
Improving Web API Usage Logging

Rediana Koçi, Xavier Franch, Petar Jovanovic, Alberto Abelló
Universitat Politècnica de Catalunya, BarcelonaTech

{koci, franch, petar, aabello}@essi.upc.edu

Abstract. A Web API (WAPI) is a type of API whose interaction with
its consumers is done through the Internet. While being accessed through
the Internet can be challenging, mostly when WAPIs evolve, it gives
providers the possibility to monitor their usage, and understand and an-
alyze consumers’ behavior. Currently, WAPI usage is mostly logged for
traffic monitoring and troubleshooting. Even though they contain invalu-
able information regarding consumers’ behavior, they are not sufficiently
used by providers. In this paper, we first consider two phases of the ap-
plication development lifecycle, and based on them we distinguish two
different types of usage logs, namely development logs and production
logs. For each of them we show the potential analyses (e.g., WAPI usabil-
ity evaluation, consumers’ needs identification) that can be performed,
as well as the main impediments, that may be caused by the unsuitable
log format. We then conduct a case study using logs of the same WAPI
from different deployments and different formats, to demonstrate the oc-
currence of these impediments and at the same time the importance of
a proper log format. Next, based on the case study results, we present
the main quality issues of WAPI log data and explain their impact on
data analyses. For each of them, we give some practical suggestions on
how to deal with them, as well as mitigating their root cause.

Keywords: Web API, usage logs, log format, pre-processing.

1 Introduction

An increasing number of organizations and institutions are exposing their data
and services by means of Application Programming Interfaces (APIs). Different
from traditional APIs (i.e., statically linked APIs), which are accessed locally by
consumers, web APIs (WAPIs) are exposed, thus accessed, through the network,
using standard web protocols [3]. As the interaction between WAPIs and their
consumers is done typically through the Internet, both parts end up loosely
connected.

This loosely coupled connection becomes eventually challenging, mostly dur-
ing WAPI evolution, when as a boomerang effect, consumers end up strongly
tight to WAPIs [1]. If providers release a new version and decide to discontinue
the former ones, consumers are obliged to upgrade their applications to the new
version and adapt them to the changes. Consequently, WAPIs end up driving the

ar
X

iv
:2

10
3.

10
81

1v
1 

 [
cs

.S
E

] 
 1

9 
M

ar
 2

02
1



2 R. Koçi et al.

evolution of their consumers’ application [8], [9]. Knowing the considerable im-
pact WAPIs have on their consumers, providers would benefit from consumers’
feedback to understand their needs and problems when using the WAPI [6].

Currently, API providers face a lot of difficulties in collecting and analyzing
consumers’ feedback from several sources (often informal ones), e.g., bug reports,
issue tracking systems, online forums and discussions. [7]. Furthermore, feedback
collection and analysis turns out to be expensive in terms of time, thus difficult
to scale. Actually, in the WAPI case, this feedback can be gathered in a more
centralized way.

While being accessed through the network poses some challenges for con-
sumers, it enables providers to monitor the usage of their WAPIs, by logging
every request that consumers make to them (see Fig. 1). WAPI usage logs, be-
sides coming from a trustworthy source of information, can be gathered in a
straightforward, inexpensive way, and completely transparent to the WAPI con-
sumers.

WAPI

1

developers

applications

(W)APIs

data/services

usage logs

WAPI consumers WAPI providers

Fig. 1. The interaction between consumers, providers and WAPIs

Currently, WAPI usage logs are mostly being used to feed monitoring tools.
These tools typically provide automatic alerts when WAPI endpoints fail, and
reporting dashboards that visualize several performance metrics [20]. Since these
logs are not designed to be further analyzed with regards to consumers’ behavior,
they may lack some critical information, like identifiers for consumers’ applica-
tions, etc. Moreover, they are complex (e.g., unstructured, high volume data) and
somewhat noisy. Applications’ design and the way their end users use them can
veil interesting and important WAPI usage patterns. Therefore, understanding
consumers’ behavior and inferring their needs from WAPI usage logs becomes
essential for providing high quality WAPIs, tailored to the real needs of their
consumers.

This paper is building upon our previous work [2], where we measured the
usability of WAPIs by analyzing their usage logs generated during the devel-
opment phase of consumers’ applications. Based on the challenges faced while
working with WAPI usage logs, and the surprising lack of attention this topic
(i.e., WAPI usage logs analysis) had gained, we saw convenient to summarize



Improving Web API Usage Logging 3

our experience and research in the field, into a set of practical suggestions to
enhance the logging of WAPI usage for more specialised analyses.

To this end, the contribution of this work is fourfold. We focus first (i) on
showing the potential and then (ii) the main impediments of proactively using
WAPI usage logs regarding consumers’ behavior. We then conduct a case study
using logs of the same WAPI from different deployments, using different log for-
mats, (iii) to show the importance of logs’ structure and content in preparing the
data for further analyses. Next, based on the case study findings, the analysis
requirements, WAPI logs structure, and also after reviewing the relevant liter-
ature, (iv) we classify and define the main issues and obstacles that hinder the
application of various analyses on the logs. For each of the issues, we describe the
impact their occurrence may have on the analyses result, and propose mitigation
actions.

The remainder of this paper is organized as follows. In Section 2, we report
on the current use of WAPI usage logs and practices to pre-process and deal
with their quality issues. In Section 3, we give the main motivation behind our
work. We introduce the WAPI logs structure and content, and based on them
we propose some purpose-specific analyses that can be applied on these logs. In
Section 4, we introduce two pre-processing challenges, whose accuracy may be
affected by the format of the logs. In Section 5, we introduce our case study and
the experiments we performed. In Section 6, we provide the set of WAPI quality
issues inferred from the case study, and discuss their impact and mitigation. In
Section 7, we conclude the paper and present some ideas for future work.

2 Related Work

Few works build their analysis on WAPI usage logs comprised by the URL
requests made to the WAPI [11], [2], [19]. Thus, not only these logs’ potential is
still unrevealed, but even quality issues related to them or their pre-processing
and preparation have not gained the deserved attention.

For instance, Suter and Wittern [11] used the usage logs to infer WAPI
description (the endpoint structure and parameters) from them. They reported
that the results of their methods were impeded from the incomplete and noisy
nature of these log data. In our previous paper [2], we proposed an approach to
measure the usability of WAPIs by analyzing the usage logs generated during the
development phase of consumers’ application. We described the pre-processing
steps of WAPI usage logs in general, and then demonstrated how we dealt with
specific obstacles in the log data from the case study (e.g., data structuring,
generalization). Macvean et al. [19] analyzed WAPI usage logs from Google API
Explorer, and generated from them several structural factors (e.g., number of
parameters, number of methods) to study their usability. Even though they
showed the potential of analyzing these logs, they did not tackle the quality
issues related to them or challenges during their preparation.

On the other hand, web log preparation and pre-processing are widely stud-
ied, as part of web log analysis, extensively applied regarding usage and usability



4 R. Koçi et al.

of software and web applications [17]. We mention below some of these works,
as some WAPI logs quality issues are similar to the web logs ones.

One of the most discussed issues of log pre-processing is session identifica-
tion. A session represents the interaction of a user with a website within a time
frame (usually expires after a certain amount of time of inactivity). There exist
several heuristics for reconstructing sessions, mostly coming from web mining
applications [15], [5], [10], [13], [16], [12]. Spiliopoulou et al. [12] applied differ-
ent heuristics (total session duration, page-stay duration, etc.) to reconstruct the
sessions from the server log data. They evaluated the performance of these heuris-
tics to the server log of a university site by comparing the reconstructed sessions
with the real ones. Their experiments showed that there is no one best heuristic
for all cases, and it depends on site’s structure and traffic. Kapusta et al. [13]
analyzed the logs from a commercial bank portal to identify the users’ sessions.
They applied different time window thresholds and heuristics, and based on the
usefulness of the rules extracted in each case, they evaluated the best threshold.
Tanasa and Trousse [10] described in detail all the steps of log pre-processing
(i.e. data fusion, data cleaning, data structuring and data generalization), in-
dicating the most challenging issues and how to overcome them. They pointed
out the importance of pre-processing in data analysis effectiveness, and among
others, agreed on the need for a better log systems.

The above mentioned works focused on general web usage logs, thus the
concerns raised were related to the analyses applied on them (e.g., to identify
users navigation behavior in order to predict their next actions, to evaluate
software design usability, to monitor the traffic for performance reporting). While
some of the issues of working with general web logs are similar to WAPI usage
logs, the latter pose some added challenges, related to the requirements of the
specific analyses that can be applied on them, as well as the WAPI design.

Bose et al. [18] focused their work on the requirements of process mining (an
analyzing technique that can be applied on log data) and log data quality issues
that may affect its results. They presented 4 process characteristic issues and 27
event log quality issues that hinder the applicability of several process mining
techniques and affect the results’ quality, but did not provide solutions on how
to address those issues. Along similar lines, Suriadi et al. [14] described a set of
data quality issues, frequently found in process mining event logs. Based on their
experience in performing process mining analyses, they introduced 11 event log
imperfection patterns, which can be used in several domains. While both of the
works are too specific for process mining requirements, they refer to event logs
in general in terms of the domain. Thus, some of the issues introduced cannot
be applied in the WAPI domain (e.g., issues related to the manual data entry).

In this paper, driven by the lack of attention WAPI usage logs analysis has
gained, we show several potential analyses that can be applied on them, mostly
based on their nature and content. We discuss the posed challenges in analyzing
these logs and eliciting the needed information, followed by recommendations on
how to better log the WAPI usage, which until now, remain quite unexplored.



Improving Web API Usage Logging 5

3 The potential of WAPI usage logs

Providers typically log their WAPIs’ usage by recording all requests done
against the WAPIs. Every time a consumers’ application issues a request
to a WAPI, a log entry is generated and stored in the usage log file.
The information that is logged for each request and its format may vary
due to different logging system setting parameters and also providers’ de-
cision about logs design. For example, using the Apache Custom Log For-
mat1 (a flexible and customizable format), when an application makes a re-
quest like https://maps.googleapis.com/maps/api/distancematrix/json?

origins=MNAC&destinations=MACBA&mode=driving&key=API_IDENTIFIER (in
the form of a URL) to a WAPI endpoint of the Google Maps Plat-
form, the following information could be logged by providers (based on
the logging system configuration): the IP address of the application’s user,
the time when the consumer made the request, the request body that
contains the request method (GET), path (maps.googleapis.com/maps/
api/distancematrix/json) and query (origins=MNAC&destinations=MACBA&
mode=driving&key=API_IDENTIFIER), the protocol (HTTP/1.1), the time
needed to respond to the request, the status code (e.g., 200 if the request was
successful), the size of the object returned, the address of the page that initiated
the request, information about the operating system or browser used, and other
fields comprising different aspects of consumers’ applications and their users.

We can think of usage logs as traces that consumers leave when using the
WAPI. If the information in these traces is analyzed in the proper way, it can re-
veal useful knowledge. They show which endpoints the consumers have accessed,
in which order, with which frequency, and with which parameters. As applica-
tions are the actual WAPI consumers, we should consider the different ways they
consume WAPIs over their own lifecycle. Basically, applications interact with the
WAPIs during design time and runtime, over both of which they manifest differ-
ent aspects of their behavior. Following on from this, we distinguish two types
of logs: (i) development logs, and (ii) production logs (Figure 2).

Development logs are generated at design time, while developers build and
test their applications. During this phase, they make the first integration of the
WAPI into their applications, or implement new developed features. Thus, these
logs show their attempts in using the WAPI, the endpoints they struggle more
with, specific mistakes they do while using and learning the WAPI, etc. [2], [19].
By analyzing these logs, providers may evaluate the usability of their WAPI
from the consumers’ perspective. For instance, they may decide to change the
name of elements (endpoints, parameters) consumers have difficulty in learning
or memorizing, improve the documentation for endpoints that seem not clear
to consumers, detail the error messages when they detect that consumers are
repeating continuously the same errors without understanding how to fix it, etc.

On the other hand, production logs are generated during applications run-
time, while application are being used by end users. Since the applications are

1 http://httpd.apache.org/docs/current/mod/mod_log_config.html

https://maps.googleapis.com/maps/api/distancematrix/json?origins=MNAC&destinations=MACBA&mode=driving&key=API_IDENTIFIER
https://maps.googleapis.com/maps/api/distancematrix/json?origins=MNAC&destinations=MACBA&mode=driving&key=API_IDENTIFIER
maps.googleapis.com/maps/api/distancematrix/json
maps.googleapis.com/maps/api/distancematrix/json
origins=MNAC&destinations=MACBA&mode=driving&key=API_IDENTIFIER
origins=MNAC&destinations=MACBA&mode=driving&key=API_IDENTIFIER
http://httpd.apache.org/docs/current/mod/mod_log_config.html


6 R. Koçi et al.

1

Feedback

Deployment

Design time Runtime

Development Logs
➣Generated during application design time
➣Contain developers learning trajectory
➣Can be analyzed to evaluate WAPI 
usability

Production Logs
➣Generated during applications runtime
➣Contain solid WAPI usage scenarios
➣Can be analyzed to understand 
consumers’ behavior (e.g., their needs, new 
usage scenarios)

Fig. 2. The development lifecycle of consumers’ application

released for public use, it is assumed that they are quite steady, without erro-
neous WAPIs requests. WAPI requests are predetermined by the implemented
functionalities of the applications, different from the development phase, where
developers may freely try different requests, several times, and pose any query.
Indeed, production logs contain real and solid WAPI usage scenarios, the right
order in which developers make the requests to WAPI to achieve specific goals,
different workarounds created to accomplish tasks for which there are no WAPI
endpoints developed, or the actual frequency of certain requests or sequences of
requests, that show the real consumption of WAPIs. By analyzing these logs,
providers may identify consumers’ needs for new features, and implement the
corresponding endpoints. These logs may reveal new usage scenarios providers
may have not thought about before, instructing them in including these scenarios
in the documentation. Besides these, providers may identify ways of improving
the WAPI based on how consumers use it, merging endpoints that are always
called together for a specific purpose, or creating new endpoints, derivative from
the ones that are always called with specific values for some parameters.

Even though both types of logs provide useful information about WAPI con-
sumption and perception from consumers, preparing and analyzing them is ar-
duous. First, it is not always trivial distinguishing these logs from each other,
as they often are stored together in the same files. Secondly, consumers’ ap-
plications design and the way users interact with them will be manifested in
the production logs, obfuscating the inference of the real WAPI usage patterns.
Providers should identify the patterns that represent real usage scenarios, from
the ones deriving from applications design and users flow. Finally, as providers
store these logs typically for traffic monitoring, they do not consider the require-
ments that specific analyses may have. Thus, unawarely, they may neglect the
importance of the log format, and even leave out crucial information for con-
sumers’ identification, adversely affecting not only the analysis results, but also
the logs pre-processing.

4 How does the logs format affect the pre-processing?

The pre-processing phase is typically counted as the most difficult and time-
consuming part of log analysis [15]. It basically consists of four main steps: (i)
data fusion, consisting in gathering and merging log files from different sources,
(ii) data cleaning, consisting in removing irrelevant data and completing missing
values, (iii) data structuring, consisting in segmenting the log file in users’ ses-
sions, and (iv) data generalization, consisting in generalizing the dynamic part
(i.e., parameter values) of requests [10], [2]. In this section we will cover two



Improving Web API Usage Logging 7

challenges from WAPI usage logs pre-processing, namely field extraction from
data cleaning phase, and session identification from data structuring, as the two
challenges of pre-processing that are directly affected by the log format and the
way the usage is being logged (Figure 3).

Field extraction Session Identification

Raw log file Extracted fields Identified sessions

Fig. 3. Field extraction and session identification

Field extraction. Usage logs are stored in text files. Each log entry
contains several fields, each containing specific information. Field extrac-
tion consists exactly in the separation of the log entry in several fields.
It is typically performed right before data cleaning, so that log entries
can be filtered based on the value of their specific fields (e.g., request
method, request body). For example, the following log entry should be trans-
formed from a single string into the set of fields it contains: 127.0.0.1 -

- [24/Jun/2019:20:22:26 +0000] GET /api/29/system/info HTTP/1.0

200 891 https://.../dhis-web-dashboard/index.html Mozilla/5.0

(Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like

Gecko) Chrome/75.0.3770.100 Safari/537.36, extracted fields:

Client IP : 127.0.0.1

Timestamp : 24/Jun /2019:20:22:26 +0000

Request : GET /api /29/ system/info HTTP /1.0

Status code: 200

Object Size: 891

Referer : https ://.../ dhis -web -dashboard/index.html

User -Agent : Mozilla /5.0 ... Safari /537.36

There are several ways to parse log files information, including regular expres-
sions, predefined parsers, custom grok parsers (pattern matching syntax used
by ElasticSearch). Providers should decide on a log format that can be easily
parsed, in order to enable a simple querying of fields value.

Session identification. This challenge (often called sessioning), refers to
grouping together into the same session, all the log entries (i.e., requests) com-
ing from each user during the time frame of a visit, trying not to leave out any
log entry, as well as not assigning wrong ones. It is one of the main issues with
WAPI usage logs. Most of the WAPIs are stateless, meaning that the server does
not store the state, thus no sessions are generated. The lack of sessions’ iden-
tifiers may seriously impede the applicability of several analyses. For instance,
one of process mining requirements is for event logs to have case identifiers,
which assign each log entry to a specific case [4]. Session identifiers must be in-
ferred combining other available information in the logs. Sessioning heuristic is a



8 R. Koçi et al.

method for constructing sessions based on assumptions about users’ behavior or
the site/application characteristics. Two of the most applied methods are time-
based heuristics and navigation-based heuristics [16]. As both of them are built
under the hypothesis of an already launched and ready to be used application,
these heuristics apply only to the production logs.

– Time-based heuristics construct the sessions based on either: (i) the duration
of a user’s entire visit to the application, which should not surpass a maximum
threshold δ, typically taken 30 minutes [16], or (ii) the time a user spend
on one page of the application (i.e., page-stay heuristic), which should not
surpass a maximum threshold θ, defined based on pages average contents and
application nature.

– Navigation-based heuristics construct the sessions based on the assumption
on how the applications’ pages are related. The rationale behind is that users’
navigational flow in the application is predetermined since its implementation.
For native (or desktop) applications this flow is fixed. For web ones, which are
accessed through a browser, users rarely type themselves the URL of a page,
but rather follow the hyperlinks and the navigation bar. In the usage logs, the
information about the page initiating the actual request is contained under
the referer field. This field can have a null value (“-”) when the users type the
request directly in the browser, or when an application is first opened.

5 Case study

We perform field extraction and session identification in order to demonstrate
the importance of specific fields of the log format, and the impact their lack
may cause to both of these challenges. We conduct a case study using logs of
the District Health Information Software 2 (DHIS2) WAPI. DHIS2 is an open
source, web-based health management information system platform used world-
wide from various institutions and NGOs for data entry, data quality checks and
reporting. It has an open REST WAPI, used by more than 60 native applica-
tions. External software can make use of the open API, by connecting directly
to it or through an interoperability layer.

DHIS2 is instantiated as World Health Organization (WHO) Integrated Data
Platform2 (WIDP), and is used by several WHO departments for routine disease
surveillance and country reporting. For the analysis, we use the production logs
from WIDP, and from Médecins Sans Fontières (MSF), another DHIS2 instance
used for field data collection and as a central repository for medical data.

Both of these instances use the same DHIS2 WAPI and the same set of
applications accessing it. But, being deployed and used independently, the logs
coming from them have different formats, providing us with different information
that we can use to structure and prepare the logs for further analyses (Table 1).

2 http://mss4ntd.essi.upc.edu/wiki/index.php?title=WHO_Integrated_Data_

Platform_(WIDP)

http://mss4ntd.essi.upc.edu/wiki/index.php?title=WHO_Integrated_Data_Platform_(WIDP)
http://mss4ntd.essi.upc.edu/wiki/index.php?title=WHO_Integrated_Data_Platform_(WIDP)


Improving Web API Usage Logging 9

Table 1. Log formats of the two DHIS2’s deployments under study

Deployment
Client IP
address

Timestamp
granularity

Duration Request
Status
Code

Object
Size

Referer
User

Agent

MSF 7 Second 3 3 3 3 3 3

WIDP 3 Millisecond 3 3 3 3 7 3

1. Field extraction. We perform field extraction by using regular expressions in
JAVA. Request body, referer and user-agent, are the parts that generate more
errors while parsing, as they may include spaces and special characters, some-
times used to separate the fields. We show the example of the user-agents val-
ues in WIDP log data, which typically have in their body comma, semicolon,
and spaces: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/80.0.3987.122 Safari/537.36. We have to perform
some extra manual work to handle the errors, like splitting these fields into sev-
eral parts, and then joining them, without cluttering parts of different fields.

2. Session identification. We apply the page-stay heuristic and the navigation
one combined with time constraint. We perform the experiments on log data
from MSF, since the log format contains information about the referer (Table 1),
required in navigation-based method. Since we do not (and cannot) have the data
with the real and correct session identifiers to evaluate the performance of the
resulting techniques, we assess the correctness of the constructed sessions based
on different statistics. The results of the analysis are shown in Table 2.

The WAPI log file from MSF has requests from different applications in-
stalled in the platform, used by different users. Our first concern consists
in eliciting the user and the application that submitted the request. MSF
uses a proxy server, thus the information under the client IP can not be
used in user identification. Also, the log entries do not have information
about which application submitted each request. The only information avail-
able are the log entries specifying the opening of an application: “GET
/{nameOfTheApplication}/index.action”.

– Time-based heuristic. We start with the time based heuristic. Even though the
aim of the experiments is not to find the best threshold value, we perform the
experiments for two different thresholds (5 and 15 minutes), to see if their val-
ues make any significant changes in the sessioning of the log entries. If the
timestamps of the requests after an application opening have a difference of
less than the defined threshold, then they are considered part of the same ses-
sion. Otherwise, they are discarded, as we cannot know the application making
the requests. Using the example in Listing 1.1, the requests after the opening
of App2 are considered part of the same session if t4 − t3 6 5min(15min) and
t5 − t4 6 5min(15min), or discarded otherwise. On the other hand, these re-
quests may comply with the threshold for App1 as well (t4− t2 6 5min(15min),
t5−t2 6 5min(15min)). As a result, requests that may come from App1 session,
may be assigned to the next session, possibly increasing this way the error rate
in two directions: not including the right log entries in Session1, and including
wrong ones in Session2.



10 R. Koçi et al.

Listing 1.1. Time based heuristic on MSF logs

1. GET App1/index.action t1 Session1

2. request from App1 t2 Session1

3. GET App2/index.action t3 Session2

4. request from App1 or App2 t4 Session1 or Session2

5. request from App1 or App2 t5 Session1 or Session2

As seen from the situation in the log snippet in Listing 1.1, regardless of the
timestamps, we cannot be sure about the session of the requests after two appli-
cations open simultaneously. It is worth pointing out that the uncertainty would
still persist, even if the information about client IP address was in the log file,
as the same user could open several applications at the same time.
We can see in Table 2 (first two rows), the overall number of sessions (for sessions
with more than 3 requests) in the data, the average sessions’ duration, and
the average sessions’ size (number of requests in a session). We are not further
analyzing these metrics, to see which of the thresholds is more performative, as
from the interpretation, the time threshold, used in isolation from other fields, is
not enough for identifying sessions. But we will compare them with the metrics
derived from the results of the navigational-based heuristic.

Table 2. Statistics for the defined sessions

Heuristic No. of sessions Avg. duration Avg. size

time 5 min 15,804 110 sec 63

time 15 min 15,937 127 sec 63

time 5 min, navigation 8,233 266 sec 122

time 15 min, navigation 6,586 413 sec 152

– Navigational-based heuristic, combined with time constraint. Next, we recon-
struct the sessions using not only the time difference between the requests, but
also the referer. We use this heuristic for two different timeout thresholds. Ex-
tending the same example with referer information (see Listing 1.2), we can see
that the session identification accuracy is straightforward when different appli-
cations are being consumed (from the same user or different ones). Log entries 4
and 5 are assigned to the right session, due to the information provided by ref-
erer. (The value of refA is ignored, as the request body itself gives the application
in use.)

Listing 1.2. Navigation based heuristic on MSF logs, different application

1. GET App1/index.action t1 refA Session1

2. request from App1 t2 App1 Session1

3. GET App2/index.action t3 App1 Session2

4. request from App2 t4 App2 Session2

5. request from App1 t5 App1 Session1

We cannot say the same when the same application is being used by different
users (see log snippet in Listing 1.3). Log entries 4 and 5 may belong to Session1
or Session2, but they may end up in the wrong session, due to the lack of client
IP address information.



Improving Web API Usage Logging 11

Listing 1.3. Navigation based heuristic on MSF logs, same application

1. GET App1/index.action t1 refA Session1

2. request from App1 t2 App1 Session1

3. GET App1/index.action t3 App1 Session2

4. request from App1 t4 App1 Session1 or Session2

5. request from App1 t5 App1 Session1 or Session2

As seen from Table 2 (two last rows), the metrics from the navigation method
are significantly different from the ones when only the time heuristic was used
(two first rows). We can see that after using the referer information, for the
same logs we have less number of sessions, but larger ones in terms of num-
ber of requests and session total duration. This means that, when using only
the time heuristic, we are over-splitting the sessions, thus potentially loosing se-
quences of requests. Besides this, the new sessions created, likely contain mixed
requests from different users and different applications, thus possibly creating
fake sequences of requests.

Even though we applied grounded methods in pre-processing the logs, we
admit that challenges like session identification and field extraction may still
remain due to the lack of important information in the logs or the format being
used. These problems are hard to deal with, and the best way to address them
is mitigating the root cause.

Assessment. The performance of the heuristics could be evaluated by compar-
ing the constructed sessions with the real ones. In WAPI usage logs we cannot
have the real sessions. Thus, in order to evaluate the accuracy of the recon-
structed sessions of logs from MSF, we compare them and the reconstructed
sessions of logs from WIDP, in the context of four specific applications. Different
from MSF, the logs from the WIDP have information about the client IP ad-
dresses, but not the referer (Table 1). Consequently, we reconstruct the sessions
using client IP and timeout (15 minutes). Then for each application, we extract
the distinct requests assigned on both instances (Table 3). We saw that when
using only the time heuristic in MSF, even though the sessions are in average
shorter in terms of number of requests (Table 2), too many distinct and different
requests are assigned to each application. The same happen with WIDP, whose
logs do not have information about the referer. For each application we explore
in detail the distinct requests assigned to them, for all the sessions. We saw that
there were WAPI requests, that even though not related to the applications,
were assigned to them because of the missing information in the logs.

Table 3. WAPI requests assigned to four applications installed in MSF and WIDP

Application MSF (time) MSF (time, navigation) WIPD (time)

dhis-web-event-capture 106 28 177

dhis-web-event-reports 139 25 118

dhis-web-tracker-capture 202 48 124

HMIS-Dictionary 136 31 57

As the examples show and the experiments’ results support, not being able to
identify the users and the applications submitting the WAPI requests, greatly



12 R. Koçi et al.

affects the correctness of sessions’ identification. We can see an improvement
when the referer information is available in the logs, but its exploitation comes
with extra pre-processing efforts.

6 Common WAPI logs issues

In this section, deriving from the case study, we introduce the main WAPI usage
logs quality issues, that are responsible for the problems surged during field
extraction and session identification. Some of them are related to the nature of
WAPI usage logs, hence providers should be aware and consider them before
analyzing the logs. Others originate from the way WAPI usage is logged, thus
can be eliminated or ameliorated.

1. Field extraction
– Fields’ separators part of the fields’ body.

Description: Even though it is recommended to use more human-readable for-
mats for logs, keeping them machine processable is also important. Each log entry
consists of several fields, typically separated by specific characters, e.g., comma,
semicolon, space. With the help of these separators, providers can perform the
fields’ extraction. Problems may arise when the fields themselves contain in their
body the characters used as separators. The most heterogeneous fields are the
request, the referer, and the user agent.
Impact : Not addressing this issue may result in extra added time and effort in
log data pre-processing. If the special separators are part of the fields body, the
automation of field extraction will generate errors, and providers should perform
manual work to fix the issue.
Mitigation: To facilitate the field extraction, it is recommended to double-quote
the fields that might have special characters like request, referrer, user agent,
etc. The use of machine parseable formats will increase the automation of pre-
processing, and therefore its correctness.

2. Session identification
– Insufficient fields.

Description: WAPI usage logs are usually not logged for the purpose of analyzing
consumers’ behavior and getting indirectly their feedback. Thus, they often suffer
from missing crucial fields for the application of several analysis, or other fields
whose presence may enrich the analyses with new insights. We encountered this
issue with the log data from WIDP, whose format did not include the referer.
Impact : The lack of specific fields may become an impediment for applying
several analyses or may affect the accuracy of the analyses’ results. The referer
header is a field that contains the address of the page that made the request. Even
though this is an optional field, it contains an important and helpful information
to reconstruct the sessions. As demonstrated in the introduced case study, in
cases where: (i) the session identifiers are not present, (ii) the client IP address
is actually a proxy address, and (iii) session timeout differs between several
consumers’ applications, the information under referer will help the analysts to
better identify the session of a log entry and reconstruct the requests’ sequence.



Improving Web API Usage Logging 13

Even though providers cannot fully rely on the referer information (it is not in the
log when consumers type themselves the request in the browser), it increases the
correctness of assigning every log entry to its own session. The user agent field,
which contains information about the browser and the operating system used
when making the request, may as well play an important role in distinguishing
the requests coming from different users, thus it should be included in the log
format.

Mitigation: In order to strike a balance between not leaving out important fields,
and at the same time not to log too many fields, providers should decide before-
hand on the analyses they will perform on the usage data, and the question
they seek to answer. The specific requirements of the analyses should help them
in making the right decision. Nevertheless, regardless of the type of analyses,
providers should be able to identify different users and applications, and log the
needed fields accordingly.

– Missing applications’ identifiers.

Description: Applications’ identifiers are unique identifiers that providers gen-
erate for their consumers, usually to monitor their usage for billing purposes.
Consumers must include their applications’ identifiers in each WAPI request, so
that providers can track their WAPI usage. Currently this practice (of providing
application identifiers) is typically followed by providers that have monetized
their WAPIs. However it can be used for more than just correctly charging con-
sumers. We are not covering this in the ‘Insufficient fields’ issue, as more than
a field to be included in the log format, it is related to providers decision to
generate this kind of identifiers. Consumers may then submit the identifiers as
HTTP header, as a query parameter, or as a request body field.

Impact : The lack of applications’ identifiers is not likely to impact the accu-
racy and correctness of analysis results, but it affects the evaluation and the
prioritization of the found usage patterns. Suppose that providers will find in
the logs specific usage patterns that may indicate the need for some changes in
the WAPI. Not knowing which applications are making the requests, providers
cannot be sure whether the patterns found are coming from several applications,
or from few applications with a lot of users. In this situation, if they decide to
perform the indicated changes, they will not know how many applications these
changes will affect. To make informed decisions about the implementation of the
prescribed changes, they should have the information about these identifiers.
Furthermore, under the conditions where sessions’ identifiers are missing, ap-
plication identifiers will help providers in improving the sessioning of the usage
logs. We faced this issue with logs from both MSF and WIDP, as DHIS2 provider
was not generating these identifiers.

Mitigation: Providers can address this issue by generating unique identifiers for
each consumers’ application, so that consumers include them in all the requests
made to the WAPI. Additionally, in order to differentiate between usage logs cre-
ated during development/testing phase and production phase, providers should
generate different identifiers for each of the phases. As already explained, these
usage logs manifest different aspect of consumers’ behavior. Thus, providers



14 R. Koçi et al.

should be able to separate them in order to accurately apply purpose-specific
analysis.

– Hidden client IP address.
Description: The client IP address gives the IP addresses of the applications’
users. Combined with other information (session timeout, referer, user agent,
etc.) this information can be used in users identifications, as well as sessioning.
However, if the consumers are using proxy servers, as in the case of MSF, the
IP address that appears in the usage logs will not be of the original user doing
the request, but that of the proxy server address. As a result, different users
may appear under the same client (proxy) IP address in the logs, misleading the
user identification process. We want to note that, as we are analyzing the way
applications are consuming the WAPIs, our interest on users’ identifications is
limited to their help in sessions’ identifications. By this means, if the same users
appear with different IP addresses each time they use an application (dynamic
IP addresses), this will not affect the analysis results.
Impact : Not being able to distinguish the requests from different users may
produce mixed up sequences of requests. The impact can be even more severe if
other identifiers (e.g., application identifiers) are also missing in the logs, as in
the example in Table 4.

Table 4. Log entries from different users with the same IP address (proxy address).

Client IP Request Timestamp Referer

IP1 request1 18/Dec/2020 09:35:27.723 app1 domain

IP1 request2 18/Dec/2020 09:35:28.112 app1 domain

IP1 request3 18/Dec/2020 09:35:33.009 app2 domain

IP1 request4 18/Dec/2020 09:36:07.545 app3 domain

IP1 request5 18/Dec/2020 09:36:36.225 app1 domain

Mitigation: WAPI providers cannot control or fix this issue. Thus, it is important
for them to be aware of this problem and to not fully rely on this field for users
and sessions’ identification. Instead, they should make sure to include other fields
in the logs (e.g., referer, user agent), that will help them in better structuring
the logs. This was the case of usage logs from MSF. While the client IP addresses
were not usable, the referer information helped in logs sessioning.

– Timestamp coarse granularity.
Description: The timestamp field shows the exact time the request was made
to the WAPI. Even though the logging system stores the timestamp when the
request was made, the log entry that represents that request is printed in the log
file after the WAPI sends the response to the consumers. This means that the
requests are not completely chronologically ordered in the WAPI usage file: a log
entry printed after another one, may have been submitted earlier, thus it should
have an earlier timestamp. As the difference in this case may be in milliseconds,
if the timestamps are not logged precisely enough, the log entries may appear
with the same timestamp (as in the example showed in Table 5), making their
ordering unreliable [18]. This was the case of the logs from MSF. The timestamp
granularity was in seconds, thus several requests had the same timestamp. We



Improving Web API Usage Logging 15

tried to fix this issue by keeping at least the order that the requests had in the
file, and for every two consecutive request with the same timestamp, we added
one millisecond to the latter one.

Table 5. Log entries with wrong order because of coarse timestamp.

Client IP Request
Timestamp

(as appears in the logs)
The real time

IP1 request1 18/Dec/2020 18/Dec/2020 16:05:55.824

IP1 request3 18/Dec/2020 18/Dec/2020 16:05:55.912

IP1 request2 18/Dec/2020 18/Dec/2020 16:05:55.859

Impact : Having the requests in wrong order may adversely affect analyses’ re-
sults, by producing erroneous usage patterns, and also hiding important ones.
Mitigation: To be able to order log entries exactly in a chronological way,
providers should log the timestamp with high precision (e.g., milliseconds).

We have summarized in Table 6, the mitigation suggestions, based on the
main problem they aim to solve. Actually, the potential errors derived from
them can affect not only the log pre-processing, but also the analyses, resulting
in erroneous usage patterns. Thus, to assist providers in enhancing the usage
logs of their WAPIs, we introduce this set of suggestions, that will not just help
them to remedy the issues’ effects on the data, but uncover and mitigate their
root causes.

Table 6. Issues’ mitigation for a better WAPI usage logging

WAPI usage log issue Mitigation

Field extraction Use a machine parse-able format for logs

Session Identification

Provide application identifiers
Provide different application identifiers for development phase

Log the referer, user agent
Log the timestamp in high precision

7 Conclusion and future work

In this paper, we first show the potential of WAPI usage logs, by describing sev-
eral analyses that providers may perform. Since the success of analyses strongly
depends on the quality of their input data, we report the main issues of WAPI
usage logs. We then conduct a case study to show the importance of the right
log format. Next, derived from the case study, we identify a set of issues that
may be present to these logs, explain how these issues impact the analyses, and
suggest how to mitigate them.

Our results indicate that WAPI usage logs contain invaluable information
about consumers’ behavior, needs and difficulties. But this beneficial information
comes at the cost of the logs tedious pre-processing. Typically, WAPI usage logs
suffer from several issues, that should be properly addressed or mitigated, in



16 R. Koçi et al.

order for them to be further analyzed. While some of these issues are related to
the nature of the communication between WAPI and its consumers, others may
occur because of improper logging. Furthermore, there are many demanding
analyses, whose requirements should drive providers in the way they log the
usage of their WAPIs.

As a future work, we plan to perform the proposed analyses on the WAPI
usage logs, applying first the suggestions in mitigating the existing quality issues.

References

1. Espinha et al. ”Web API growing pains: Loosely coupled yet strongly tied.” J.
Syst. Softw. 100 (2015).

2. Koçi et al. “A Data-Driven Approach to Measure the Usability of Web APIs.” In
Euromicro, SEAA, IEEE, 2020.

3. Tan et al. “From the service-oriented architecture to the web API economy.” IEEE
Internet Comput. 20, no. 4 (2016).

4. Van Der Aalst, Wil. “Data science in action.” In Process mining, Springer, 2016.
5. Srivastava et al. “Web usage mining: Discovery and applications of usage patterns

from web data.” Acm Sigkdd Explorations Newsletter 1, no. 2 (2000).
6. Murphy et al. “API designers in the field: Design practices and challenges for

creating usable APIs.” In VL/HCC, IEEE, 2018.
7. Zhang et al.“Enabling Data-Driven API Design with Community Usage Data: A

Need-Finding Study.” In CHI, 2020.
8. Espinha at al. “Web API growing pains: Stories from client developers and their

code.” In CSMR-WCRE, IEEE, 2014.
9. Eilertsen and Bagge.“Exploring api: Client co-evolution.” In WAPI, 2018.

10. Tanasa and Trousse.“Advanced data preprocessing for intersites web usage min-
ing.” IEEE Intell. Syst. 19, no. 2 (2004).

11. Suter and Wittern. “Inferring web API descriptions from usage data.” In HotWeb,
IEEE, 2015.

12. Spiliopoulou et al. “A framework for the evaluation of session reconstruction heuris-
tics in web-usage analysis.” INFORMS J. Comput. 15, no. 2 (2003).

13. Kapusta et al. “Determining the time window threshold to identify user sessions
of stakeholders of a commercial bank portal.” Procedia Comput. Sci. 29 (2014).

14. Suriadi et al. “Event log imperfection patterns for process mining: Towards a sys-
tematic approach to cleaning event logs.” Inf. Syst. 64 (2017).

15. Srivastava et al. “Data preprocessing techniques in web usage mining: A literature
review.” In SUSCOM, 2019.

16. Berendt et al. “Measuring the accuracy of sessionizers for web usage analysis.” In
Workshop on Web Mining at SDM, 2001.

17. Goel and Jha. “Analyzing users behavior from web access logs using automated
log analyzer tool.” Int. J. Comput. Appl. 62, no. 2 (2013).

18. Bose et al. “Wanna improve process mining results?.” In CIDM, IEEE, 2013.
19. Macvean et al. “API Usability at Scale.” In PPIG, 2016.
20. Doerrfeld, B. “10+ API Monitoring Tools”. Available: https://nordicapis.com/10-

api-monitoring-tools.


	Improving Web API Usage Logging

