Skip to main content

The Maximum Weight Trace Alignment Merging Problem

  • Conference paper
  • First Online:
Book cover Algorithms for Computational Biology (AlCoB 2021)

Abstract

The Maximum Weight Trace (MWT) is an optimization problem for multiple sequence alignment that takes a set of sequences and weights on pairs of letters from different sequences and seeks a multiple sequence alignment that maximizes the sum of the weights for the pairs of letters that appear in the same column. MWT was introduced by Kececioglu in 1993, then proven to be NP-hard, and heuristics and exact solutions for MWT developed. Unfortunately none of the MWT methods are scalable to even moderate-sized datasets. Here we propose the MWT-AM problem (MWT for Alignment Merging), an extension of the MWT problem to be used in a divide-and-conquer setting, where we seek a merged alignment of a set of disjoint alignments that optimizes the MWT score. We present variations of GCM (the Graph Clustering Merger, originally developed for the MAGUS multiple sequence alignment method) that are specifically designed for MWT-AM. We show that the best of these variants, which we refer to as GCM-MWT, perform well for the MWT-AM criterion. We explore GCM-MWT in comparison to other methods for merging alignments, T-coffee and MAFFT–merge, and find that GCM-MWT produces more accurate merged alignments. GCM-MWT is available in open source form at https://github.com/vlasmirnov/MAGUS.

Supported by the University of Illinois.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cannone, J.J., et al.: The comparative RNA Web (CRW) site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinf. 3(1), 1–31 (2002). https://doi.org/10.1186/1471-2105-3-2

    Article  MathSciNet  Google Scholar 

  2. Edgar, R.C.: MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinf. 5(1), 113 (2004)

    Article  Google Scholar 

  3. Fiduccia, C.M., Mattheyses, R.M.: A linear-time heuristic for improving network partitions. In: 19th Design Automation Conference, pp. 175–181. IEEE (1982)

    Google Scholar 

  4. Katoh, K., Kuma, K.I., Toh, H., Miyata, T.: MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res. 33(2), 511–518 (2005)

    Article  Google Scholar 

  5. Kececioglu, J.: The maximum weight trace problem in multiple sequence alignment. In: Apostolico, A., Crochemore, M., Galil, Z., Manber, U. (eds.) CPM 1993. LNCS, vol. 684, pp. 106–119. Springer, Heidelberg (1993). https://doi.org/10.1007/BFb0029800

    Chapter  Google Scholar 

  6. Kececioglu, J.D., Lenhof, H.P., Mehlhorn, K., Mutzel, P., Reinert, K., Vingron, M.: A polyhedral approach to sequence alignment problems. Discrete Appl. Math. 104(1–3), 143–186 (2000)

    Article  MathSciNet  Google Scholar 

  7. Koller, G., Raidl, G.R.: An evolutionary algorithm for the maximum weight trace formulation of the multiple sequence alignment problem. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 302–311. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30217-9_31

    Chapter  Google Scholar 

  8. Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proc. Am. Math. Soc. 7(1), 48–50 (1956)

    Article  MathSciNet  Google Scholar 

  9. Liu, K., Raghavan, S., Nelesen, S., Linder, C.R., Warnow, T.: Rapid and accurate large-scale coestimation of sequence alignments and phylogenetic trees. Science 324(5934), 1561–1564 (2009)

    Article  Google Scholar 

  10. Liu, K., et al.: SATĂ©-II: very fast and accurate simultaneous estimation of multiple sequence alignments and phylogenetic trees. Syst. Biol. 61(1), 90 (2012)

    Article  Google Scholar 

  11. Mirarab, S., Nguyen, N., Guo, S., Wang, L.S., Kim, J., Warnow, T.: PASTA: ultra-large multiple sequence alignment for nucleotide and amino-acid sequences. J. Comput. Biol. 22(5), 377–386 (2015)

    Article  Google Scholar 

  12. Mirarab, S., Warnow, T.: FASTSP: linear time calculation of alignment accuracy. Bioinformatics 27(23), 3250–3258 (2011)

    Article  Google Scholar 

  13. Modzelewski, M., Dojer, N.: MSARC: multiple sequence alignment by residue clustering. Alg. Mol. Biol. 9(1), 12 (2014)

    Google Scholar 

  14. Moreno-Centeno, E., Karp, R.M.: The implicit hitting set approach to solve combinatorial optimization problems with an application to multigenome alignment. Oper. Res. 61(2), 453–468 (2013)

    Article  MathSciNet  Google Scholar 

  15. Notredame, C., Higgins, D.G., Heringa, J.: T-Coffee: a novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. 302(1), 205–217 (2000)

    Article  Google Scholar 

  16. Reinert, K., Lenhof, H.P., Mutzel, P., Mehlhorn, K., Kececioglu, J.D.: A branch-and-cut algorithm for multiple sequence alignment. In: Proceedings of the First Annual International Conference on Computational Molecular Biology (RECOMB), pp. 241–250 (1997)

    Google Scholar 

  17. Satuluri, V., Parthasarathy, S.: Scalable graph clustering using stochastic flows: applications to community discovery. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 737–746 (2009)

    Google Scholar 

  18. Smirnov, V., Warnow, T.: MAGUS: multiple sequence alignment using graph clustering. Bioinformatics (2020)

    Google Scholar 

  19. Smirnov, V., Warnow, T.: Phylogeny estimation given sequence length heterogeneity. Syst. Biol. 70(2), 268–282 (2020)

    Article  Google Scholar 

  20. Stoye, J., Evers, D., Meyer, F.: Rose: generating sequence families. Bioinformatics 14(2), 157–163 (1998)

    Article  Google Scholar 

  21. Van Dongen, S.M.: A cluster algorithm for graphs. Technical report, National Research Institute for Mathematics and Computer Science in the Netherlands, Amsterdam, iNS-R0010, May 2000

    Google Scholar 

  22. Wallace, I.M., O’sullivan, O., Higgins, D.G., Notredame, C.: M-Coffee: combining multiple sequence alignment methods with T-Coffee. Nucleic Acids Res. 34(6), 1692–1699 (2006)

    Google Scholar 

  23. Wheeler, T.J., Kececioglu, J.D.: Multiple alignment by aligning alignments. Bioinformatics 23(13), i559–i568 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by NSF ABI-1458652 to TW and by the Debra and Ira Cohen fellowship to VS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tandy Warnow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zaharias, P., Smirnov, V., Warnow, T. (2021). The Maximum Weight Trace Alignment Merging Problem. In: MartĂ­n-Vide, C., Vega-RodrĂ­guez, M.A., Wheeler, T. (eds) Algorithms for Computational Biology. AlCoB 2021. Lecture Notes in Computer Science(), vol 12715. Springer, Cham. https://doi.org/10.1007/978-3-030-74432-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-74432-8_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-74431-1

  • Online ISBN: 978-3-030-74432-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics