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Abstract. The paper addresses the issue of layout bugs, in which elements of a
web page may overlap, become misaligned or protrude from their parent container
for fortuitous reasons. It proposes a technique to apply corrections to a rendered
page by formulating its current state and associated layout constraints into a Mixed
Integer Linear Programming problem. An off-the-shelf numerical solver is used
to generate a layout that satisfies the constraints, in such a way that disruptions
to the original page are minimized. A probe then injects these corrections in the
form of a temporary “hotfix”. The approach has been implemented and tested on
samples of real-world web pages; using techniques that aim to reduce the size of
the optimization problem, a solution can often be computed in a few seconds on
commodity hardware.

1 Introduction

The complex interaction of HTML, CSS and JavaScript inside a page may cause its
elements to be displayed and behave in ways that are not always anticipated by the
designer. A recent study of dozens of real-world web sites has shown that bugs related
to the user interface of a web page are very frequent, and even occur in high-profile
sites such as Facebook or YouTube [[7]]. Such bugs may have various causes, including
cross-browser rendering inconsistencies [|14], responsive web design complexities [2,21]]
and unforeseen internationalization side effects [15]].

Several tools and approaches have been proposed over the past decade to automatically
discover such bugs, and potentially identify the elements responsible for the problematic
rendering [13}/18|19,)21]]. A page under test may be compared to a reference page, or be
evaluated against a set of declarative constraints that it is expected to fulfill. However,
much fewer approaches take the problem to the next step, and actually attempt to repair
the problems that are detected. Web designers are therefore left with the task of finding a
suitable fix by themselves. Existing solutions sometimes require many minutes before
finding an appropriate fix [[8}|14], which makes them unsuitable for on-the-fly corrections.

This is precisely the problem addressed by the present paper, which focuses on
a particular class of user interface disruptions called layout bugs. These bugs, which
are geometrical in nature, occur when the elements of a page are incorrectly placed,
have improper dimensions, are misaligned or overlap each other while they should not.
Our approach tackles the issue by attempting to generate what we call a “hotfix” —a
temporary patch to the properties of elements as they are displayed in the current page,



which restores the satisfaction of declarative layout constraints given beforehand. The
solution we propose is to convert the state of a page and its constraints into a Mixed
Integer Linear Programming problem (MILP). This makes it possible to leverage the
use of an industrial-level numerical solver to quickly compute a layout that satisfies the
constraints.

This solution faces two key challenges. The first is to keep the size of the numerical
model small, in order to produce a result in acceptable time for an end user (seconds rather
than minutes). To this end, we introduce the concept of “zone of influence”, which allows
us to circumscribe in advance the set of elements that may need to be modified in a page,
and drastically reduce the number of variables in the corresponding numerical problem.
The second challenge is the actual application of the fix into the page; we describe a
technique that is guaranteed to impose the given size and position to a given element,
which avoids the need to test a candidate repair into an actual browser. We present a
proof-of-concept implementation of this technique and report on experimental results;
they confirm that our hotfix generation technique can correctly modify the elements
of a page to solve a layout bug, in reasonable time for pages of size corresponding to
real-world websites.

This paper is structured as follows. Section 2] describes three types of layout bugs
with examples, and then covers related works on UI bug detection and repair. Section 3|
explains how we handle the correction through a Mixed Integer Linear Program. Section
[ describes a proof-of-concept implementation that has been tested on both real-world
and synthetic pages of large size. Section [5] ends the paper with a conclusion, with
suggestions of future work.

2 State of the Art for Fixing Layout Bugs in Web Pages

Presentation bugs can routinely be found in web sites, ranging from subtle inconsistencies
to more serious errors that may even break a page’s functionality. Case in point, a recent
study on UI bugs has found more than 100 issues in the pages of various web sites [7]. In
this section, we first describe the particular types of layout bugs that are the focus of this
work. We then briefly present the various approaches that have been proposed in the past
to automatically detect and/or correct such bugs inside web pages.

2.1 Types of Layout Bugs

Among all bugs reported in previous works, we focus in this paper on bugs that are
related to a page’s geometrical features, namely the size and positioning of the various
elements (“boxes”) that compose the page; we call these bugs layout bugs. In the GUI
fault model developed by Lelli et al., these bugs correspond to sub-category GSA1 [12].
Following the terminology introduced by Walsh et. al. [21]], the layout bugs we consider
can be divided in three categories.

Overlapping Elements Figure [T] shows an example of overlapping elements on the
login page for an installation of the Moodld[T] platform. The leftmost button, labeled
“Connexion”, extends over the password recovery button that lies to its right.

lhttps://moodle.org
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Fig. 1: Example of overlapping elements.

The effect produced by overlapping elements is often very easy to spot, yet the causes
of the presence of such overlapping elements are multiple. In the example shown above,
it appears that the position of the buttons is hard-coded based on the size of the English
version of their text. Case in point, Figure[Ib]shows the effect of changing the button’s
text to “Login”, which restores an eye-pleasing layout.

Misaligned Elements Misaligned elements is a second common type of layout bug,
which can sometimes be subtle to detect. An example is shown in Figure[2a] which comes
from the LinkedIn platforni?} in this screenshot, the “Interests” menu is placed one pixel
lower than the other elements.

(a) Misalignment (b) Protrusion

Fig. 2: Examples of misaligned and protruding elements.

As with overlapping elements, the causes of misalignment are varied. In the previous
example, one can observe by investigating the page’s source code that the “Interests”
menu is not clickable, contrary to the other elements of the bar. To this end, it is given
a different CSS class than the rest of the menu items, which has a slightly different
definition for its margins and padding.

Protruding Elements The last type of bug occurs when an element extends beyond the
boundaries of another element that should contain it completely. This is what Walsh ef al.
call element protrusion [21]). Figure 2b]shows an example of such an issue, taken from
the site AgentSold’} one can see that the Search button extends beyond the region that is
reserved for the menu bar of the page.

2https://linkedin.com
3https://www.agentsolo.com
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2.2 UI Bug Detection

Over the past decade, several approaches have been proposed for the automated detection
of UI bugs in web applications. For example, WebDiff [19] identifies cross-browser layout
issues in a web page. The tool harvests the DOM tree of a page on a reference browser
multiple times in order to identify the variable elements that should not be considered.
Then, it harvests the DOM tree of the same page on other browsers and compares it node
by node, to identify mismatches in these nodes’ properties and report them.

Walsh et al. [21]] used Responsive Layout Graphs, which are constructed by querying
the DOM tree of a web page under different viewport sizes, to compare a page to itself
at various viewport size aiming to find relative layout issues. The DOM trees of each
viewport are compared to identify elements that behave incorrectly and report them to
the developers. The work by Ryou and Ryu [20]] uses a crawler that interacts as much
as possible with a web page, building graphs of the page’s state along the way. These
multiple graphs are then compared: discrepancies between nodes representing the same
page element in two graphs are then identified.

All these works are based on the principle of comparison between multiple versions
of a page, or between a page and a reference version that is considered correct. An
alternate approach consists of asking the developer to write statements that describe the
intended appearance of the page in advance. In this line of works, Cornipickle is a web
testing tool that focuses on the detection of bugs related to the user interface of a web
application [7]. It provides an expressive language in which declarative constraints can
be expressed by a web developer, and refer to any visible characteristic of the elements
of a page —among others its content, colors, position and dimensions. The tool can then
automatically detect violations of these constraints in a web page, and also provides a
mechanism for pinpointing the elements of the page that are involved in the corresponding
violation.

Similarly, the Cassius framework works as a declarative browser used to verify web
pages [18]]. Rather than checking constraints on a single rendition of a web page, the
tool reasons symbolically over all possible viewports; therefore, if an assertion passes,
this guarantees that no possible set of device size or user preferences can ever violate
the assertion. In the opposite case, a counterexample layout is produced and an element
violating the assertion is identified. Finally, although not a bug detection tool per se,
we shall mention SeeSS [[13]], which is a tool that highlights the portions of a web page
that are subject to visual modifications when a developer changes a CSS declaration and
saves the file that contains it.

2.3 Automated Repair

While most of the aforementioned solutions can identify portions of a page that violate
a given condition, none of them attempt to fix the issue. On the contrary, Hallé and
Beroual [8]] proposed a generic model for correcting abstract objects that do not satisfy a
condition, based on the concept of repair. Formally, if ¢ is a condition that some object
o € O violates, and 1y, . . ., T, are endomorphisms O — O, a repair is any composition
7 of some of the 7; such that 7(0) satisfies ¢. Intuitively, each 7; applies a different
modification to the object o, and the process of fixing o is reduced to the problem of



searching for a combination of modifications that makes the “corrected” object satisfy the
condition. Web page layout bugs are cited as one of the potential domains of application
of this general theory.

However, the search for an appropriate repair is computationally very expensive, and
ultimately amounts to a brute-force generate-and-test algorithm —which, as it turns out,
has not been experimentally tested on web pages. Moreover, in this generic model, all
potential repairs are seen as black boxes with an equal likelihood of fixing the input
object. In the case of violations of layout constraints, which are intrinsically numerical,
such a solution does not exploit the geometric nature of the problem to converge more
quickly towards a possible fix.

The work closest to the problem we tackle here is an approach to make automated
repairs on cross-browser rendering inconsistencies, implemented in a tool called X-
Fix [[14]. This is done by first comparing an incorrect page with a reference copy, to
identify any elements with a different rendering. CSS properties of these elements that
have an impact on the rendering discrepancy are identified for each of them. The tool
then proceeds to a search for alternate values that could be given to these properties and
that would fix the problem, called candidate fixes. The process loops until all bugs have
been resolved, or if no improvement on an existing fix can be found.

The generation of candidate fixes is done by implementing a basic numerical solver
within the tool, which performs small positive or negative increments to CSS properties
of elements and watches for improvements in the value of a fitness score. However, each
such candidate requires the page to be re-rendered and re-examined in the browser under
test; consequently, experimental results report running times in the order of minutes to
find a proper fix. Moreover, in the same way as most tools described in Section[2.2] it
requires a correct rendering as a reference. In this respect, one could say that the tool
already knows the proper positions and sizes that each element is supposed to have (from
the reference page), and searches for appropriate CSS declarations that result in such
positions and sizes.

2.4 Optimization-Based Techniques

Several methods using optimization-based techniques have been used in the context
of GUIs. A survey has been conducted on using combinatorial optimization for GUI
layouts [17]]. Mixed Integer Linear Programming (MILP) have been developed in the past
two decades to correct layout bugs in web pages. MILP are problems were the objective
function and the constraints are described by linear functions. Cassowary [/1]] was an
algorithm developed to solve problems of linear equality and inequality constraints, using
a modified version of the simplex algorithm. However, the formulation of the problem
initially did not contain an objective function; this means that it was not possible to orient
the solver towards preferable solutions.

More recently, the GRIDS system [|6] proposed layout management of GUIs using
MILP with a multi-objective formulation. A drawback of having multiple functions to
optimize is that the user has to chose between a large (theoretically infinite) number of
solutions located on a curve called the “Pareto front”. To help the user, GRIDS only
provides a small sample of feasible pages on that front that are quite different one another.
Among the objectives, we find the fact that the outer hull of the GUI is as rectangular as



possible, that there are as few holes as possible, and that related elements are grouped
together.

The same year, LaaS [11]] handled this problem through a MILP while offering two
possibilities as objective function. The first one is the selection time. The idea is to make
sure that the most important elements take as little time as possible to be found. Typically,
the most important items might become bigger than the others elements and closer to
the top-left corner. The other one is “visual saliency”. It describes basically how the
elements catch the eyes of the user. Tests have been done on a single element of attention,
which means that a single element of the page needed be found quickly using the time
selection criteria or to be catchy using the visual saliency criteria.

3 Modelization of Layout Bugs as MILP

In this section, we describe our proposed approach to fix layout bugs in a web page. Given
a page rendered by a browser, and constraints expressed on some of its elements (called
alignment, inclusion and containment), violations of these constraints are automatically
detected. The page’s state and these constraints are converted into a linear optimization
problem, which computes new positions and dimensions for the elements; a patch is then
directly injected into the page, which restores the layout constraints.

This approach distinguishes itself from existing works in several aspects. First, we do
not assume the presence of a reference page, but only declarative constraints that must
hold for the specified elements; therefore, our proposed tool must find the proper layout
by itself. Second, the goal is to produce a fix on-the-fly, as the user is viewing the page:
therefore, the time required to produce a solution should be on the order of a few seconds
at most. This is why our approach leverages the use of an external numerical constraint
solver, and does not require the re-rendering of the page in order to test candidate fixes.
Moreover, the proposed solution relies on a few key techniques that aim to keep the linear
optimization problem small.

3.1 Layout Constraints

First, the DOM tree of a web page is modeled as a set of nested rectangles, corresponding
to the various HTML elements of the page, from the top-level <body> all the way down
to individual text leaves (CDATA). Each rectangle is defined by the (x, y) coordinates of its
top-left corner, its height and its width (in displayed pixels). It follows that a complete web
page, made of n € N* elements, is a set of quadruplets (x(i), y(i), w®, h(i)), ie{l,...,n}.
A web page is described by the characteristics of each rectangle. The complete page is
hence a vector of 4n components (x(V, y(D M) a1 x (1) 500 4,00 )y,

Essentially, the layout constraints will be expressed on pairs of elements A =
(x@, y@ W@ p@yand B = (x®), y®), w® p®): in terms of their position in the
DOM tree, these elements will typically be involved either in a parent-child relationship,
or a sibling relationship. Each constraint will contribute to the addition of a number of
linear equalities or inequalities between some of the variables of the model. We assume
that the set of element pairs subject to each type of constraint is given, and known in
advance.



Alignment Constraints Alignment constraints are straightforward to handle by linear
equalities. For example, if A and B are expected to be aligned vertically, the equality
x@ = x®) is added to the system. Similarly, the fact that A and B must be aligned
horizontally is described by y@ = y®), This means that each alignment constraint
requires one linear constraint and no extra variables.

Inclusion Constraints The case of inclusion constraints can be handled in a similar
way. An element B is completely included within an element A if and only if these
four inequalities hold. This means that each inclusion constraint requires four linear
constraints and no extra variable.

L@ < B @ @ 5 (B B

Y@ < B @ @ s B) )

Disjointedness Constraints It is easy to see that A is disjoint from B if and only if at
least one of these four inequalities hold:

A@ 1@ < B @) @) < ()

A ®) 1 ®) < @ ) ) < @

However, such a simple modeling causes problems for linear solvers, which typically
cannot directly handle the fact that it suffices that one of the constraints must be fulfilled.
We therefore propose an alternate modelization, using additional constraints and auxiliary
variables. Elements A and B are disjoint if and only if:

29 4 w@ < x®) 4 M1 - 7)) y(b) +h® < y(u) + M(1 - z4)
x® 4 w® < XD 4 p(1 - 2) i+t +ntu >l
YO 4 @ < ) (1 = ) 21,22, 73, 24 € {0, 1}

where M € R, is a sufficiently large number. Intuitively, the z; are “choice” variables:
setting them to O or to 1 determines whether the constraint they are associated with
must be fulfilled or not. An equivalent modelization can also be done by replacing the
next-to-last equation by z; + z2 + z3 + z4 = 1. In such a case, z4 can be removed and
replaced by 1 — (z; + z» + z3), which creates a system with one fewer variable. This
means that each disjointedness constraint implies 4 linear constraints and 3 extra binary
variables.

Non-decreasing sizes If no constraints on the sizes is given, then some boxes can become
smaller. This can lead to some cases where it would be easier for the solver to have a box
of length or width equal to 0. Such a thing should not be possible and could happen due
to the fact that we lack information in our formulation. In order to avoid that, we add the
constraints that the boxes cannot become smaller. Each non-decreasing size constraint
adds one linear constraint and no extra variables.



3.2 Defining an Objective Function

Given a set of element pairs that are subject to either alignment, inclusion or disjointedness
constraints, it is easy to define a system of inequalities that corresponds to these constraints.
Given an input vector (x(l), y(l), w gD ) y(”), wi), h(")), a constraint solver
will produce an output vector that defines the position and dimensions of each element,
such that all constraints are satisfied, if such a solution exists. Therefore, if the original
page had a layout that violated one of the constraints, the modifications to the elements’
properties describe a way to “fix them”.

One could think that merely asking for a solution —any solution— to the solver is
sufficient. However, without additional instructions, it is possible that the solver produces
a version of the page that satisfies the constraints, but is drastically different from the
original. For example, if a single element in a group is misaligned, a valid solution could
be to move all elements to a new location in the page. This goes against the intuition that
the expected correction would simply move the single misaligned element. Therefore, in
order to guide the solver towards solutions that minimally disturb the original document,
an objective function f must also be provided. A solver can hence be instructed to find
solutions that satisfy the constraints, and such that the value of f is minimized.

In the present case, this function should represent the amount of changes made to the
original vector. Given an initial page state (x(()l), y(()l), w(()l), h((]l), e xf)m, y(()"), w((]"), h(()" ),
the function f to minimize is defined as:

n
Z |x@ — x(()')l + [y - y(()l)| +w® - w(()l) +h - hg)
i=1

One can see that each term of the sum computes the absolute difference between
the initial and the final (x, y) position, and the variation of width and height of each
element. Therefore, minimizing f under the layout-bug-free constraints means finding
the layout-bug-free web page which is the most similar to the initial web page.

An advantage of this formulation is that the objective function is piecewise linear.
Such functions can still be managed through MILP using a proper formulation [5]]. One
can also note that no absolute values are required for the width and height of the elements,
assuming the non-decreasing sizes constraints are used. This allows us to avoid adding
2n constraints and 4n variables to get the MILP reformulation. Adding those would only
lead to longer computation time to solve the MILP.

3.3 Reducing the Number of Constraints

Modeling the previous layout requirements may result in a large number of constraints,
affecting an equally large number of elements inside a page. The size of the problem
sent to a solver can quickly exceed the limits of what can be handled in reasonable time
in terms of user experience. However, the number of variables and constraints can be
reduced by taking advantage of the observation that many layout disruptions (and their
associated corrections) are local in nature —that is, they have an impact on a limited part
of the page, while most of the document typically remains unaffected (and consequently,
does not need to be changed).
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Fig. 3: Displacing an element, and its impact on elements surrounding it.

Let us first consider the case of a correction to an element that requires it to be
displaced. For example, Figure [3] shows that element B must be moved up. Doing
so without any other change may result in a disjointedness constraint to be violated.
Therefore, surrounding elements such as A and C can also have to be moved in order
to make room for B at its new location. But this, in turn, can shift elements beyond the
original size of their container, and potentially violate a protrusion constraint. In order to
fix this issue, the size of the parent element may have to be enlarged to accommodate
all elements in their new positions. The end result is the right-hand side of Figure 3} it
shows that, when an element needs to be moved, its siblings in the DOM tree may also
move, and its parent in the DOM tree may need to be enlarged. A similar reasoning could
be made in the case of an element that needs to be enlarged: again, the siblings of this
element may need to move, while its parent container may need to be enlarged.

Fig. 4: An illustration of the concept of zone of influence.

These changes cascade recursively through the document: if the parent of an element
needs to be resized, then its siblings may need to be moved, and so on. Although this
looks like modifications can potentially affect most of the elements, it turns out not to be
the case. This is illustrated in Figure i} which shows an abstract DOM tree. We suppose
that node 20, marked in red, needs to be either enlarged or displaced. As per the rules
mentioned above, some of the other nodes related to node 20 may need to be displaced
(marked in yellow), enlarged (marked in green) or both (marked in both colors). The set
of all DOM nodes that are susceptible to either type of correction is called the zone of
influence of a given element, identified by a gray area in the tree.

Note that a fair fraction of the tree actually stays as is: in our example, 34 of the
44 nodes are assured to require no modification. Consequently, these nodes and their
associated constraints do not even need to be included in the model submitted to the
solver. This would result, in this case, in a fourfold reduction in the number of variables
and constraints.



3.4 Hotfix Application

The schematics of the hotfix generation system can be separated into two phases: the
detection phase and the correction phase.

Detection Phase A JavaScript probe P is first injected inside a web page. This probe
traverses the DOM tree of the page in a depth-first fashion, and adds to each element a
custom attribute called eid, whose value is an incrementing number. This procedure
makes sure that every element of the page is given a unique numerical identifier. This
traversal progressively builds the vector (xél), y(()l), wél), hgl), e, x(()"), y(()"), wg'), hg’)), by
recording for each element its displayed position and dimensions, as they are rendered by
the browser.

This vector is returned to our Java program, which is also provided with a set of
constraints C. In its current form, constraints are represented as triplets of the form
(i, j,t), where i and j are numerical IDs representing individual elements of the page,
and r € {V, H, D, I'} indicates whether elements i and j should be respectively vertically
aligned, horizontally aligned, disjoint, or if i should be included within j. The program
uses these constraints to generate an input model S for a numerical constraint solver. The
solution from the solver is a new vector v that stipulates the new position and size of
each element in the “corrected” version of the page.

Correction Phase 1t shall be noted that there is no back-and-forth interaction between
the solver and the browser; contrary to some other approaches (notably X-Fix [21]]), the
candidate solutions examined by the solver do not need to be rendered in real to evaluate
their actual effect. This, however, supposes that whatever position and size the solver
assigns to elements are guaranteed to be the position and size the elements will indeed
have in the corrected page.

It turns out that this task is less trivial than it seems. For example, to place an element
e at a particular horizontal coordinate x, it does not suffice to issue a statement such
as e.style.left = x. The positioning of the element’s containing parent, its display
properties, as well as additional attributes may lead to the element being placed at a
different coordinate than x. In other words, there is a difference between the actual
geometry of the element, and the values that must be applied to the element for it to
assume the desired geometry.

Changing the width or the height of e is relatively straightforward. The probe starts
by measuring the actual rendered properties of the selected element e in the browser,
which are retrieved via the getBoundingClientRect () method. However, its padding
and borders, which are recovered via the window. getComputedStyle() method, must
first be subtracted from the prescribed dimensions, since both properties are included
within the actual width of the element. This newly calculated value is then apply to the
element’s width or height.

Changing the element’s position is more delicate. First, one must determine the
reference coordinates of the element, which correspond to the top-left corner of the
closest ancestor a whose position is absolute, or the document’s <body> if no such
element can be found. Once this ancestor has been found, its absolute positioning and
margin sizes are retrieved using the two aforementioned methods. Both of these values

10



must be subtracted from the coordinates returned by the solver, in order to get the position
that must actually be applied to the specified element[#| The position attribute of e is
then set to absolute, and its top and left properties are set to the calculated values.

4 Experimental Evaluation

The correction scheme detailed in the previous section has been concretely implemented
as a proof-of-concept hotfix generation system for web pages, whose goal is to evaluate
the potential of the approach for fixing minor layout bugs. In this section, we describe this
implementation and report on experimental results on samples of actual and synthetic
web pages.

The system is implemented as a Java program, which uses the Selenium WebDriver]
library to interact with a controllable instance of a web browser. The probe is a custom-
made JavaScript piece of code that is injected inside the page by the Java program, and
is instructed to extract the properties of elements with specific IDs, for which layout
constraints are expected to apply. The Java program then generates an input model for
the IBM CPLEX numerical solver [[10]. Finally, the solution computed by CPLEX is
retrieved by the Java program, and the corresponding JavaScript hotfix is re-injected
back into the original page.

4.1 Real-World Bugs

In order to assess the feasibility of the proposed approach to correct actual bugs in a
page, two sets of experiments have been conducted, which we describe below. In the
first set of experiments, we tested the approach on a sample of real-world web pages
presenting layout bugs, taken from a previous study [7]]. The goal of these experiments is
to determine whether, in an actual web page, the system can not only correctly catch and
fix a layout constraint stipulated by the designer beforehand, but also avoid disturbing
other (correct) parts of the page. In each of the sampled pages, the appropriate constraints
(alignment, containment or disjointedness) on the faulty element and its neighbors were
manually identified. The page, along with these constraints, was then sent to our hotfix
generator, and the result of the hotfix application was then visually inspected.

1 Se souvenir du nom de l'utilisateur Advanced Search

Connexion Mot de passe perdu ?

(a) Moodle (b) AgentSolo

Fig. 5: Examples of the application of a hotfix to an incorrect page.
4 Except if p is the document’s <body>, which behaves differently and where margins must be

ignored.
Shttps://seleniumhg.org
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Figure[SaJshows an example of the application of a hotfix, on the Moodle page already
shown in Figure[Ta] One can observe that the two green buttons, which overlapped in the
original page, are now placed exactly side by side. Although no constraint was expressed
on the alignment of these two buttons, they remain horizontally aligned. This is due to
the fact that the numerical solver is instructed to minimize the changes applied to the
original document: moving any of the two buttons up or down would amount to a greater
total change to the page than simply keeping them aligned. This also explains why the
size of each button has been left unchanged.

We obtained similar results for the other pages we tested. For example, Figure [5b|
shows the hotfix for the protruding button illustrated in Figure 2b] Note how the red menu
bar has been extended in width exactly enough to contain the search button. Although
not visible in this screenshot, the rest of the page remained untouched.

4.2 Synthetic Pages

MILPs formulations are easy to formulate but they are NP-hard, implying that their worst
case complexity is not polynomial [16]. Therefore, a second set of experiments aims
to measure the scalability of the approach with respect to the number of elements in a
page. To this end, we conducted a systematic stress test by running our hotfix tool on a
sample of synthetic DOM trees, produced by a random page generator we implemented
and called PageGen®| The experiments have been implemented in the form of a LabPal
package [9]] that is publicly available onling}

The page generator works recursively as follows. First, for a given element p, a
number of children c is randomly selected. For each of these children, a depth d is also
randomly selected. If d = 0, an element b, of randomly selected width and height, is
created and added as a child of p. Otherwise, b is recursively populated before being
added to p’s children. Once all the children of p have been created, the last step is to
arrange them inside p, either following a horizontal or a vertical layout, separated by an
equal margin. Once the elements are arranged, the dimensions of p are set to a rectangle
that includes all the children. The end result is a tree of nested rectangles, which can be
exported as an HTML document made of <div> elements, one for each box. Since the
goal of our approach is to correct properties related to the position and size of arbitrary
elements, the actual tag names and their content are irrelevant.

What is more, layout bugs can also be artificially injected when a page is generated.
Once all elements are arranged within their parent (according to the horizontal or
vertical layout), a coin is flipped for each to determine whether the element should be
purposefully misaligned with respect to the others, moved to overlap with one of its
siblings, or enlarged to extend beyond the dimensions of its parent. Using this generator,
we produced a sample of | 100| generated web pages, which includes trees ranging between
2 and 10450/ elements. We shall mention that a recent empirical analysis of real-world
web sites observed that 90% of pages had fewer than 2,000 nodes [4]]. Therefore, we can
safely conclude that our sample contains pages of size comparable to (and even larger
than) sites that are actually present on the web.

¢https://github.com/sylvainhalle/pagegen
7https://github.com/liflab/hotfix-1ab
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For each of these pages, we measured the total time required to generate and apply a
hotfix to the layout bug contained in the page. Since the goal is to generate fixes on-the-fly,
the solver was given a very short time budget to produce a result (at most |2 seconds).
The running times are shown in Figure [6a] plotted in function of page size. One can
see that, for most pages, solving time remains well under 1 second; only a few pages
exceeded the timeout. These running times should be compared with those obtained by
X-Fix [14], which reports a median solving time of 841 seconds on a sample of web sites
containing an average of 425 DOM nodes each. Our faster running times, however, are
crucial, since our goal is to produce a fix to a page on-the-fly, and not to find a more
permanent way of correcting the issue at the CSS level.
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Fig. 6: Experimental results from our benchmark.

Figure[6b]is a visualization of the impact that the use of zones of influence has on the
analysis of a page. Each point in this plot represents a pair of trees: on the x-axis is the
original size of the tree, and on the y-axis the size of the tree trimmed to retain only the
zone of influence of the faulty elements. One can see the drastic reduction in the number
of nodes that need to be modeled: pages of thousands of DOM nodes are reduced to a
portion containing a few dozens at most. Without such a reduction, the MILP problem to
solve would quickly become intractable.

5 Conclusion and Future Work

In this work, we proposed a technique for automatically generating repairs in the case
where a web page violates conditions on the layout of its DOM elements. The problem
has been modeled as a MILP problem, using an objective function that aims to minimize
the disruptions introduced into the page to restore the conditions. The approach has been
implemented as a proof-of-concept tool using a combination of the Selenium browser
driver for page manipulation, and the IBM CPLEX software for solving numerical
constraints. An experimental evaluation of this implementation has shown that our hotfix
generation technique can correctly modify the elements of a page to solve a layout bug
(§4.1); moreover, the introduction of the concept of zone of influence can reduce the
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optimization problem and produce results in reasonable time in terms of user experience
(a few seconds), for pages of size corresponding to real-world websites (§4.2).

However, these conclusions rest on several hypotheses, which we discuss below.
First, the proposed approach shares an issue that is common to all declarative systems
based on assertions: in order for bugs to be detected and pages to be fixed, a page
must be accompanied by appropriate constraints that should be followed by its elements.
Moreover, these constraints must be complete, in the sense that any page that satisfies
them should be considered valid. It turns out that the human eye makes many implicit
assumptions over the expected size, position and alignment of elements which, in our
approach, must be explicitly provided. For example, without further constraint, the fix
shown in Figure [5b|will correctly enlarge the red menu area, but not the white parent
element that contains this menu. To decrease the burden on the designer of writing such
tedious conditions, a future work we consider is to automatically deduce such “obvious”
layout conditions based on heuristics.

The hotfix generated by our approach may only modify the page in a subtle way
visually, however it alters the structure of the page in a drastic way. Each element to
which a patch is applied has its position property set to “absolute”: this makes sure that
changing its top and left attributes are guaranteed to move the element to the exact
location stipulated by the solver. This avoids having to test a candidate fix to make sure it
has the intended effect, as needs to be done in tools such as X-Fix. However, resizing
the page after the application of the hotfix may result in the element being yet again
incorrectly placed; an immediate workaround is to recompute a new hotfix when this
happens. Absolute positioning also removes the element from the normal flow inside
its parent container. For an element that is relatively positioned, an alternate fix, which
involves modifying the element’s margins, is currently being worked on.

We have also seen that the number of variables and constraints sent to the solver was
kept to a manageable level thanks to the observation that only elements in a so-called
“zone of influence” need to be modeled. However, this only works under the hypothesis
that no element is ever reduced in size, because changes only propagate upwards through
the DOM tree. In contrast, if an element can be made smaller, then this change propagates
downwards to all its children, and in such a case, the zone of influence of an element
becomes the whole document. Circumscribing the zone of influence in the case of
element reductions is the subject of ongoing work, which shall be integrated in a future
version of our system.

Finally, we plan to integrate this hotfix generation mechanism directly into the
Cornipickle declarative testing tool, and extend it to other types of constraints beyond the
three types of layout bugs addressed in this paper. Another step would be to test the tool
on a larger sample of bugs and websites, and reenact the same tests on different browsers
to ensure the complete validity of the tool, since all the present tests have been realized
only on Chrome.
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