Skip to main content

Exploiting Variable Sparsity in Computing Equilibria of Biological Dynamical Systems by Triangular Decomposition

  • Conference paper
  • First Online:
Algorithms for Computational Biology (AlCoB 2021)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 12715))

Included in the following conference series:

Abstract

Biological systems modeled as dynamical systems can be large in the number of variables and sparse in the interrelationship between the variables. In this paper we exploit the variable sparsity of biological dynamical systems in computing their equilibria by using sparse triangular decomposition. The variable sparsity of a biological dynamical system is characterized via the associated graph constructed from the polynomial set in the system. To make use of sparse triangular decomposition which has been proven to maintain the variable sparsity when a perfect elimination ordering of a chordal associated graph is used, we first study the influence of chordal completion on the variable sparsity for a large number of biological dynamical systems. Then for those systems which are both large and sparse, we compare the computational performances of sparse triangular decomposition versus ordinary one with experiments. The experimental results verify the efficiency gains in sparse triangular decomposition exploiting the variable sparsity.

This work was partially supported by the National Natural Science Foundation of China (NSFC 11971050) and Beijing Natural Science Foundation (Z180005).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.ebi.ac.uk/biomodels/.

  2. 2.

    http://odebase.cs.uni-bonn.de/.

References

  1. Allen, L.J.: Some discrete-time SI, SIR, and SIS epidemic models. Math. Biosci. 124(1), 83–105 (1994)

    Article  Google Scholar 

  2. Aubry, P., Lazard, D., Moreno Maza, M.: On the theories of triangular sets. J. Symbolic Comput. 28(1–2), 105–124 (1999)

    Article  MathSciNet  Google Scholar 

  3. Berry, A., Blair, J.R.S., Heggernes, P., Peyton, B.W.: Maximum cardinality search for computing minimal triangulations of graphs. Algorithmica 39(4), 287–298 (2004)

    Article  MathSciNet  Google Scholar 

  4. Bodlaender, H., Koster, A.: Combinatorial optimization on graphs of bounded treewidth. Comput. J. 51(3), 255–269 (2018)

    Article  Google Scholar 

  5. Boulier, F., Lefranc, M., Lemaire, F., Morant, P.-E.: Applying a rigorous quasi-steady state approximation method for proving the absence of oscillations in models of genetic circuits. In: Horimoto, K., Regensburger, G., Rosenkranz, M., Yoshida, H. (eds.) AB 2008. LNCS, vol. 5147, pp. 56–64. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85101-1_5

    Chapter  Google Scholar 

  6. Chen, C.: Chordality preserving incremental triangular decomposition and its implementation. In: Bigatti, A.M., Carette, J., Davenport, J.H., Joswig, M., de Wolff, T. (eds.) ICMS 2020. LNCS, vol. 12097, pp. 27–36. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52200-1_3

    Chapter  Google Scholar 

  7. El Kahoui, M., Weber, A.: Deciding Hopf bifurcations by quantifier elimination in a software-component architecture. J. Symbolic Comput. 30(2), 161–179 (2000)

    Article  MathSciNet  Google Scholar 

  8. Ferrell, J.E., Tsai, T.Y.C., Yang, Q.: Modeling the cell cycle: Why do certain circuits oscillate? Cell 144(6), 874–885 (2011)

    Article  Google Scholar 

  9. Galor, O.: Discrete Dynamical Systems. Springer, Heidelberg (2007). https://doi.org/10.1007/3-540-36776-4

    Book  MATH  Google Scholar 

  10. Gatermann, K., Huber, B.: A family of sparse polynomial systems arising in chemical reaction systems. J. Symbolic Comput. 33(3), 275–305 (2002)

    Article  MathSciNet  Google Scholar 

  11. Grigoriev, D., Iosif, A., Rahkooy, H., Sturm, T., Weber, A.: Efficiently and effectively recognizing toricity of steady state varieties. Preprint at arXiv:1910.04100 (2019)

  12. Heggernes, P.: Minimal triangulations of graphs: A survey. Discret. Math. 306(3), 297–317 (2006)

    Article  MathSciNet  Google Scholar 

  13. Hong, H., Liska, R., Steinberg, S.L.: Testing stability by quantifier elimination. J. Symbolic Comput. 24(2), 161–187 (1997)

    Article  MathSciNet  Google Scholar 

  14. Laubenbacher, R., Sturmfels, B.: Computer algebra in systems biology. Amer. Math. Monthly 116(10), 882–891 (2009)

    Article  MathSciNet  Google Scholar 

  15. Laubenbacher, R., Stigler, B.: A computational algebra approach to the reverse engineering of gene regulatory networks. J. Theor. Biol. 229(4), 523–537 (2004)

    Article  MathSciNet  Google Scholar 

  16. Lauritzen, S., Spiegelhalter, D.: Local computations with probabilities on graphical structures and their application to expert systems. J. R. Stat. Soc: Series B. (Methodol.) 50(2), 157–194 (1988)

    MathSciNet  MATH  Google Scholar 

  17. Li, C., Donizelli, M., Rodriguez, N., Dharuri, H., et al.: BioModels database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst. Biol. 4(1), 92 (2010)

    Article  Google Scholar 

  18. Li, X., Mou, C., Niu, W., Wang, D.: Stability analysis for discrete biological models using algebraic methods. Math. Comput. Sci. 5(3), 247–262 (2011)

    Article  MathSciNet  Google Scholar 

  19. Mezzini, M., Moscarini, M.: Simple algorithms for minimal triangulation of a graph and backward selection of a decomposable Markov network. Theor. Comput. Sci. 411(7–9), 958–966 (2010)

    Article  MathSciNet  Google Scholar 

  20. Mou, C.: Symbolic detection of steady states of autonomous differential biological systems by transformation into block triangular form. In: Jansson, J., Martín-Vide, C., Vega-Rodríguez, M.A. (eds.) AlCoB 2018. LNCS, vol. 10849, pp. 115–127. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91938-6_10

    Chapter  Google Scholar 

  21. Mou, C., Bai, Y.: On the chordality of polynomial sets in triangular decomposition in top-down style. In: Proceedings of ISSAC 2018, pp. 287–294. ACM Press (2018)

    Google Scholar 

  22. Mou, C., Bai, Y., Lai, J.: Chordal graphs in triangular decomposition in top-down style. J. Symbolic Comput. 102, 108–131 (2021)

    Article  MathSciNet  Google Scholar 

  23. Niu, W., Wang, D.: Algebraic approaches to stability analysis of biological systems. Math. Comput. Sci. 1(3), 507–539 (2008)

    Article  MathSciNet  Google Scholar 

  24. Niu, W., Wang, D.: Algebraic analysis of bifurcation and limit cycles for biological systems. In: Horimoto, K., Regensburger, G., Rosenkranz, M., Yoshida, H. (eds.) AB 2008. LNCS, vol. 5147, pp. 156–171. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85101-1_12

    Chapter  MATH  Google Scholar 

  25. Parra, A., Scheffler, P.: Characterizations and algorithmic applications of chordal graph embeddings. Discret. Appl. Math. 79(1–3), 171–188 (1997)

    Article  MathSciNet  Google Scholar 

  26. Rose, D.: Triangulated graphs and the elimination process. J. Math. Anal. Appl. 32(3), 597–609 (1970)

    Article  MathSciNet  Google Scholar 

  27. Rose, D., Tarjan, E., Lueker, G.: Algorithmic aspects of vertex elimination on graphs. SIAM J. Comput. 5(2), 266–283 (1976)

    Article  MathSciNet  Google Scholar 

  28. Sturm, T., Weber, A., Abdel-Rahman, E., El Kahoui, M.: Investigating algebraic and logical algorithms to solve Hopf bifurcation problems in algebraic biology. Math. Comput. Sci. 2(3), 493–515 (2009)

    Article  MathSciNet  Google Scholar 

  29. Wang, D., Xia, B.: Stability analysis of biological systems with real solution classification. In: Proceedings of ISSAC 2005, pp. 354–361. ACM Press (2005)

    Google Scholar 

  30. Wang, D.: Computing triangular systems and regular systems. J. Symbolic Comput. 30(2), 221–236 (2000)

    Article  MathSciNet  Google Scholar 

  31. Wang, D.: Elimination Methods. Springer, Vienna (2001). https://doi.org/10.1007/978-3-7091-6202-6

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenqi Mou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ju, W., Mou, C. (2021). Exploiting Variable Sparsity in Computing Equilibria of Biological Dynamical Systems by Triangular Decomposition. In: Martín-Vide, C., Vega-Rodríguez, M.A., Wheeler, T. (eds) Algorithms for Computational Biology. AlCoB 2021. Lecture Notes in Computer Science(), vol 12715. Springer, Cham. https://doi.org/10.1007/978-3-030-74432-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-74432-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-74431-1

  • Online ISBN: 978-3-030-74432-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics