo, D., Steeg, G.V., Szekely, P., Brekel-
mans, R., Kejriwal, M., Luo, F., Huang, I.H.: P4ML: A Phased Performance-Based
Pipeline Planner for Automated Machine Learning. In: International Conference
on Machine Learning AutoML Workshop. pp. 1–8 (2018)

10. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential Model-Based Optimization
for General Algorithm Configuration. In: International Conference on Learning and
Intelligent Optimization. pp. 507–523 (2011)

11. Hutter, F., Kotthoff, L., Vanschoren, J.: Automated Machine Learning: Methods,
Systems, Challenges. Springer (2018)

12. Kandasamy, K., Schneider, J., Póczos, B.: High Dimensional Bayesian Optimi-
sation and Bandits via Additive Models. International Conference on Machine
Learning pp. 295–304 (2015)

13. Komer, B., Bergstra, J., Eliasmith, C.: Hyperopt-Sklearn: Automatic Hyperpa-
rameter Configuration for Scikit-Learn. In: International Conference on Machine
Learning AutoML Workshop. pp. 2825–2830 (2014)

14. Li, L., Jamieson, K.G., DeSalvo, G., Rostamizadeh, A., Talwalkar, A.: Hyperband:
A Novel Bandit-Based Approach to Hyperparameter Optimization. Journal of Ma-
chine Learning Research 18, 1–52 (2018)

15. Mohr, F., Wever, M., Hüllermeier, E.: ML-Plan: Automated machine learning via
hierarchical planning. Machine Learning 107, 1495–1515 (2018)

16. Nguyen, T.D., Maszczyk, T., Musial, K., Zöller, M.A., Gabrys, B.: AVATAR -
Machine Learning Pipeline Evaluation Using Surrogate Model. In: International
Symposium on Intelligent Data Analysis. pp. 352–365 (2020)

17. Olson, R.S., Moore, J.H.: TPOT: A Tree-based Pipeline Optimization Tool for
Automating Machine Learning. In: International Conference on Machine Learning
AutoML WorkshopVa. pp. 66–74 (2016)

18. de Sá, A.G.C., Pinto, W.J.G.S., Oliveira, L.O.V.B., Pappa, G.L.: RECIPE: A
Grammar-Based Framework for Automatically Evolving Classification Pipelines.
In: European Conference on Genetic Programming. vol. 10196, pp. 246–261 (2017)

19. Swearingen, T., Drevo, W., Cyphers, B., Cuesta-Infante, A., Ross, A., Veeramacha-
neni, K.: ATM: A distributed, collaborative, scalable system for automated ma-
chine learning. In: IEEE International Conference on Big Data. pp. 151–162 (2017)

20. Thornton, C., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Auto-WEKA: Combined
Selection and Hyperparameter Optimization of Classification Algorithms. In: ACM
International Conference on Knowledge Discovery and Data Mining. pp. 847–855
(2013)

21. Vanschoren, J., van Rijn, J.N., Bischl, B., Torgo, L.: OpenML: networked science
in machine learning. ACM International Conference on Knowledge Discovery and
Data Mining 15(2), 49–60 (2014)

22. Zöller, M.A., Huber, M.F.: Benchmark and Survey of Automated Machine Learning
Frameworks. arXiv preprint arXiv:1904.12054 (2019)

	 Incremental Search Space Construction for Machine Learning Pipeline Synthesis

