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Abstract. Representations of biological sequences facilitating sequence
comparison are crucial in several bioinformatics tasks. Recently, the
Lyndon factorization has been proved to preserve common factors in
overlapping reads [6], thus leading to the idea of using factorizations of
sequences to define measures of similarity between reads. In this paper
we propose as a signature of sequencing reads the notion of fingerprint,
i.e., the sequence of lengths of consecutive factors in Lyndon-based fac-
torizations of the reads. Surprisingly, fingerprints of reads are effective in
preserving sequence similarities while providing a compact representation
of the read, and so, k-mers extracted from a fingerprint, called k-fingers,
can be used to capture sequence similarity between reads.

We first provide a probabilistic framework to estimate the behaviour of
fingerprints. Then we experimentally evaluate the effectiveness of this
representation for machine learning algorithms for classifying biological
sequences. In particular, we considered the problem of assigning RNA-
Seq reads to the most likely gene from which they were generated. Our
results show that fingerprints can provide an effective machine learning
interpretable representation, successfully preserving sequence similarity.
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1 Introduction

In the Big Data era, characterized by a massive data growth, mining sequence data
has attracted a lot of attention, since knowing useful patterns from sequences can
benefit many applications, such as, event prediction, pattern discovery, time-aware
recommendation, DNA detection, and feature embedding [12].

In the specific context of biological sequences, finding machine-interpretable
representations for sequences that can increase performance of machine learning
algorithms, is a challenging task. Indeed, even the most sophisticated algorithms
would perform poorly with inappropriate features, while simple methods can
potentially perform when fed with appropriate features. Most of the approaches
proposed in literature adopt existing methods in Natural Language Processing
with the goal to discover functions encoded within biological sequences [1,11,16].
As well as the common techniques in Bioinformatics to study sequences, also
such methods involves fixed-length overlapping n-grams [18,20].

A main question addressed in this paper is whether there exists a “similarity
signature” that may be used to represent a sequencing read and that can be easily
detected while reading the read itself. We answer to this question by exploiting
the Lyndon factorizations for a collection of reads. The Lyndon factorization
is one of the most well-known factorizations in combinatorics on words: it is
unique for a word and it can be computed in linear time [7,14]. The notion of
Lyndon word is not novel in the field of Bioinformatics, since it was used to
locate short motifs [8] and more recently it was explored in the development
of bijective Burrows-Wheeler Tranforms [13]. Such a factorization has a main
desired property: a read shares a set of consecutive common Lyndon factors with
the Lyndon factorization of a superstring of the read itself [4,6]. Surprisingly, in
this paper we discover that the length of factors in a Lyndon factorization is
enough to define a notion of signature that captures sequence similarity: this is
our notion of fingerprint of a read. Given a fingerprint f which is a sequence
of integer numbers, we extract k-fingers, i.e. k-mers of f . Then collections of
k-fingers are used as a main signature to analyze a sample of reads.

To show the effectiveness of such a novel representation approach, we explore
their use in the framework of RNA-Seq data classification consisting in assigning
each read in a collection to the origin gene. A similar problem for RNA-seq
data analysis in trascriptomics, which is filtering reads by origin genes, has
been recently considered in [9] where we refer for the main reference literature.
Results of such a preliminary evaluation study, show that the fingerprint can be
used successfully to provide a machine-interpretable representation and opens
up new perspectives on the possibility of defining a new biological sequence
embedding technique. This paper is organized as follows. In section 2, we present
the factorizations used to deal with the double-stranded nature of sequencing
reads. In section 3 we explore results motivating the use of k-fingers by extending
probabilistic results for sequence similarity based on k-mers. Section 4 provides
the details about the experiments and related methodology carried out to assess
our approach. Finally, Section 5 discusses the results and future directions.
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2 Lyndon Factorizations and Overlapping Reads

Let Σ be a finite alphabet and let s = c1 · · · cn be a sequence of n characters
drawn from Σ; we say that s is a string over Σ of length n. The length and
the character ci (at position i) will be denoted by |s| and s[i], respectively. The
substring of s from position i to position j will be denoted by s[i : j]. A prefix or
suffix of s are substrings s[1 : j] and s[i : |s|], respectively (denoted also by s[: j]
and s[i :]). A prefix or a suffix of s is proper if j ̸= |s| and i ̸= 1. In the following,
we will use the notation s < v (s > v) to specify that string s is lexicographically
smaller (greater) than string v, and the notation s ≪ v to specify that s < v and
additionally s is not a proper prefix of v.

Now we introduce the definitions of factorization and fingerprint, which
are the main ingredients we use to capture the overlap between two reads.
A factorization of a string s is a sequence F (s) = ⟨f1, f2, . . . , fn⟩ of factors,
such that s = f1f2 . . . fn. The fingerprint of s with respect to F (s) is the
sequence L(s) = ⟨|f1|, |f2|, . . . , |fn|⟩ of the factor lengths. Given a fingerprint
L(s) = ⟨l1, l2, . . . , ln⟩, a k-finger is any subsequence ⟨li, li+1, . . . , li+k−1⟩ of k
consecutive lengths, that is, a k-mer of L(s). The substring fifi+1 . . . fi+k−1 will
be called as supporting string of the k-finger.

In order to capture overlaps between reads, we use Lyndon factorizations,
namely composed of Lyndon Words [15,3]. A string s is a Lyndon word if and only
if it is strictly lexicographically smaller than any of its proper suffixes. For example,
s = aabbab over alphabet {a, b} is a Lyndon word, whereas string s′ = abaabb
is not a Lyndon word, since the suffix aabb is smaller than s′. The Chen-Fox-
Lyndon’s Theorem [7] states that any nonempty string s has a unique standard
Lyndon factorization F (s) = ⟨f1, f2, . . . , fn⟩ such that f1 ≥ f2 ≥ · · · ≥ fn.
Such a Lyndon factorization is called CFL from the authors’ names. The Duval
algorithm [10] allows to compute CFL in linear time and constant space.

A property of the CFL factorization [6], which is crucial in our framework, is
the following.
Conservation Property: let s be a string such that CFL(s) = ⟨f1, f2, . . . , fn⟩
and let x, y be substrings of s such that x and y share a common overlap z where
z = f ′

lfl+1 . . . ftf
′

t+1 for some indexes l, t with 1 < l, t < n. Then, CFL(x) and
CFL(y) will share the consecutive factors fl+1, . . . ft, more precisely CFL(x) =
⟨CFL(x′), fl+1, . . . ft,CFL(f

′

t+1)⟩ and CFL(y) = ⟨CFL(f ′
l ), fl+1, . . . ft,CFL(y

′)⟩,
where x = x′z and y = zy′. Similarly, L(x) and L(y) will share the consec-
utive lengths |fl+1|, . . . , |ft|. It follows that two overlapping strings s and s′ will
share consecutive common Lyndon factors in their Lyndon factorizations, while
the fingerprints of s and s′ will share common k-fingers for a suitable k, where
1 ≤ k ≤ t, if s and s′ share t common Lyndon factors. In this paper, we propose
to use the fingerprint as a signature of common overlapping strings. Another type
of Lyndon factorization is based on the notion of Inverse Lyndon word: a string
s is an Inverse Lyndon word if each proper suffix is strictly smaller than s [5].
Then, F (s) = ⟨f1, f2, . . . , fn⟩ is an Inverse Lyndon factorization for a string s,
if each factor fj is an Inverse Lyndon word. Bonizzoni et al. in [5] propose a
linear time algorithm to compute a special Inverse Lyndon factorization which is
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unique for s and is called Canonical Inverse Lyndon factorization (referred in the
following by ICFL). While uniqueness and linear time computation is guaranteed
by both CFL and ICFL guarantee, a fundamental property of ICFL is that it splits
Lyndon words, thus allowing to further factorize too long Lyndon factors of a
Lyndon factorization, if needed. We will call CFL ICFL the factorization obtained
by applying first the Standard Lyndon Factorization CFL, and then the Canonical
Inverse Lyndon factorization ICFL to factors (in CFL) longer than a given thresh-
old T. In other words, given CFL(s) = ⟨f1, f2, . . . , fn⟩, we obtain CFL ICFL(s) by
replacing each fi longer than T with ICFL(fi). Remarkably, CFL ICFL has the
main advantage of producing many factors, thus enriching the set of k-fingers
to use for detecting the overlaps. Observe that, while the conservation property
holds for CFL ICFL, since ICFL splits the same Lyndon factors it is an open
problem to formally prove the property for ICFL, which seems to hold also in
this case, as suggested in the preliminary experiments.

Moreover, since we want to take into account the double-stranded nature of
the reads, we are interested in signatures that are invariant with respect to a
read and its reverse and complement. For this purpose, given any factorization
F , we define a double-stranded version of F , denoted by F d, having the following
property: given F d(s) = ⟨f1, f2, . . . , fn⟩ then F d(s) = ⟨fn, fn−1, . . . , f1⟩, where
f i and s are the reverse and complement of fi and s, respectively. Observe that
(when dealing with a double-stranded factorization) the fingerprint L(s) is the
reverse of the fingerprint L(s). As a consequence, the two k-fingers supported by
the same genomic region on two opposite overlapping reads, are one the reverse
of the other. To overcome this fact, we normalize the k-fingers, meaning that,
given a k-finger ⟨l1, l2, . . . , lk⟩, we take the lexicographically smallest sequence
between ⟨l1, l2, . . . , lk⟩ and its reverse ⟨lk, lk−1, . . . , l1⟩, by considering k-fingers as
sequences over the alphabet of the natural numbers. In this way, the fingerprints
of two reads extracted from the same locus on two different strands share the
same normalized k-fingers. We omit the details for space constraints.

3 Probabilistic Behaviour of Fingerprints

In this section, we explore probabilistic results to be used to estimate how k-
fingers capture the similarity of two sequences: we first define and analyze the
collision phenomenon by estimating the probability that two sequences share
some common k-fingers w.r.t. to the corresponding notion of k-mers. In the
following, let Σs be the alphabet of the lengths of the fingerprint of a sequence
W , where |Σs| = s, with s being the length of the sequence w. Clearly a k-finger
is a k-mer of a fingerprint. Let us define the notion of k-finger collision reflecting
the fact that a k-finger can be supported by distinct strings.

Definition 1 (k-finger collision). Let x, y ∈ Σ∗ be two sequences. Let F be
a Lyndon-based factorization. Let f(x) and f(y) be the fingerprints for x and
y with respect to F , respectively. Let k(x) be a k-finger of f(x) and k(y) be a
k-finger of f(y). Let sk(x) and sk(y) be two substrings of x and y supporting k(x)
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and k(y), respectively. If k(x) = k(y) and sk(x) ̸= sk(y), then we say that there
exists a collision between sk(x) and sk(y).

Since k-fingers of w are k-mers over the alphabet Σs, the collision phenomenon
can be studied by exploiting results already obtained in literature in the case of
k-mers [2,17]. Observe that, the length of the fingerprints can vary for each read
considered, and so, to extend those results to our case we will indicate with s
the mean length of a generic set of reads considered.

Let x and y be two random sequences, both of length n, and xs, ys the
corresponding fingerprints. Then, the probability Pr that xs and ys will share a
k-finger by chance and not because of a real similarity can be defined as:

Pr = 1− (1− s−k)n−k+1 (1)

Observe that since s is far greater than the usual alphabets on which reads are
defined (e.g. DNA), using k-fingers drastically reduce the occurrence of random
matches differently from the usage of k-mers. However, using k-fingers has an
intrinsic and unavoidable probability of collision, which is related to the dimension
of the set considered and can be computed as illustrated below and easily taken
in consideration to limit the effect of this phenomenon in any formula used. Now
we will show how to use Pr to compute the expected number of k-fingers shared
by two fingerprints of arbitrary length. To this, we first define the probability
that a collision occurs, named collision probability, and then the probability that
none of the reads are corrupted by any error.

Collision Probability. One factorization can be view as a function which randomly
maps a sequence to a certain number of integers with a uniform distribution. This
means that all the integers have the same probability to be picked up. According
to this assumption, the probability of k-finger collision is a generalization of the
well known “birthday problem”1. Observe that for each item of a k-finger we
have s possible values, and so the space of possible values for the k-uple is sk.
Let suppose to pick a single value. After that, there are sk−1(s− 1) remaining
possibilities that are unique from the first. Therefore, the probability of randomly

generating two k-uple that are unique form each other is sk−1(s−1)
sk

= s−1
s . After

that, there are sk−1(s−2) remaining possibilities that are unique for the first two,
which means that the probability of randomly generating three k-uple that are

unique is sk−1(s−1)
sk

× sk−1(s−2)
sk

= s−1
s × s−2

s , and so on. Based on this argument,
we can give the following proposition:

Proposition 2. [k-finger collision probability] Let s be the mean length of the
set of sequences considered and let M be the total number of k-fingers generated.
Then, the probability that at least two of them are equal is:

1− sk−1(s− 1)

sk
× sk−1(s− 2)

sk
× · · · × sk−1(s−M − 1)

sk
(2)

Which can be approximated by Pc = 1− e
−M(M−1)

2sk

1 https://preshing.com/20110504/hash-collision-probabilities/

https://preshing.com/20110504/hash-collision-probabilities/
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Detecting Similarity Using Pc and Pr. In order to detect similarity between two
sequence using fingerprints it is necessary to be able of correctly distinguish
if a common k-finger is coming from a random match, a collision or a shared
region. An effective solution could be calculating a threshold using the Bernoulli
distribution. Let f1, f2, be two fingerprints sharing a number x of k-fingers,
and let a false match be a single match generated by a random match or a
collision. We define as success the event of having one false positive match (a
random matching or a collision), to which corresponds the probability Pc +Pr as
calculated before. Respectively, we consider as failure both a matching coming
from a common region or the case of not having a match, and as number of the
experiments the number of k-fingers of the longest fingerprint between the two
considered.

Given a dataset of reads, we can use the Bernoulli formula to compute
the minimum number x of k-fingers matching needed to say that two reads
share a common region. Specifically, first we set a threshold δ such that

(︁
n
x

)︁
px ·

(1− p)
n−x

< δ. Then we compute the solution x which represent the minimum
number x of k-fingers matching needed to say that two reads are in overlap. So,
let f1, f2, be two fingerprints sharing a number x′ of k-fingers, if x′ > x then we
can say that f1 and f2 are similar with a probability depending on δ.

4 The Methodology and Experiments

In this section we provide the details of the experiments we carried out to assess the
effectiveness of fingerprints and k-fingers as machine-interpretable representation
for sequencing reads. We assume the reader is familiar with the basic notions
of machine learning (see [19] for further details). More precisely, the following
question is addressed: can fingerprints and k-fingers be used to assign RNA-Seq
reads to the correct origin gene? To this aim, we explore two machine learning
approaches to classify RNA-seq reads; the first one is based on fingerprints and
the second one is based on k-fingers. We implemented the following five-step
methodology, in relation to the input data used in our experiments:

1. training data collection: given a FASTA file containing the transcript se-
quences annotated for 6040 genes from chromosomes 1, 17 e 21 (havana
and ensembl havana; 3 transcripts per gene on average), we have collected
the set of all the 100-long substrings extracted from the transcripts of 100
randomly selected genes (we have considered at most 4 randomly selected
transcripts for each gene), obtaining a set C containing 797407 substrings.
For each substring we have also collected the ID of the origin gene;

2. feature extraction: we have considered the double-stranded factorization
algorithms CFLd, ICFLd and CFL ICFLd (with threshold T ∈ {10, 20, 30}) for
a total of 5 factorization algorithms. For each algorithm, we have computed
the fingerprints of the strings in C obtaining 5 datasets (each one to be used
as feature dataset in the fingerprint-based approach), and then, for each
dataset of fingerprints, we have extracted all the k-fingers for k from 3 to 8
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obtaining 30 datasets (to be used as features in the k-finger based approach);
we remark that, in the fingerprint-based (resp. k-fingers-based) approach, one
fingerprint (resp. one k-finger) represents one sample in the feature dataset,
and each length in such a fingerprint (resp. k-finger) is a feature; we remark
that the choice of values for k and T is the result of a series of observations
on preliminary experiments, and is not linked to the optimization phase of
the machine learning models described below.

3. labeling : each fingerprint (or k-finger) in a feature dataset is labeled by the
ID of the origin gene in order to have a class for each input gene;

4. validation and classification: each feature dataset is split into a training
set (80% of the samples) and a testing set (the remaining 20%); the data
have been normalized by using the minmaxscaler technique; the k-fold cross-
validation was performed to validate different machine learning models; some
of the most used classification models have been tested on the testing set
with the best parameters found during the previous step;

5. testing : in order to simulate reads from the set of our 100 input genes
in a reliable setting, we have considered a set with 10Million RNA-Seq
reads simulated with Flux Simulator with different gene-expression levels by
considering 9403 Human genes from chromosomes 1, 17, and 21; then we have
extracted from such set the reads originated from the 100 input genes, thus
obtaining 285628 reads; we used the best classification model obtained in the
previous step to classify the reads by the gene locus; we note that the set of
reads obtained was unbalanced, i.e., 142266 reads simulated from the most
expressed gene (ID ENSG00000132517), and only 2 reads simulated from the
least expressed one (ID ENSG00000116205); due the multiclass nature of the
problem considered, we first calculated the precision, recall, and f-score values
for each of the 100 genes and then the average scores.

The last three steps are detailed in the following two sections with respect to
the considered approach (fingerprint based or k-finger based). We implemented
our methodology in Python by using the scikit-learn library2. All the input and
output files and the Python scripts are available online3.

4.1 Fingerprint-based Approach

Validation and Classification. By performing a 5-fold cross-validation using
the gridsearchcv method, we have obtained the best parameters to train and
test the following chosen classification models: Random Forest (RF), Logistic
Regression (LR), and Multinomial Naive Bayes (MNB). We remark that the goal
of this step was to chose the model having the highest accuracy, precision and
recall scores for all classes.

As a result, we observed that the RF model always outperforms the other
models, so in the following we report only its results (Table 1). In general the

2 https://scikit-learn.org/
3 https://github.com/rzaccagnino/DeepShark

https://scikit-learn.org/
https://github.com/rzaccagnino/DeepShark
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Table 1. Results obtained with RF model for each type of double-stranded factorization

Factorization Accuracy Precision Recall F-score

CFLd 0.72 0.72 0.72 0.72

ICFLd 0.85 0.85 0.85 0.85

CFL ICFLd

T=10 0.92 0.93 0.92 0.93

T=20 0.93 0.94 0.93 0.94

T=30 0.92 0.93 0.92 0.92

Table 2. Results obtained on CFL ICFLd for T = 20 with MNB, LR, and RF

Model Accuracy Precision Recall F-score

Multinomial Naive Bayes (MNB) 0.42 0.23 0.30 0.44

Logistic Regression (LR) 0.44 0.43 0.30 0.45

Random Forest (RF) 0.93 0.94 0.93 0.94

RF models trained with fingerprints obtained by the factorizations CFL ICFLd

outperforms the other RF models. Moreover, the best result have been obtained by
using the factorization CFL ICFLd with T = 20, with accuracy 0.93, precision 0.94,
recall 0.93, and f-score 0.94. Furthermore, for all the factorizations CFL ICFLd

the performance does not vary significantly as the parameter T changes. This
could be due to the fact that the longest factors to break were the same, and
they were most probably longer than 30 bases. In Table 2 we also report the
average results obtained by all the models with CFL ICFLd with T = 20.

Testing. Best results were obtained using the RF model with CFL ICFLd and
T = 20. More precisely, we obtained an average weighted precision of 0.85, a
recall of 0.42, and an f-score of 0.55. Precision and recall are computed for each
investigated gene G as TP/(TP +FP ) and TP/(TP +FN) (respectively), where
TP is the number of reads simulated from G which are correctly assigned to G,
FP is the number of reads simulated from a different gene which are erroneously
assigned to G, and FN is the number of reads simulated from G which are
erroneously assigned to a different gene.

4.2 k-finger-based Approach

Validation and Classification. As observed before, also in this approach the RF
model always outperforms the other models and so, we only report its results.
Results of RF classification tests are shown in Table 3.

The best results have been obtained by using the factorization CFL ICFLd with
T = 30 and k = 8, i.e., accuracy 0.94, precision 0.94, recall 0.93 and f-score 0.94.
To compare it with the other models, in Table 4 we report the average results
obtained by all the models with CFL ICFLd with T = 30 and k = 8. We further
analyzed different choices of parameter k and different factorizations (details
omitted for space constraints). We obtained results ranging from 0.38 to 0.94
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Table 3. Best results obtained with RF model on CFLd, ICFLd and CFL ICFLd, T = 5

Factorization K value Accuracy Precision Recall F-score

CFLd 8 0.90 0.93 0.86 0.89

ICFLd 5 0.91 0.92 0.87 0.88

CFL ICFLd30 8 0.94 0.94 0.93 0.94

Table 4. Results obtained on the best factorization CFL ICFLd for T = 30 and k = 8

Model Accuracy Precision Recall F-score

Multinomial Naive Bayes (MNB) 0.42 0.35 0.33 0.46

Logistic Regression (LR) 0.41 0.65 0.71 0.50

Random Forest (RF) 0.94 0.94 0.93 0.94

accuracy, according to the type of factorization and the k value. We can notice
that in most cases, with increasing values of k the accuracy improves for any type
of factorization. Furthermore, for k values between 3 and 6 the best accuracy
is always obtained with ICFLd, while the best accuracy (0.94) was achieved by
CFL ICFLd with T = 30 and k = 8. We also observed that experiments conducted
with k ≤ 5 show that CFL ICFLd factorizations (for T=10,20,30) always result
in lower accuracy compared to other methods.

Testing. To evaluate the effectiveness of the k-fingers approach to classify RNA-
Seq data by the gene locus, we have defined a Rule-based read classifier [19].
During several preliminary test experiments we have defined many criteria to
deduce the classification of a read by the classification of its k-fingers. By empirical
observations two possible criteria have been selected: Majority and Threshold.
According to the Majority criteria, a gene g reaches the majority for a given
read if at least half of the read k-fingers are classified to g; therefore the read is
classified to g. The idea of the Threshold criteria, instead, is to use the lowest
probability whereby a k-finger was correctly classified to a gene. For classifying a
read, (i) first this value is subtracted from the classification probabilities of each
k-finger extracted from the read (margins), (ii) then the k-finger reaching the
highest margin is selected, and (iii) finally the read is classified to the gene for
which such a margin has been reached by the selected k-finger.
We tested such criteria in different orders and best results were obtained when
combined in the following way: (1) if the majority is reached, then the read is
classified to the gene which achieves majority, otherwise (2) the read is classified
to the gene which achieves the highest threshold. In Algorithm 1 we describe the
classifier based on such techniques. It takes as input the read to classify (read),
the k-fingers of the read (k fingers), a k-finger classifier (classifier), and a list
containing, for each gene, the lowest probability to be classified by classifier

to such a gene (genes thresholds). As output, it returns the ID of the gene
to which read is classified (ID gene). First, the lowest probability is computed
by genes thresholds (line 1). Then, classifier is used to classify k fingers
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Algorithm 1: Rule-based read classifier

Input : read, k fingers, classifier, genes thresholds.

Output : ID gene

1 min threshold ← min(genes thresholds);

2 classes ← classify(k fingers, classifier);

3 best classes, frequence ← most frequent(classes);

4 if (size(best classes) == 1) and frequence >= size(k fingers/2) then
5 // Majority criteria;

6 ID gene = best classes[0];

7 else
8 // Threshold criteria;

9 probability for gene ← probability classify(k fingers,

classifier);

10 max index list ← [];

11 max margin list ← [];

12 foreach sample ∈ probability for gene do
13 sample margin ← [(p - min threshold) for p ∈ sample];

14 max index ← argmax(sample margin);

15 max index list.append(max index);

16 max margin ← amax(sample margin);

17 max margin list.append(max margin);

18 max index ← argmax(max margin list);

19 best class ← max index list[max index];

20 ID gene ← best class;

21 return ID gene;

and so the most frequent genes (best classes), and the number of occurrences
of such genes are extracted by the results of the k-fingers classification (line 2).
If best classes contains one only a gene and such a gene reached the majority
then it was returned (line 6). Otherwise, for each k-finger sample in k fingers,
given the probabilities to be classified to each gene (line 9), the algorithm first
computes the classification margin for each gene (line 13) and then selects the
gene for which the highest margin has been reached by sample (lines 15-17).
After having computed such a value for each k-finger sample in k fingers the
algorithm returns the first of such genes (line 20).

We used the k-finger classifiers trained in the previous step to implement the
rule-based read classifier defined in Algorithm 1. Due to the multiclass nature
of the problem considered, we first calculated the precision, recall, and f-score
values for each of the 100 genes and then the average scores. Unlike the result
obtained during the training step, in which the RF model with CFL ICFLd, T =

30 and k = 8 achieved the best scores respect to the k-finger classification, the
result obtained for the read classification show that the best scores were achieved
by using the RF model with ICFLd and k = 5. This is because, by reducing the
k value, we are able to consider more local parts of each read, obtaining more
classifications which make the rule-based read classifier more robust respect to
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the presence of errors in the read. As first result, we obtained average weighted
precision of 0.91, recall 0.77, and f-score 0.82. Given the substantial difference
respect the scores obtained with the approach of Section 4.1, we have decided to
perform a more in-deep analysis of rule-based read classifier performance. We
have observed that the precision value was directly proportional to the support
value, which is the number of reads assigned to the given gene, with average
precision value from 0.99 for the most expressed gene (ID ENSG00000132517) to
0.001 for the less expressed (ID ENSG00000116205). However, the average recall
was always greater than 0.62, and in general very high for the less expressed
genes (about 1). This means that the classification of the few samples related
to such genes is almost always exact, and so the problem of the low precision
value was attributable to the misclassification of the reads related to the most
expressed genes. To assess our hypothesis we repeated the same experiment on
several balanced subsets of the 285628 reads: (1) the subset of reads related to
the 31 most expressed genes which have at least 1000 samples (1000 reads × 31
genes), (2) the subset of reads related to the 15 genes which have at least 14
samples and less of 100 reads (14 reads × 15 genes), (3) 4 reads for each of the
most expressed 98 genes (4 reads × 98 genes), and finally (4) 2 reads for each of
the 100 genes (2 read × 100 genes). As result, we obtained arithmetic average
precision of 0.90, recall 0.77, and f-score 0.77, that by construction corresponds
also to the weighted average scores. This result confirm our hypothesis and so
we can consider the average weighted precision of 0.91, recall 0.77, and f-score
0.82 as representative results of classifier performance.

5 Discussion

In this paper we investigate the notion of fingerprint as novel signature for repre-
senting sequencing reads. While this notion could be used also in a combinatorial
setting for comparing biological sequences, being a numeric representation of
sequences we decided to explore its use in a machine learning approach to classify
sequencing reads. We experimented different notions of Lyndon-based factoriza-
tions, i.e. CFLd, ICFLd and CFL ICFLd to evaluate the best representation. We
assess its potentiality in assigning RNA-Seq reads to their origin gene by carrying
out several read classification experiments. The training-test steps show that both
notions in our method allow to achieve comparable high scores. Nevertheless,
differences among the use of the two notions emerged during the testing step,
where the performances were tested on a simulated RNA-Seq sample. In this
case, the presence of errors in the reads and the different level of gene expression,
leading to an unbalanced number of reads per gene, produce differences in the
performance when using fingerprint versus k-fingers of the read. This significant
difference between the results in terms of recall and F-score can be explained
with the presence of errors in the reads. Since the fingerprint method considers
the whole read, this is sensitive to the presence of errors. Conversely, dividing the
reads in multiple k-fingers enables to get a more robust classification, allowing
to better isolate the corrupted portion of reads, and to identify the correct
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class with the conjunct application of the rule-based classifier. In conclusion,
the results prove the effectiveness of the notions of fingerprint and k-finger as
machine learning interpretable representation. This work still leave many open
questions that need to be addressed, including how fingerprints perform compared
to other machine learning representations of biological sequences [1,11] and how
the probabilistic analysis presented in the paper is reflected on real sequencing
data. Finally, could be fingerprints used in a combinatorial approach to detect
the overlap of sequencing reads?
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