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Abstract

Zero-shot learning deals with the ability to recognize objects without any visual training
sample. To counterbalance this lack of visual data, each class to recognize is associated with a
semantic prototype that reflects the essential features of the object. The general approach is
to learn a mapping from visual data to semantic prototypes, then use it at inference to classify
visual samples from the class prototypes only. Different settings of this general configuration
can be considered depending on the use case of interest, in particular whether one only wants
to classify objects that have not been employed to learn the mapping or whether one can
use unlabelled visual examples to learn the mapping. This chapter presents a review of the
approaches based on deep neural networks to tackle the ZSL problem. We highlight findings
that had a large impact on the evolution of this domain and list its current challenges.

1 Introduction

The core problem of supervised learning lies in the ability to generalize the prediction of a model
learned on some samples seen in the training set to other unseen samples in the test set. A key
hypothesis is that the samples of the training set allow a fair estimation of the distribution of
the test set, since both result from the same independent and identically distributed random
variables. Beyond the practical issues linked to the exhaustiveness of the training samples,
such a paradigm is not adequate for all needs, nor reflects the way humans seem to learn and
generalize. Despite the fact that, to our knowledge, nobody has seen a real dragon, unicorn
or any beast of the classical fantasy, one could easily recognize some of them if met. Actually,
from the single textual description of these creatures, and inferring from the knowledge of
the real wildlife, there exist many drawings and other visual representations of them in the
entertainment industry.

Zero-shot learning (ZSL) addresses the problem of recognizing categories of the test set
that are not present in the training set [LEBO0S| [LNH09, PPHMO09, [FEHF09]. The categories
used at training time are called seen and those at testing time are unseen, and contrary to
classical supervised learning, not any sample of unseen categories is available during training.
To compensate this lack of information, each category is nevertheless described semantically
either with a list of attributes, a set of words or sentences in natural language. The general
idea of ZSL is thus to learn some intermediate features from training data, that can be used
during the test to map the sample to the unseen classes. These intermediate features can reflect
the colors or textures (fur, feathers, snow, sand...) or even some part of objects (paws, claws,
eyes, ears, trunk, leaf...). Since such features are likely to be present in both seen and unseen
categories, and one can expect to infer a discriminative description of more complex concepts
from them (e.g. some types of animals, trees, flowers...), the problem becomes tractable.

*This is a preprint of the following chapter: Yannick Le Cacheux, Hervé Le Borgne, Michel Crucianu, Zero-shot
Learning with Deep Neural Networks for Object Recognition, published in Multi-faceted Deep Learning: Models and
Data, edited by Jenny Benois-Pineau, Akka Zemmari, 2021, Springer reproduced with permission of Springer. The
final authenticated version is available online at: http://dx.doi.org/
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Figure 1: Hlustration of a basic ZSL model, with two seen classes for and zebra, and two unseen
classes horse and tiger. Each class is represented by a 3-dimensional semantic prototype corre-
sponding to attributes “has stripes”, “is orange” and ‘“has hooves”. During the training phase, the
model learns the relations between the visual features and the attributes using the seen classes.
During the evaluation phase, the model estimates the attributes for each test image and predicts
the unseen class having the closest prototype.

2 Formalism, Settings and Evaluation

2.1 Standard ZSL setting

Formally, let us note the set of seen classes C° and that of unseen classes CY. The set of all
classes is C = CS UCY, with ¢S n¢cY = 0.

For each class ¢ € C, semantic information is provided. It can consist of binary attributes,
such as “has stripes”, “is orange” and “has hooves”. With this example, the semantic repre-
sentation of the class tiger would be (1 1 0)7, while the representation of class zebra would be
(10 l)T. For a given class ¢, we write its corresponding semantic representation vector s.; such
a vector is also called the class prototype. The prototypes of all classes have the same dimension
K, and represent the same attributes. More generally, the semantic information does not have
to consist of binary attributes, and may not correspond to attributes at all. More details on
the most common types of prototypes are provided in Section [

For each class ¢, a set of images is available. One can extract a feature vector x; €
R? from an image, usually using a pre-trained deep neural networksuch as VGG [SZ14] or
ResNet [HZRS16]. In the latter case, the feature vector of an image corresponds to the internal
representation in the network after the last max-pooling layer, before the last fully-connected
layer. It is of course also possible to train a deep network from scratch on the available training
images. In the following, we will refer to an image, a sample of a class or its feature vector
with this unique notation x.

During the training phase, the model has only access to the semantic representations of
seen classes {s.}.c¢s and to N images belonging to these classes. Hence, the training dataset
is D" = ({(XnsYn) }neqi,N] {Sc teccs ), Where y, € CS is the label of the n™ training sample.
During the testing phase, the model has access to the semantic representations of unseen classes
{Se'}erecu, and to the N’ unlabeled images belonging to unseen classes {X,’}n/eqi,n7)- The
objective for the model is to make a prediction §,, € CY¥ for each test image x', assigning it
to the most likely unseen class.

As a first basic example, a simple ZSL model may consist in simply predicting attributes
§ corresponding to an image x such that § = w'x; the parameters w can be estimated on
the training set D' using a least square loss. To make predictions, we can simply predict the
unseen class ¢ whose attributes s. are closest to the estimated attributes § as measured by a
euclidean distance. Such a model is illustrated in Fig. |1} and will be presented in more details
in Section B.11



More generally, most ZSL methods in the literature are based on a compatibility function
f : RP x RE — R assigning a “compatibility” score f(x,s) to a pair composed of a visual
sample x € RP and a semantic prototype s € R¥, that reflects the likelihood that x belongs
to class ¢ (if s is s.). This function may be parameterized by a vector w or a matrix W, or by
a set of parameters {w;};, leading to the notation fw(x,s) or f(x,s;{w;}:;) in the following.
These parameters are generally learned by selecting a suitable loss function £ and minimizing
the total training loss L, over the training dataset DY with respect to the parameters w:

La(D) = 37 37 Ll ynrso). ful + QU] 1)

n=1cecs

where Q[f] is a regularization penalty based on f and weighted by A. Once the model learned,
the predicted label § of a test image x can be selected among candidate testing classes based
on their semantic representations {sc}.cou:

§J = argmax fuw(xX,sc) (2)
cecU
In the standard setting of ZSL, the only data available during the training phase consists
of the class prototypes of the seen classes and the corresponding labeled visual samples. The
class prototypes of unseen classes, as well as the unlabeled instances from these unseen classes,
are only provided during the testing phase, after the model was trained. Moreover, the test
samples for which we make predictions only belong to these unseen classes.

2.2 Alternative ZSL Settings

When class prototypes of both seen and unseen classes are available during the training phase,
[WZYM109] considers it as a class-transductive setting, as opposed to the standard setting that
is class-inductive, when unseen class prototypes are only made available after the training of
the model is completed. In a class-transductive setting, the prototypes of unseen classes can for
example be leveraged by a generative model, which attempts to synthesize images of objects
from unseen classes based on their semantic description (Section . They can also simply
be used during training to ensure that the model does not misclassify a sample from a seen
class as a sample from an unseen class. An access to this information as early as the training
phase may be legitimate for some use-cases but new classes cannot be added as seamlessly as
in a class-inductive setting, in which a new class can be introduced by simply providing its
semantic representation (without any retraining).

A more permissive setting allows to consider that unlabeled instances of unseen classes
are available during training. Such a setting is called instance-transductive in [WZYMT9], as
opposed to the instance-inductive setting. These two settings are often simply referred to as
respectively transductive and inductive, even though there is some ambiguity on whether the
(instance-)inductive setting designates a class-inductive or a class-transductive setting. Some
methods use approaches which specifically take advantage of the availability of these unla-
beled images, for example by extracting additional information on the geometry of the visual
manifold [FYH'15]. Even though models operating in and taking advantage of a transduc-
tive setting can often achieve better accuracy than models designed for an inductive setting,
one can argue that such a setting is not suitable for many real-life use cases. With a few
exceptions [LG15], most transductive approaches consider that the actual (unlabeled) testing
instances are available during the training phase, which excludes many practical applications.
Even without this strong assumption, it is not always reasonable to expect to have access to
unlabeled samples from many unseen classes during the training phase. One may further argue
that this is all the more unrealistic as there is some evidence [XSSA19] that labeling even a sin-
gle instance per class (in a “one-shot learning” scenario) can lead to a significant improvement
in accuracy over a standard ZSL scenario.

In some settings, the available information itself can be different from the default setting.
For example, in addition to the semantic prototypes, some methods make use of relations
between classes defined with a graph [WYGIS| [KCL"19] or a hierarchical structure [RSS1I].
Others make use of information regarding the environment of the object, for example by detect-
ing surrounding objects [ZBS™19] or by computing co-occurence statistics using an additional
multilabel dataset [MGS14]. Other methods consider that instead of a semantic representation
per class, a semantic representation per image is available, for example in the form of text
descriptions [RALS16] or human gaze information [KASBI17].



Another classification of ZSL settings is concerned with which classes have to be recognized
during the testing phase. Indeed, one may legitimately want to recognize both seen and unseen
classes. The setting in which testing instances may belong to both seen and unseen classes is
usually called generalized zero-shot learning (GZSL) and has been introduced by [CCGSI16b].
Approaches to extend ZSL to GZSL can be divided into roughly two categories: (1) approaches
which explicitly try to identify when a sample does not belong to a seen class, and use either a
standard classifier or a ZSL method depending on the result, and (2) approaches that employ
a unified framework for both seen and unseen classes.

In [SGMNT13], the authors explicitly estimate the probability g.(x) = P(y € CY|x) that a
test instance x belongs to an unseen class ¢ € CY. They first estimate the class-conditional
probability density p(x|c) for all seen classes ¢ € CS, by assuming the projections §(x) of visual
features in the semantic space are normally distributed around the semantic prototype s.. We
can then consider that an instance x does not belong to a seen class if its class-conditional
probability is below a threshold ~ for all seen classes:

gu(x) = 1[Ve € C°, p(x|e) <] 3)

If one sees the compatibility f(x,s.) as the probability that the label of visual instance x
is ¢, i.e. P(y = ¢|x) «x f(x,sc), the compatibilities of seen and unseen classes can be weighted
by the estimated probabilities that x belongs to a seen or unseen class.

Most recent GZSL methods [VAMRI8, XLSA18D, [CCGS20] adopt a more direct approach:
the unweighted compatibility function f is used to directly estimate compatibilities of seen and
unseen classes, so that we simply have

g = argmax f(x,sc) (4)
cecSucH

This approach has the advantage that using a trained ZSL model in a GZSL setting is straight-
forward, as all there is to do is adding the seen class prototypes to the list of prototypes
whose compatibility with x needs to be evaluated. However, it has been empirically demon-
strated [CCGS16b| XSATI7] that many ZSL models suffer from a bias towards seen classes.
With the example of Fig. |1} many models would thus tend to consider zebras as “weird” horses
rather than members of a new, unseen class. To address this problem, a straightforward so-
lution consists in penalizing seen classes to the benefit of unseen classes by decreasing the
compatibility of the former by a constant value ~, similarly to Equation In [LCLBC19a]
was put forward a simple method to select a suitable value of v based on a training-validation-
testing split specific to GZSL, which enabled a slight reduction in the accuracy on seen classes
to result in a large improvement of the accuracy on unseen classes, thus significantly improving
the GZSL score of any model.

Other even less restrictive tasks may be considered during the testing or application phase.
For instance, one may want a model able to answer that a visual instance matches neither a seen
nor an unseen class. Or one may aim to recognize entities that belong to several non-exclusive
categories, a setting known as multilabel ZSL [MGS14l [FYH™ 15, [LEYFWTS]. Other works
are interested in the ZSL setting applied to other tasks such as object detection [BSS™18] or
semantic segmentation [XCH'19).

2.3 ZSL Evaluation

Most of the (G)ZSL works to date address a classification task on mutually exclusive classes,
thus the performance is evaluated with a classification rate. The standard accuracy nevertheless
computes the score per sample (micro-average accuracy). Although many publicly available
7ZSL datasets [WBW™ 11, [LNHT4] have well-balanced classes, other datasets or use cases do not
necessarily exhibit this property. [XSA1T] therefore proposed to compute the score per class
(macro-average accuracy) and most recent works adopted this metric.

For GZSL the performance measure is a more subtle issue. Of course, using y, € CSUCY for
each of the N testing instances, the micro and macro average accuracy can still be employed.
However, this does not always provide the full picture regarding the performance of a (G)ZSL
model: assuming per class accuracy is used and 80% of classes are seen classes, a perfect
supervised model could achieve 80% accuracy with absolutely no ZSL abilities. This is all the
more important as many GZSL models suffer from a bias towards seen classes, as mentioned
previously.

To take the trade-off between seen and unseen classes into account, performance is often
measured separately on each type of classes. Chao et al. [CCGS16Db] defined Ay—u as the



CcuB AwWA2

ImageNet

Figure 2: Images from the standard ZSL benchmarks AwA (top), CUB (middle) and ImageNet
(bottom,).

(per class) accuracy evaluated only on test instances of unseen classes when candidate classes
are the unseen classes CY. Also, Ay_sc is the accuracy evaluated on test instances of unseen
classes when candidate classes are all classes C, seen and unseen. Then As_s and As_¢
are defined correspondingly. Before the GZSL setting, test classes were all unseen classes so
the (per-class) accuracy was Ay—u. As—s corresponds to what is measured in a standard
supervised learning setting. Ac—c¢ would correspond to the standard per class accuracy in a
GZSL setting. Ay—c and As_,c respectively measure how well a GZSL model is performing
on respectively seen and unseen classes. [XSAIT] proposes to use the harmonic mean as a
trade-off between the two, to penalize models with a high score in one of these two sub-
tasks but low performance in the other. This measure is the most commonly employed in the
recent GZSL literature IMYXF20]. It can be noted that this
metric requires to keep some instances from seen classes for the testing phase for a given ZSL
benchmark dataset. When this is not convenient, for instance if the number of training samples
per class is really small or datasets suffer from biases (see Sec. , sometimes only Ay ¢ is
evaluated [HATT9] in order to still provide some measure of GZSL performance. Alternatively,
[CCGS16b] introduced calibrated stacking, where a weight «y is used as a trade-off between
favoring Ay—c (when v > 0) and As_¢ (when v < 0):

§ = argmax f(x,s.) —v1[c € C°] (5)
ceC
[CCGS16D] defined the Area Under Seen-Unseen accuracy Curve (AUSUC) as the area under
the curve of the plot with Ay ¢ on the z-axis and As—_¢ on the y-axis, when v goes from —oo
to +o00. Similarly to the area under a receiver operating characteristic curve, the AUSUC can
be used as a metric to evaluate the performance of a GZSL model.

2.4 Standard ZSL datasets and evaluation biases

We briefly describe a few datasets commonly used to benchmark ZSL models, provide the
rough accuracy obtained on these datasets by mid-2020 and mention a few common biases to
avoid when measuring ZSL accuracy on such benchmarks. Some examples of typical images
from these datasets are shown in Fig. [2l The dataset list is by no means exhaustive, as many
other ZSL evaluation datasets can be found in the literature.

Animals with Attributes or AwA [LNHI4] is one of the first proposed benchmarks
for ZSL [LNHO9]; it has recently been replaced by the very similar AwA2 [XLSATRa] due
to copyright issues on some images. It consists of 37322 images of 50 animal species such as
antelope, grizzly bear or dolphin, 10 of which are being used as unseen test classes, the rest being
seen training classes. Class prototypes have 85 binary attributes such as brown, stripes, hairless
or claws. As mentioned in Sec. 2] visual features are typically extracted from images using
a deep network such as ResNet pre-trained on a generic dataset like ImageNet. As evidenced
in [XSAT7], this can induce an important bias on the AwA2 dataset. Indeed, 6 of the 10 unseen



test classes are among the 1000 classes of ImageNet used to train the ResNet model; thus, such
classes cannot be considered as truly “unseen”. In [XSAIT] it is therefore proposed to employ
a different train / test split, called the proposed split, such that no unseen (test) class is present
among the 1000 ResNet training classes. This setting has been widely adopted by the ZSL
community. Recent ZSL models in a standard ZSL setting can reach an accuracy of around
71% [XSSA19| on the 10 test classes of this proposed split.

Caltech UCSD Birds 200-2011 or CUB [WBW"11] is referred to as a “fine-grained”
dataset, as its 200 classes all correspond to bird species (black footed albatross, rusty blackbird,
eastern towhee...) and are considered to be fairly similar (Fig. [2). Fifty classes are used as
unseen testing classes; similarly to AwA2, the standard train / test split has been proposed in
[XSAT17]. The class prototypes consist of 312 usually continuous attributes with values between
0 and 1. Examples of attributes include “has crown color blue”; “has nape color white” or “has
bill shape cone”. Recent models can reach a ZSL accuracy of around 64% [LCLBCIO9b] on the
50 test classes.

The ImageNet [DDS™09] dataset has also been used as a large-scale ZSL benchmark [RSS11].
Contrary to AwA or CUB, the usual semantic prototypes do not consist of attributes but rather
of word embeddings of the class names — more details are provided in Sec. El This dataset con-
tains classes as diverse as coyote, goldfish, lipstick or speedboat. The training classes usually
consist of the 1000 classes of the ILSVRC challenge [RDS'15|. In the past, the approximately
20,000 remaining classes were used as unseen test classes. However, [HAT19] recently showed
that this induces a bias, in part due to the fact that unseen classes are often subcategories
or supercategories of seen classes. The authors suggested instead to use only a subset of 500
of the total unseen classes such that they do not exhibit this problem. The best ZSL models
in [HATT9] can reach an accuracy of around 14% on these 500 test classes; the fact that this
accuracy is significantly lower than on the other two datasets can be attributed to the much
larger number of classes, but also to the lower quality of the semantic prototypes (Sec. .

3 Methods

There exist several surveys of the ZSL literature, each with its own classification of existing
approaches [XLSAT8al, [FXJ"18, WZYMT9]. Here we separate the state of the art into three
main categories: regression methods (Section, ranking methods (Section and generative
methods (Section. We start by presenting the most simple methods which can be considered
as baselines. Sometimes, the methods described below are slightly different from their initial
formulation in the original articles, for the sake of brevity and simplicity. We aim at giving a
general overview with the strengths, weaknesses and underlying hypotheses of these types of
methods, not to dive deep into specific implementation details. As well, we mainly address the
GZSL and standard ZSL settings, since they are the most easily applicable to real use-cases.

The Direct Attribute Prediction or DAP [LNHQ9] approach consists in training K
standard classifiers which provide the probability P(ax|x) that attribute ay is present in visual
input x. At test time, we predict the class ¢ which maximizes the probability to have attributes
corresponding to its class prototype s.. Assuming deterministic binary attributes, identical
class priors P(c), uniform attribute priors and independence of attributes, we have:

argmax P(c|x) = argmax H P(ar = (sc)r|x) (6)

cecH cec

Similar results may be obtained with continuous attributes by using probability density func-
tions and regressors instead of classifiers. The Indirect Attribute Prediction or IAP was
also proposed in [LNHO09] and is very close to DAP. A notable difference is that it does not
require any model training beyond a standard multi-class classifier on seen classes, and in par-
ticular does not require any training related to the attributes. As such, it enables to seamlessly
convert any pre-trained standard supervised classification model to a ZSL setting provided a
semantic representation is available for each seen and unseen class. In Equation @, writing
P(ak|x) as P(ak|c)P(c|x) and considering that P(c|x) for seen classes can be obtained using
any supervised classifier trained on the training dataset on the one hand, and P(ak|c) is 1 if
ar = (sc)x and 0 otherwise on the other hand, we finally have:

§ = argmax H Z P(d|x) (7)
c’ecs
(sc)p=(s.r )k



Similarly to IAP, a method based on Convex Semantic Embeddings, or ConSE [NMB™14],
relies only on standard classifiers and can be used to adapt pre-trained standard models to a
ZSL setting without any further training. Given a visual sample x, we estimate its semantic
representation §(x) € RX as a convex combination of the semantic prototypes sz of the best
predictions é(x) for x, each prototype being weighted by its classification score. For a test
instance x, we can then simply predict § as the class whose class prototype is the closest
to the estimated semantic representation as measured with cosine similarity. We can notice
that contrary to DAP and IAP, ConSE does not make any implicit assumption regarding the
nature of the class prototypes, and can be used with semantic representations having binary
or continuous components. It is also interesting to note that if the convex combination is
restricted to one prototype, this method is equivalent to simply finding the best matching seen
class to the (unseen) test instance x and predicting the unseen class whose prototype is closest
to the prototype of the best matching seen class.

3.1 Ridge Regression Approaches

One simple approach to ZSL is to view this task as a regression problem, where we aim to
predict continuous attributes from a visual instance. Linear regression is a straightforward
baseline. Given a visual sample x and the corresponding semantic representation s, we aim to
predict each semantic component s, of s as §; = W} X, so as to minimize the squared difference
between the prediction and the true value (8 — sk)2, wi € RP being the parameters of the
model. If we write W = (wrq, ... 7WK)T € REXP we can directly estimate the entire prototype
with § = Wx. We can also directly compare how close § is to s with |[§—s||5 = >, (8x—sk)”. As
with a standard linear regression, we determine the optimal parameters W by minimizing the
error over the training dataset D™. Let us note X = (x1,..., xN)T € RY*P the matrix whose
N lines correspond to the visual features of training samples, and T = (tq,... ,1:1\1)T e RVXK
that containing the class prototypes associated to each image so that t, = s,,. To simplify
notations, we denote ||-||2 both the 2 norm when applied to a vector and the Frobenius norm
when applied to a matrix. The loss can then be expressed in matrix form and regularized with
an /2 penalty on the model parameters weighted by a hyperparameter \:

1
SIXWT T3 4 AW (®)
Such a loss has a closed-form solution, which directly gives the value of the optimal parameters:
W=T"X(X"X+ANIp)™" (9)

At test time, given an image x belonging to an unseen class, we estimate its corresponding
semantic representation § = Wx and predict the class with the closest semantic prototype.
Note that it’s also possible to use other distances or similarity measures such as a cosine
similarity during the prediction phase.

The Embarrassingly Simple approach to Zero-Shot Learning [RPT15], often ab-
breviated ESZSL, makes use of a similar idea with a few additional steps. Similarly, the
projection t, = Wx,, of an image x,, should be close to the expected semantic representations.
This last similarity is nevertheless estimated by a dot product t, t, that should be close to
1 for the ground truth ¢, = sy, and to —1 for the prototypes of other classes. Considering
the matrix Y € {-1, 1}N %Y that is 1 on line n and column y, and —1 everywhere else, and
S =(s1,...,80)" € RICT XK
to minimize is

the matrix that contains the prototypes of seen classes, the loss
LIXWTST —Y|5. In [RPTI5], it is further regularized such that visual fea-
tures projected on the semantic space, XW ', have similar norms to allow for fair comparison,
and similarly for the semantic prototypes projected on the visual space W'ST. Adding an £2
penalty on the model parameters, we have:

1 A
SIXWTST = Y5+ WTST [} + T IXW [ + AW (10)

A and « being hyperparameters controlling the weights of the different regularization terms.
The minimization of this expression also leads to a closed-form solution:

W =(S'S+ANIk) 'STY X(X X +yNIp)~* (11)

Instead of aiming to predict the class prototypes s from the visual features x, we can consider
predicting the visual features from the class prototypes’ features. Each visual dimension



is expressed as a linear combination of prototypes such that we can estimate the “average”
visual representation associated with prototype s with x = W 's. The distances between the
observations and our predictions are then computed in the visual space by minimizing the
distance ||x,, — X,||? between the sample x,, and the predicted visual features X, = W 's,_
of the corresponding semantic prototype sy, . The resulting regularized loss +||X — TW]||3 +
AW |3 also has a closed-form solution:

W = (T'T+ANIx) 'T'X (12)

The label of a test image x is then predicted through a nearest-neighbor search in the visual
space. Although this approach is very similar to previous ones, it turns out that projecting
semantic objects to the visual space has an advantage. Like other machine learning methods,
ZSL methods can be subject to the hubness problem [RNIL0], which describes a situation where
certain objects, referred to as hubs, are the nearest neighbors of many other objects. In the
case of ZSL, if a semantic prototype is too centrally located, if may be the nearest neighbor
of many projections of visual samples into the semantic space even if these samples belong to
other classes, thus leading to incorrect predictions and decreasing the performance of the model.
When using ridge regression for ZSL, it has been verified experimentally [LDBI5] ISSH™ 15| that
this situation tends to happen. However, [SSHT15] shows that this effect is mitigated when
projecting from the semantic to the visual space, compared to the opposite situation. It should
be noted that the hubness problem does not occur exclusively when using ridge regression, and
more complex ZSL methods such as [ZXG17] make use of the findings of [SSH™15].

The semantic autoencoder (SAE) [KXG17] approach can be seen as a combination of the
two ridge regression projections, from the semantic space to the visual one and the opposite.
The idea consists in first encoding a visual sample by linearly projecting it onto the semantic
space and then decoding it by projecting the result into the visual space again. Contrary to the
previous proposals, there is no immediate closed-form solution to this problem. However, it
can be expressed as a Sylvester equation and a numerical solution can be computed efficiently
using the Bartels-Stewart algorithm [BS72]. During the testing phase, predictions can be made
either in the semantic space or in the visual space.

All previous methods project linearly from one modality (visual or semantic) to the other,
but they can be adapted to non-linear regression methods, as proposed by Cross-Modal
Transfer or CMT [SGMNI13]. It consists in a simple fully-connected, 1-hidden layer neural
network with hyperbolic tangent non-linearity, which is used to predict semantic prototypes
from visual features. Equation can therefore be re-written as

1
¥ 2 ltn = Watanh(Wix,) 3 (13)

W, € REXP and Wy € REXH being the parameters of the model, and H the dimension of the
hidden layer which is a hyperparameter. Similar or more complex adaptations can easily be
made for other methods. The main drawback of such non linear projections compared to the
linear methods presented earlier is that there is no general closed-form solution, and iterative
numerical algorithms must be used to determine suitable values for the parameters.

3.2 Triplet-loss Approaches

Triplet loss methods make a more direct use of the compatibility function f. The main idea
behind these methods is that the compatibility of matching pairs should be much higher than
the compatibility of non-matching pairs. More specifically, given a visual sample x with label
y, we expect that its compatibility with the corresponding prototype s, should be much higher
than its compatibility with s., the prototype of a different class ¢ # y. How “much higher”
can be more precisely defined through the introduction of a margin m, such that f(x,sy) >
m + f(x,s.). To enforce this constraint, we can penalize triplets (x,sy,s.), ¢ # y, for which
this inequality is not true, using the triplet loss

Etriplet (X7 Sc, Sy; f) = [m + f(xv SC) - f(X7 Sy)bﬁ (14)

where [-]+ = max(0,-). This way, for a given triplet (x,sy,S.), ¢ # y, the loss is 0 if f(x,s.) is
much smaller than f(x,sy), and is all the higher as f(x,s.) gets close to, or surpasses f(x,sy).
In general, it is not possible to derive a solution analytically for methods based on a triplet
loss, so we must resort to the use of numerical optimization.



In many triplet loss approaches to ZSL, the compatibility function f is simply defined
as a bilinear mapping between the visual and semantic spaces parameterized by a matrix
W € RP*X 50 that f(x,s) = x' Ws. This compatibility function is actually the same as
with ESZSL, even though the loss function used to learn its parameters W is different. The
Deep Visual-Semantic Embedding model or DeViSE [FCS™13| is one of the most direct
applications of a triplet loss with a linear compatibility function to ZSL: the total loss is simply
the sum of the triplet loss over all training triplets (xn, Sy,,,Sc), ¢ # ¥:

N
[ftr Dtr = Z Z m-‘r f ansc) - f(Xnvsyn)]+ (15)

n=1cecS
cFYn

DeViSE can also be viewed as a direct application of the Weston-Watkins loss [WW™'99| to
ZSL. Tt can be noted that the link with the generic loss framework in Equation is this time
quite straightforward, as with many triplet loss methods. Although no explicit regularization
Q on f is mentioned in the original publication — even though the authors make use of early
stopping in the gradient descent — it is again straightforward to add an ¢2 penalty. The
Structured Joint Embedding approach, or STE [ARW ™ 15|, is fairly similar to DeViSE. It
is inspired by works on structured SVMs [THJA04] [TTHA05], and makes use of the Cramer-
Singer loss [CS01] for multi-class SVM. Applied to ZSL, this means that only the class which
is violating the triplet-loss constraint the most is taken into account for each sample. In our
case, this results in:

L (DY) = Zmax [m + f(Xn,8e) = f (Xn,8y,)]+) (16)

=
The Attribute Label Embedding approach or ALE [APHS13], [APHS15] considers the ZSL
task as a ranking problem, where the objective is to rank the correct class ¢ as high as possible
on the list of candidate unseen classes. From this perspective, we can consider that SJE only
takes into account the top element of the ranking list provided the margin m is close to 0. By
contrast, DeViSE penalizes all ranking mistakes: given labeled sample (x,y), for all classes ¢
mistakenly ranked higher than y, we have f(x,s.) > f(x,sy) which contributes to the loss.
The ALE approach aims to be somewhere in between these two proposals, so that a mistake on
the rank when the true class is close to the top of the ranking list weighs more than a mistake
when the true class is lower on the list.

Similarly to CMT in the previous section, all triplet-loss models can be extended to the
nonlinear case. Such an extension is even more straightforward as this time, having no closed-
form solution, all models require the use of numerical optimization. One such example of a
nonlinear model worth describing due to its historical significance and still fair performance is
the Synthesized Classifiers approach, or SynC [CCGS16al [CCGS20]. Based on a manifold
learning framework, it aims to learn phantom classes in both the semantic and visual spaces,
so that linear classifiers for seen and unseen classes can be synthesized as a combination of such
phantom classes. More precisely, the goal is to synthesize linear classifiers w. in the visual space
such that the compatibility between image x and class ¢ can be computed with f(x,s.) = w, x.
The prediction is then § = argmax w/ x. Let us note respectively {Xp }pep1,p] and {8p}peqi,p)

(&

the P phantom classes in the respective visual and semantic spaces. These phantom classes
are learned and constitute the parameters of the modeﬂ Each visual classifier is synthesized
as a linear combination of visual phantom classes w. = 25:1 Ve,p Xp. The value of each
coefficient v.p is set so as to correspond to the conditional probability of observing phantom
class $, in the neighborhood of real class s. in the semantic space. Following works on manifold
learning [HR03, [MHO0S§], this can be expressed according to s. and s,. The parameters of the
model, i.e. the phantom classes {(Xp,Sp)}p, can be estimated by making use of the Crammer-

LA number of simplifications were made for the sake of clarity and brevity: in the original article [CCGS16a],
phantom classes are actually sparse linear combinations of semantic prototypes, vc,p can further use Mahalanobis
distance, other losses such as squared hinge loss can be employed instead of the Crammer-Singer loss, Euclidean dis-
tances between semantic prototypes can be used instead of a fixed margin in the triplet loss, additional regularization
terms and hyperparameters are introduced, and optimization between {}?p}p and {§p}p is performed alternatingly.



Singer loss, with adequate regularization to obtain the following objective:

N
I | T T
minimize — E max ( [m+ w. Xn — Wy, Xn]y ) +

*’ * ) ecs
Gposp)de Y 5 0557

P
A Iwell® + D lIs |
p=1

cecs

(17)

where A and ~ are hyperparameters. It is interesting to note that ALE can actually be consid-
ered as a special case of SynC, where the classifiers are simply a linear combination of semantic
prototypes.

Recently, [LCLBCI9b] showed that modifications to the triplet loss could enable models
obtained with this loss to reach (G)ZSL accuracy competitive with generative models (Sec. .
Such modifications include a margin that depends on the similarity between s, and s¢ in
Equation so that confusions between very similar classes are not penalized as much as
confusions between dissimilar classes during training, as well as a weighting scheme that makes
“representative” training samples have more impact than outliers.

3.3 Generative Approaches

Generative methods applied to ZSL aim to produce visual samples belonging to unseen classes
based on their semantic description; these samples can then be used to train standard classifiers.
Partly for this reason, most generative methods directly produce high-level visual features, as
opposed to raw pixels — another reason being that generating raw images is usually not as
effective [XLSAI8Db|. Generative methods have gained a lot of attention in the last few years:
many if not most recent high-visibility ZSL approaches [VAMRIS, XLSA18Db| [XSSA19] rely on
generative models. This is partly because such approaches have interesting properties, which
make them particularly suitable to certain settings such as GZSL. However, a disadvantage is
that they can only operate in a class-transductive setting, since the class prototypes of unseen
classes are needed to generate samples belonging to these classes; contrary to methods based on
regression or explicit compatibility functions, at least some additional training is necessary to
integrate novel classes to the model. We divide generative approaches into two main categories:
methods generating a parametric distribution, which consider visual samples follow a standard
probability distribution such as a multivariate Gaussian and attempt to estimate its parameters
so that visual features can be sampled from this distribution, and non-parametric methods,
where visual samples are directly generated by the model.

Methods based on parametric distributions assume that visual features for each class follow
a standard parametric distribution. For example, one may consider that for each class c,
visual features are samples from a multivariate Gaussian with mean p, € R” and covariance
3. € RP*P | such that for samples x from class ¢ we have p(x; ., Zc) = N (x|, Ze). If
one can estimate g and X for unseen classes, it is possible to generate samples belonging to
these classes. Zero-shot recognition can then be performed by training a standard multi-class
classifier on the labeled generated samples.

Alternatively, knowing the (estimated) distribution of samples from unseen classes, one
may determine the class of a test visual sample x using maximum likelihood or similar meth-
ods [VR17]:

g = argmax p(x; p., Xc) (18)
cec

Other approaches [XLSA18b] also propose to further train a ZSL model based on an explicit
compatibility function using the generated samples and the corresponding class prototypes, and
then perform zero-shot recognition as usually with Equation .

The Generative Framework for Zero-Shot Learning [VR17] or GFZSL assumes that
visual features are normally distributed given their class. The parameters of the distribution
(1., o2) (to simplify, we assume that . = diag(o2), with 62 € RTP) are easy to obtain for seen
classes ¢ € C° using e.g. maximum likelihood estimators, but are unknown for unseen classes.
Since the only information available about unseen classes consists of class prototypes, one can
assume that the parameters p, and o2 of class ¢ depend on class prototype s.. [VRI17] further
assumes a linear dependency, such that p, = WI sc and p, = log(af) = W/ s.. The models’
parameters W, € RX*P and W, € R *? can then be obtained with ridge regression, using
the class distribution parameters {(ft., p.)}.ccs estimated on seen classes as training samples.
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Similarly to previous approaches, this consists in minimizing ¢2-regularized losses, with closed-
form solutions. Noting M = (fi,...,ftc)" € R*P and R = (py,...,po)" € RO we
have:

W, =(S"S+\Ix)'S'™M (19)

W, =(S"S+\Ix) 'S'R (20)

We can thus predict parameters (fi., p.) for all unseen classes ¢ € CY, and sample visual features
of unseen classes accordingly. Predictions can then be made using either a standard classifier
or the estimated distributions themselves. [VR17] also extends this approach to include more
generic distributions belonging to the exponential family and non-linear regressors.

The Synthesized Samples for Zero-Shot Learning [GDHGI7] or SSZSL method
similarly assumes that p(x|c) is Gaussian, estimates parameters (u,3) for seen classes with
techniques similar to GFZSL and aims to predict parameters (ft, ﬁ]) for unseen classes. In
a way that reminds the ConSE method, the distributions parameters are estimated using a
convex combination of parameters from seen classes d, such that o = £ >, cs wap, and
6% = %> yees Waoy, with Z = 1Tw = 3, was. The model therefore has one vector param-
eter w. € RI€®l to determine per unseen class c. These last are set such that the semantic
prototype s from unseen class c is approximately a convex combination of prototypes from
seen classes, i.e. st® ~ STWC/ZC, while preventing classes dissimilar to st from being assigned
a large weight. This results in the following loss for unseen class c:

st — ST well3 + Aw, d. (21)

where each element (d.); of d. is a measure of how dissimilar E| unseen class ¢ is to seen class
i, and A is a hyperparameter. Minimizing the second term in Equation (21]) naturally leads to
assigning smaller weights to classes dissimilar to c. A closed-form solution can then be obtained
as:

A
2

The non parametric approaches do not explicitly make simplifying assumptions about
the shape of the distribution of visual features, and use powerful generative methods such as
variational auto-encoders (VAEs) [KW14] or generative adversarial networks (GANs) [GPAM™ 14]
to directly synthesize samples. Although these models are in principle able to capture complex
data distribution, they can prove to be hard to train [AB17, [PLH20a], and the resulting images
content difficult to control [PLH20D].

The Synthesized Examples for GZSL method [VAMRIS]|, or SE-GZSL, is based on a
conditional VAE [SLYT5|] architecture. It consists of two main parts: an encoder £(-) which
maps an input x to an R-dimensional internal representation or latent code z € R, and
a decoder D(-) which tries to reconstruct the input x from the internal representation. An
optional third part can be added to the model: a regressor R(-) which estimates the semantic
representation t of the visual input x. See Chapter 2 for more details on the VAE architecture.
To help the decoder to produce class-dependant reconstructed outputs, the corresponding class
prototype t, = sy, is concatenated to the representation z, for input x,.

Other approaches such as [MKRMMI18] consider that the encoder outputs a probability
distribution, assuming that the true distribution of visual samples is an isotropic Gaussian
given the latent representation, i.e. p(x|z,t) = N (x|u(z,t), o). In this case, the output
of the decoder should be X = p(z,t), and it can be shown that minimizing —log(p(x|z,t))
is equivalent to minimizing ||x — X||>. Furthermore, in [MKRMMIS]|, the class prototype is
appended to the visual sample as opposed to the latent code.

The authors of [VAMRIS] further propose to use the regressor R to encourage the de-
coder to generate discriminative visual samples. An example of such components consists in
evaluating the quality of predicted attributes from synthesized samples, and takes the form
L = —Fpxiz,6)pz)pt) [log(p(alX))]. The regressor itself is trained on both labeled training sam-
ples and generated samples, and the parameters of the encoder / decoder and the regressor
are optimized alternatingly. ~GAN [XLSA18b| is based on a similar approach, but makes use
of conditional GANs [MO14] to generate visual features. It consists of two parts: a discrim-
inator D which tries to distinguish real images from synthesized images, and a generator G
which tries to generate images that D cannot distinguish from real images. Both encoder and

we. = (8ST)"!(£d. — Ssl°) (22)

-1
te _otr)2
2In [GDHGIT], the authors use (d¢); = (exp 7\\56&7;1“ to measure how dissimilar unseen class ¢ is to

seen class i, where & is the mean value of the distances between any two prototypes from seen classes.
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decoder are multilayer perceptrons. The generator is similar to the decoder from the previous
approach in that it takes as input a latent code z € RT and the semantic representation s, of
a class ¢, and attempts to generate a visual sample % of class ¢: G : R x RE — RP. The
key difference is that the latent code is not the output of an encoder but consists of random
Gaussian noise. The discriminator takes as input a visual sample, either real or generated, of
a class c as well as the prototype s., and predicts the probability that the visual sample was
generated: D : RP x RE — [0,1]. G and D compete in a two-player minimax game, such that
the optimization objective is:

mén max Ep(x,y),p(z) [108(D(X, 8y)) + log(1 — D(G(2,8y), 8y))] (23)

The authors of [XLSA18b| further propose to train an improved Wasserstein GAN [ACB17,
GAA™17)], and similarly to [VAMRIS], they add another component to the loss to ensure that
generated features are discriminative, using a classification loss instead of a regression loss.
They call this extended approach f-CLSWGAN.

4 Semantic Features for Large Scale ZSL

In most of the work on ZSL, the semantic features s. were usually assumed to be vectors of
attributes such as “is red”, “has stripes” or “has wings”. Such attributes can either be binary
or continuous with values in [0, 1]. In the latter case, a value of 0.8 associated with the attribute
“is red” could mean that the animal or object is mostly red. But for a large-scale dataset with
hundreds or even thousands of classes, or an open dataset where novel classes are expected to
appear over time, it is impractical or even impossible to define a prior: all the useful attributes
and manually provide semantic prototypes based on these attributes for all the classes. It is all
the more time-consuming as fine-grained datasets may require hundreds of different attributes
to reach a satisfactory accuracy [LCPLB20].

For large-scale or open datasets it is therefore necessary to identify appropriate sources of
semantic information and means to extract this information in order to obtain relevant semantic
prototypes. In the case of ImageNet, readily available sources are the word embeddings of the
class names and the relations between them according to WordNet [Mil95], a large lexical
database of English that has been developed for many years by human efforts, but is now
openly available. Word embeddings are obtained in an unsupervised way and such embeddings
of the class names have been employed in ZSL as semantic class representations since [RSS11].
The word embedding model is typically trained on a large text corpus, such as Wikipedia, where
a neural architecture is assigned the task to predict the context of a given word. For instance,
the skip-gram objective [MSC'13| aims to find word representations containing predictive
information about the words occurring in the neighborhood of a given word. Given a sequence
{w1,...,wr} of T training words and a context window of size S, the goal is to maximize

> > log p(wiyilwr) (24)

Although deep neural architectures could be used for this task, it is much more common to use
a shallow network with a single hidden layer. In this case, each unique word w is associated
with an “input” vector v,, and an “output” vector vi,, and p(w;|w;) is computed such that

exp(vgi V)

S xp(V V) (25)

p(wilwe) =
The internal representation corresponding to the hidden layer, i.e. the input vector represen-
tation vy, can then be used as the word embedding. Other approaches such as [BGJMIT| or
[PSM14] have also been proposed.

Semantic information regarding ImageNet classes can also be provided by WordNet sub-
sumption relationships between the classes (or IS-A relations). They were obtained by several
methods, e.g. with graph convolutional neural networks, and employed for ZSL on ImageNet
with state-of-the-art results [WYGI8, [KCL"19]. However, as shown in [[IAT19], these results
are biased by the fact that in the traditional ImageNet ZSL split between seen and unseen
classes, the unseen classes are often subcategories or supercategories of seen classes. When the
ZSL split is modified so as to remove this bias, the WordNet graph-based embeddings lead to an
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accuracy of about 14% according to [HAT19]. However, although using word or graph embed-
dings can reduce the additional human effort required to obtain class prototypes to virtually
zero — pre-trained word embeddings can easily be found online — there still exists a large per-
formance gap between the use of such embeddings and manually crafted attributes [LCPLB20].
Such a difference may be due in part to the text corpora used to train the word embeddings.

The use of complementary sources to produce semantic class representations for ZSL relies
on the assumption that the information these sources provide reflects visual similarity rela-
tions between classes. However, the word embeddings are typically developed from generic
text corpora, like Wikipedia, that do not focus on the visual aspect. Also, the subsumption
relationships issued from WordNet and supporting the graph-based class embeddings represent
hierarchical conceptual relations. In both cases, the sought-after visual relations are at best
represented in a very indirect and incomplete way.

To address this limitation and include more visual information to build the semantic proto-
types, it was recently proposed to employ text corpora with a more visual nature, by construct-
ing such a corpus from Flickr tags [LCPLB20]. Following [PG11], the authors of [LCPLB20]
further suggested to address the problem of bulk tagging [OMI3] — users attributing the exact
same tags to numerous photos — by ensuring that a tuple of words (w;,w;) can only appear
once for each user during training, thus preventing a single user from having a disproportionate
weight on the final embedding. Also, [LCLBC20] suggested to exploit the sentence descriptions
of WordNet concepts, in addition to the class name embedding, to produce semantic represen-
tations better reflecting visual relations. Any of these two proposals allow to reach an accuracy
between 17.2 and 17.8 on the 500 test classes of the ImageNet ZSL benchmark with the linear
model from the semantic to the visual space (Section , compared to 14.4 with semantic
prototypes based on standard embeddings.

5 Conclusion and current challenges

Zero-shot learning addresses the problem of recognizing categories that are missing from the
training set. ZSL has grown from an endeavor of some machine learning and computer vision
researchers to find approaches that come closer to how humans learn to identify object classes.
It now aims to become a radical answer to the concern that the amount of labeled data grows
much slower than the volume of data in general, so supervised learning alone cannot produce
satisfactory solutions for many real-world applications.

Key to the possibility of recognizing previously unseen categories is the availability for all
categories, both seen and unseen, of more than just conventional labels. For each category
we should have complementary information (or features) reflecting the characteristics of the
modality used for recognition (visual if recognition is directed to images). The relation between
these features and the target modality can thus be learned from the seen categories and then
employed for recognizing unseen categories.

Most of the work on ZSL took advantage of the existence of some small or medium-size
datasets for which the complementary information, under the form of attributes, was devised
and manually provided to support the development of ZSL methods. However, in general
applications one has to deal with large and even open sets of categories, so other approaches
should be found for identifying associated sources of complementary information and exploiting
them in ZSL.

For the large ImageNet dataset several readily available complementary sources were found,
including word embeddings of class names, WordNet-based concept hierarchies including the
classes as nodes, and short textual definitions from WordNet. While this allowed to extend
ZSL methods to such large-scale datasets, the state-of-the-art accuracy obtained on the unseen
categories of ImageNet is yet disappointing. This is because the information provided by these
sources reflects mostly the conceptual relations and not so much the visual characteristics of
the categories. To go beyond this level of performance we consider that two important steps
should be taken. First, it is necessary to assemble large corpora including rather detailed
textual descriptions of the visual characteristics of a large number of object categories. Partial
corpora do exist in various domains (e.g. flora descriptions) and different languages. Second,
zero-shot recognition should rely on a deeper, compositional analysis (e.g. [PNGR19]) of an
image as well as on visual reasoning.

13



References

[AB17)
[ACB17]

[APHS13]

[APHS15]

[ARWT15]

[BGJIML17]

[BS72]

[BSST18]

[CCGS16a]

[CCGS16b)

[CCGS20]

[CS01]

[CZXT18]

[DDS*09]

[FCSt13)

[FEHF09)]

[FXJ*18]

[FYH"15]

Martin Arjovsky and Léon Bottou. Towards principled methods for training
generative adversarial networks. arXiv preprint arXiv:1701.04862, 2017.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein GAN. arXiv
preprint arXiw:1701.07875, 2017.

Zeynep Akata, Florent Perronnin, Zaid Harchaoui, and Cordelia Schmid. Label-
embedding for attribute-based classification. In Computer Vision and Pattern
Recognition, pages 819-826, 2013.

Zeynep Akata, Florent Perronnin, Zaid Harchaoui, and Cordelia Schmid. Label-
embedding for image classification. IEEE T. Pattern Analysis and Machine
Intelligence, 38(7):1425-1438, 2015.

Zeynep Akata, Scott Reed, Daniel Walter, Honglak Lee, and Bernt Schiele. Eval-
uation of output embeddings for fine-grained image classification. In Computer
Vision and Pattern Recognition, 2015.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enrich-
ing word vectors with subword information. Transactions of the Association for
Computational Linguistics, 5:135—146, 2017.

Richard H. Bartels and George W Stewart. Solution of the matrix equation
AX+ XB= C [F4]. Communications of the ACM, 15(9):820-826, 1972.

Ankan Bansal, Karan Sikka, Gaurav Sharma, Rama Chellappa, and Ajay Di-
vakaran. Zero-shot object detection. In Furopean Conference on Computer
Vision, 2018.

Soravit Changpinyo, Wei-Lun Chao, Boqging Gong, and Fei Sha. Synthesized
classifiers for zero-shot learning. In Computer Vision and Pattern Recognition,
pages 5327-5336, 2016.

Wei-Lun Chao, Soravit Changpinyo, Boqing Gong, and Fei Sha. An empirical
study and analysis of generalized zero-shot learning for object recognition in the
wild. In Furopean Conference on Computer Vision, pages 52—68. Springer, 2016.

Soravit Changpinyo, Wei-Lun Chao, Boqging Gong, and Fei Sha. Classifier and
exemplar synthesis for zero-shot learning. International Journal of Computer
Vision, 128(1):166-201, 2020.

Koby Crammer and Yoram Singer. On the algorithmic implementation of mul-
ticlass kernel-based vector machines. Journal of Machine Learning Research,
2(Dec):265-292, 2001.

Long Chen, Hanwang Zhang, Jun Xiao, Wei Liu, and Shih-Fu Chang. Zero-shot
visual recognition using semantics-preserving adversarial embedding networks.
In Computer Vision and Pattern Recognition, pages 1043-1052, 2018.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE conference on computer
vision and pattern recognition, pages 248-255. Ieee, 2009.

Andrea Frome, Greg S. Corrado, Jon Shlens, Samy Bengio, Jeff Dean, Tomas
Mikolov, et al. Devise: A deep visual-semantic embedding model. In Advances
in Neural Information Processing Systems, 2013.

Ali Farhadi, Ian Endres, Derek Hoiem, and David Forsyth. Describing objects by
their attributes. In Computer Vision and Pattern Recognition, pages 1778-1785.
IEEE, 2009.

Yanwei Fu, Tao Xiang, Yu-Gang Jiang, Xiangyang Xue, Leonid Sigal, and Shao-
gang Gong. Recent advances in zero-shot recognition: Toward data-efficient un-
derstanding of visual content. IEEE Signal Processing Magazine, 35(1):112-125,
2018.

Yanwei Fu, Yongxin Yang, Tim Hospedales, Tao Xiang, and Shaogang Gong.
Transductive multi-label zero-shot learning. arXiv preprint arXiv:1503.07790,
2015.

14



[GAAT17)

[GDHG17]

[GPAM T 14]

[HAT19]

[HRO3]

[HZRS16]

[KASB17]

[KCL*19)

[KW14]

[KXG17]

[LCLBC19a]

[LCLBC19b)]

[LCLBC20]

[LCPLB20]

[LDB15)]

[LEBOS]

[LFYFW18]

[LG15]

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and
Aaron C Courville. Improved training of Wasserstein GANs. In Advances in
neural information processing systems, pages 5767-5777, 2017.

Yuchen Guo, Guiguang Ding, Jungong Han, and Yue Gao. Synthesizing samples
fro zero-shot learning. In IJCAIL 1JCAI, 2017.

Tan Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversar-
ial nets. In Advances in neural information processing systems, pages 26722680,
2014.

Tristan Hascoet, Yasuo Ariki, and Tetsuya Takiguchi. On zero-shot recognition
of generic objects. In Computer Vision and Pattern Recognition, pages 9553—
9561, 2019.

Geoffrey E Hinton and Sam T Roweis. Stochastic neighbor embedding. In
Advances in Neural Information Processing Systems, pages 857-864, 2003.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-
ing for image recognition. In Computer Vision and Pattern Recognition, pages
770-778, 2016.

Nour Karessli, Zeynep Akata, Bernt Schiele, and Andreas Bulling. Gaze em-
beddings for zero-shot image classification. In Computer Vision and Pattern
Recognition, pages 4525-4534, 2017.

Michael Kampffmeyer, Yinbo Chen, Xiaodan Liang, Hao Wang, Yujia Zhang,
and Eric P. Xing. Rethinking knowledge graph propagation for zero-shot learn-
ing. In Computer Vision and Pattern Recognition, pages 11487-11496, 2019.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In
International Conference on Learning Representations, 2014.

Elyor Kodirov, Tao Xiang, and Shaogang Gong. Semantic autoencoder for zero-
shot learning. In Computer Vision and Pattern Recognition, pages 4447—-4456.
IEEE, 2017.

Yannick Le Cacheux, Hervé Le Borgne, and Michel Crucianu. From classical to
generalized zero-shot learning: A simple adaptation process. In International
Conference on Multimedia Modeling, pages 465-477. Springer, 2019.

Yannick Le Cacheux, Hervé Le Borgne, and Michel Crucianu. Modeling inter
and intra-class relations in the triplet loss for zero-shot learning. In Computer
Vision and Pattern Recognition, pages 10333-10342, 2019.

Yannick Le Cacheux, Hervé Le Borgne, and Michel Crucianu. Using sentences
as semantic embeddings for large scale zero-shot learning. In ECCV 2020
Workshop: Transferring and Adapting Source Knowledge in Computer Vision.
Springer, 2020.

Yannick Le Cacheux, Adrian Popescu, and Hervé Le Borgne. Webly super-
vised semantic embeddings for large scale zero-shot learning. arXiv preprint
arXiv:2008.02880, 2020.

Angeliki Lazaridou, Georgiana Dinu, and Marco Baroni. Hubness and pollution:
Delving into cross-space mapping for zero-shot learning. In Proceedings of the
53rd Annual Meeting of the Association for Computational Linguistics and the
7th International Joint Conference on Natural Language Processing (Volume 1:
Long Papers), pages 270-280, 2015.

Hugo Larochelle, Dumitru Erhan, and Yoshua Bengio. Zero-data learning of new
tasks. In AAAI Conference on Artificial Intelligence, volume 2, pages 646-651,
2008.

Chung-Wei Lee, Wei Fang, Chih-Kuan Yeh, and Yu-Chiang Frank Wang. Multi-
label zero-shot learning with structured knowledge graphs. In Computer Vision
and Pattern Recognition, pages 1576-1585, 2018.

Xin Li and Yuhong Guo. Max-margin zero-shot learning for multi-class classifi-
cation. In Artificial Intelligence and Statistics, pages 626—634, 2015.

15



[LNH09]

[LNH14]

[IMGS14]

[MHOS]
[Mil95]

[MKRMM18]

[MO14]

[MSC*13]

[MYX+20]

[NMB*14]

[OM13]

[PG11]

[PLH20a)

[PLH20b)

[PNGR19)

[PPHMO09)]

[PSM14]

[RALS16]

[RDS™15]

Christoph H Lampert, Hannes Nickisch, and Stefan Harmeling. Learning to
detect unseen object classes by between-class attribute transfer. In Computer
Vision and Pattern Recognition, pages 951-958. IEEE, 2009.

Christoph H Lampert, Hannes Nickisch, and Stefan Harmeling. Attribute-based
classification for zero-shot visual object categorization. IEEE T. Pattern Anal-
ysis and Machine Intelligence, 36(3):453-465, 2014.

Thomas Mensink, Efstratios Gavves, and Cees GM Snoek. Costa: Co-occurrence
statistics for zero-shot classification. In Computer Vision and Pattern Recogni-
tion, pages 2441-2448, 2014.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE.
Journal of machine learning research, 9(Nov):2579-2605, 2008.

George A. Miller. Wordnet: A lexical database for english. Commun. ACM,
38(11):39-41, November 1995.

Ashish Mishra, Shiva Krishna Reddy, Anurag Mittal, and Hema A Murthy.
A generative model for zero shot learning using conditional variational autoen-
coders. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops, pages 2188-2196, 2018.

Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. arXiv
preprint arXiv:1411.1784, 2014.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Corrado, and Jeff Dean.
Distributed representations of words and phrases and their compositionality. In
Advances in Neural Information Processing Systems, pages 3111-3119, 2013.

Shaobo Min, Hantao Yao, Hongtao Xie, Chaoqun Wang, Zheng-Jun Zha, and
Yongdong Zhang. Domain-aware visual bias eliminating for generalized zero-
shot learning. In Computer Vision and Pattern Recognition, pages 12664-12673,
2020.

Mohammad Norouzi, Tomas Mikolov, Samy Bengio, Yoram Singer, Jonathon
Shlens, Andrea Frome, Greg S Corrado, and Jeffrey Dean. Zero-shot learning
by convex combination of semantic embeddings. In International Conference on
Learning Representations, pages 488-501, 2014.

Neil O’Hare and Vanessa Murdock. Modeling locations with social media. In-
formation retrieval, 16(1):30-62, 2013.

Adrian Popescu and Gregory Grefenstette. Social media driven image retrieval.
In Proceedings of the 1st ACM International Conference on Multimedia Re-
trieval, pages 1-8, 2011.

Antoine Plumerault, Hervé Le Borgne, and Céline Hudelot. Avae: Adversarial
variational auto encoder. In International Conference on Pattern Recognition
(ICPR), 2020.

Antoine Plumerault, Hervé Le Borgne, and Céline Hudelot. Controlling gener-
ative models with continuous factors of variations. In International Conference
on Learning Representations, 2020.

Senthil Purushwalkam, Maximilian Nickel, Abhinav Gupta, and Marc’Aurelio
Ranzato. Task-driven modular networks for zero-shot compositional learning.
In International Conference on Computer Vision, pages 3593-3602, 2019.

Mark Palatucci, Dean Pomerleau, Geoffrey E Hinton, and Tom M Mitchell. Zero-
shot learning with semantic output codes. In Advances in Neural Information
Processing Systems, pages 1410-1418, 2009.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global
vectors for word representation. In Proceedings of the conference on empirical
methods in natural language processing, pages 1532-1543, 2014.

Scott Reed, Zeynep Akata, Honglak Lee, and Bernt Schiele. Learning deep rep-
resentations of fine-grained visual descriptions. In Computer Vision and Pattern
Recognition, pages 49-58, 2016.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,
Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein,

16



[RNI10]

[RPT15]

[RSS11]

[SGMN13]

[SLY15]

[SSHT15]

[SZ14]

[THJA04]

[TJHAO5]

[VAMRI18]

[VR17]

[WBWT11]

[WWT99]

[WYG18]

[WZYM19)

[XCH*19]

[XLSA18a]

Alexander C. Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition
Challenge. International Journal of Computer Vision (IJCV), 115(3):211-252,
2015.

Milos Radovanovié, Alexandros Nanopoulos, and Mirjana Ivanovié. Hubs in
space: Popular nearest neighbors in high-dimensional data. Journal of Machine
Learning Research, 11(Sep):2487-2531, 2010.

Bernardino Romera-Paredes and Philip Torr. An embarrassingly simple ap-
proach to zero-shot learning. In International Conference on Machine Learning,
pages 2152-2161, 2015.

Marcus Rohrbach, Michael Stark, and Bernt Schiele. Evaluating knowledge
transfer and zero-shot learning in a large-scale setting. In Computer Vision and
Pattern Recognition, pages 1641-1648, 2011.

Richard Socher, Milind Ganjoo, Christopher D Manning, and Andrew Ng. Zero-
shot learning through cross-modal transfer. In Advances in Neural Information
Processing Systems, pages 935-943, 2013.

Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output rep-
resentation using deep conditional generative models. In Advances in neural
information processing systems, pages 3483-3491, 2015.

Yutaro Shigeto, Ikumi Suzuki, Kazuo Hara, Masashi Shimbo, and Yuji Mat-
sumoto. Ridge regression, hubness, and zero-shot learning. In Joint Furopean
Conference on Machine Learning and Knowledge Discovery in Databases, pages
135-151. Springer, 2015.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

Toannis Tsochantaridis, Thomas Hofmann, Thorsten Joachims, and Yasemin Al-
tun. Support vector machine learning for interdependent and structured output
spaces. In Proceedings of the twenty-first international conference on Machine
learning, page 104, 2004.

Toannis Tsochantaridis, Thorsten Joachims, Thomas Hofmann, and Yasemin Al-
tun. Large margin methods for structured and interdependent output variables.
Journal of machine learning research, 6(Sep):1453-1484, 2005.

Vinay Kumar Verma, Gundeep Arora, Ashish Mishra, and Piyush Rai. Gen-
eralized zero-shot learning via synthesized examples. In Computer Vision and
Pattern Recognition, pages 4281-4289, 2018.

Vinay Kumar Verma and Piyush Rai. A simple exponential family framework
for zero-shot learning. In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, pages 792—-808. Springer, 2017.

Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Be-
longie. The Caltech-UCSD Birds-200-2011 dataset, 2011.

Jason Weston, Chris Watkins, et al. Support vector machines for multi-class
pattern recognition. In European Symposium on Artificial Neural Networks,
volume 99, pages 219-224, 1999.

Xijaolong Wang, Yufei Ye, and Abhinav Gupta. Zero-shot recognition via se-
mantic embeddings and knowledge graphs. In Computer Vision and Pattern
Recognition, pages 6857-6866, 2018.

Wei Wang, Vincent W Zheng, Han Yu, and Chunyan Miao. A survey of zero-shot
learning: Settings, methods, and applications. ACM Transactions on Intelligent
Systems and Technology (TIST), 10(2):1-37, 2019.

Y. Xian, S. Choudhury, Y. He, B. Schiele, and Z. Akata. Semantic projection
network for zero- and few-label semantic segmentation. In Computer Vision and
Pattern Recognition, pages 8248-8257, 2019.

Yongqin Xian, Christoph H Lampert, Bernt Schiele, and Zeynep Akata. Zero-
shot learning—a comprehensive evaluation of the good, the bad and the ugly.
IEEE T. Pattern Analysis and Machine Intelligence, 41(9):2251-2265, 2018.

17



[XLSA18b]

[XSA17]

[XSSA19]

[ZBS*19]

[ZXG17]

Yongqin Xian, Tobias Lorenz, Bernt Schiele, and Zeynep Akata. Feature gener-
ating networks for zero-shot learning. In Computer Vision and Pattern Recog-
nition, pages 5542-5551, 2018.

Yongqin Xian, Bernt Schiele, and Zeynep Akata. Zero-shot learning-the good,
the bad and the ugly. In Computer Vision and Pattern Recognition, pages 4582—
4591, 2017.

Yongqin Xian, Saurabh Sharma, Bernt Schiele, and Zeynep Akata. -VAEGAN-
D2: A feature generating framework for any-shot learning. In Computer Vision
and Pattern Recognition, pages 10275-10284, 2019.

Eloi Zablocki, Patrick Bordes, Laure Soulier, Benjamin Piwowarski, and Patrick
Gallinari. Context-aware zero-shot learning for object recognition. In Interna-
tional Conference on Machine Learning, pages 7292-7303, 2019.

Li Zhang, Tao Xiang, and Shaogang Gong. Learning a deep embedding model
for zero-shot learning. In Computer Vision and Pattern Recognition, pages 2021—
2030, 2017.

18



	1 Introduction
	2 Formalism, Settings and Evaluation
	2.1 Standard ZSL setting
	2.2 Alternative ZSL Settings
	2.3 ZSL Evaluation
	2.4 Standard ZSL datasets and evaluation biases

	3 Methods
	3.1 Ridge Regression Approaches
	3.2 Triplet-loss Approaches
	3.3 Generative Approaches

	4 Semantic Features for Large Scale ZSL
	5 Conclusion and current challenges

