
Copyright notice: This is an Author Accepted Manuscript version of the following chapter: Daniel Hass and Josef Spillner, Interactive
Application Deployment Planning for Heterogeneous Computing Continuums, published in Advanced Information Networking and
Applications Volume 3 (LNNS 227), edited by Leonardo Barolli, Isaac Woungang, Tomoya Enokido, 2021, Springer reproduced with

permission of Springer. The final authenticated version is available online at: https://doi.org/10.1007/978-3-030-75078-7 55.

Interactive Application Deployment
Planning for Heterogeneous Computing
Continuums

Daniel Hass and Josef Spillner

Abstract Distributed applications in industry are modular compositions in-
volving containers, functions and other executable units. To make them de-
ployable and executable in production, they need to be assigned to hetero-
geneous resources in computing continuums, consisting of multiple clouds,
devices and other runtime platforms. Existing assignment processes are nei-
ther transparent nor interactive. To overcome this limitation, we introduce
the Continuum Deployer, a tool capable of reading application descriptions
(e.g. Helm charts for Kubernetes), interactively performing and comparing
assignment algorithms (e.g. to multiple K8s and K3s cloud/edge/fog/device
resources), and exporting deployment files (e.g. Kubernetes manifests). We
evaluate the tool with empirical package analysis, exemplary deployments
and a synthetic experiment. to appropriately address scalability concerns.

1 Introduction and Problem Statement

Computing continuums combine multi-cloud resources with local devices, in-
cluding resource-constrained (mobile) edges and fogs [1]. They permit the
optimal distribution of complex distributed application functionality along
the data path. Sensor data processing continuums, for instance, may perform
filtering early at the point of sensing, and complex analytics later in appropri-
ate clouds [2]. Building distributed applications for such infrastructures has
become feasible due to the proliferation of many microservice and serverless

Daniel Hass
Endress+Hauser InfoServe, Weil am Rhein, Germany, e-mail: daniel.hass@endress.com

Josef Spillner

Zurich University of Applied Sciences, Distributed Application Computing Paradigms
(blog.zhaw.ch/splab/), Winterthur, Switzerland, e-mail: josef.spillner@zhaw.ch



technologies [3] and corresponding packaging formats for compositions and
workflows. However, which application part should go to which resource along
the continuum is still an open challenge especially in automation-focused in-
dustrial domains. We refer to it as application–continuum resource assign-

ment problem. Recent research has led to many automated algorithms to
solve the assignment problem under constraints and preferences. Proposals
encompass the definition of cost/utility functions for the Hungarian algo-
rithm, rule-based matchmaking [4], topology splitting and matching [5], and
device-driven adaptive deployment [6]. However, none of these approaches
keep the person responsible for deployment in the loop. Many DevOps engi-
neers and administrators would prefer a guided approach where automation
is built in but certain decisions can be controlled and followed in a trans-
parent way. Such an anticipated approach is in line with recent trends to-
wards responsible and explainable artificial intelligence, equally applying to
automation decisions in upcoming continuums such as decentralised and os-
motic computing, cloud robotics, cloud-based manufacturing processes and
vehicular clouds [7]. To accommodate this need, this paper introduces the
Continuum Deployer, a novel interactive tool to solve the assignment prob-
lem especially for fast-paced industrial DevOps processes.

2 Solution Space and Method

The solution space to constrained assignment is potentially large in practice
due to the following factors:

1. Lack of resource descriptions. Although there are standards like the Com-
mon Information Model to describe infrastructure capabilities, they are
rarely used in practice. Resources themselves (e.g. mobile phones, smart
watches, IoT devices or servers) also do not ship with self-descriptive ca-
pabilities.

2. Application description variety. In contrast to resources, engineers have
various approaches available to describe their applications and how to de-
ploy them. Modern distributed applications are either deployed through
infrastructure as code or through declarative formats, including low-level
Docker Compose files and Kubernetes manifests, high-level Helm charts
and Cloud-Native Application Bundles (CNAB), Open Application Model
(OAM) or Topology and Orchestration Specification for Cloud Applica-
tions (TOSCA) files for container-based compositions, and AWS Serverless
Application Models (SAM) for function-based compositions [5].

3. Scalability. Each application part may be scaled independently from the
others, leading to the need to reserve a multiple of its resource requirements
on the same or on different resources.

4. Constraints and preferences. Application descriptions may ship with a-
priori constraints on where deployments is allowed. In practice, this infor-



mation is often absent and may have to be added in an interactive and
incremental way, in each iteration followed by a check of the resulting de-
ployment plan. The same process is needed for custom preferences – for
instance, to declare that although a database could run on the (mobile)
edge, it should instead run in the cloud because a later upgrade of the
application needs to access it there.

To address this large solution space, Fig. 1 contains the approach that
gradually achieves solutions of different maturity (design, implementation,
evaluation) for a subset of industrially relevant cloud application technologies.
The remaining sections cover the steps of the proposed method and lead to
the presentation of an applied deployment tool which we make available as
open source software.

Fig. 1 Solution Approach

3 Tool Design

We assume that both resources and application descriptions have matching
properties, in particular: CPU cores, memory capacity, and preference labels
such as ’private cloud’ or ’in-vehicle’, and that these properties are accu-
rately described for at least the majority of these entities. Labels are the
central mean within the Continuum Deployer for the user to express certain
constraints and preferences with regard to the deployment placement. Each
node and workload can be assigned with zero to as many labels as the user
desires. A suitable node must or should (depending on configuration) pos-
sess all of the workloads labels or more to be considered for a deployment.
Unlabelled workloads are able to run on any of the available nodes.

The labels are then used to distinguish resource capabilities, ranging from
vast and elastically scalable cloud resources to constrained device resources
which, due to these constraints, might not always allow for executing all
workloads resulting from the heterogeneous packaging formats. Fig. 2 shows
a subset of the problem space, leading to the research question: How can a
complex microservice-based application, packaged as Helm chart, AWS SAM,
OAM appfile or any other format, be deployed to resources with different
resource constraints while adhering to user preferences?

The anticipated tool design thus needs to fulfil the following requirements:

1. Extensible support for multiple application packaging formats, deployment
languages and assignment resolver algorithms (matchers).



Fig. 2 Schema of deployment planning for various application packaging formats

2. Consideration of scaling factors and the resulting resource multiplicity.
3. Specification and consideration of user-specific preferences, primarily in

the sense of preferring one resource over another (i.e. cloud-first, device-
first) but also allowing for more fine-grained trade-offs.

4. Interactive as well as non-interactive use, both with tolerance for incom-
plete resource specifications.

4 Assignment Algorithms

To ensure the functionality of extensible algorithms, we implemented and
integrated two exemplary matchers with vastly different capabilities.

1. Greedy search. The greedy solver asks for a single optimisation target.
Implemented are the resource and workload sorting and subsequent greedy
matching for CPU and memory, although other metrics can be trivially
added. The largest workloads are probed for placement on a sorted list of
resources. In this list resources appear in descending order based on the
selected optimisation target.

2. SAT search. The constraint satisfaction problem (CP-SAT) solver [8] offers
multiple options with regard to the optimisation target. Implemented are
six single and multiple targets, including the maximisation of idle CPU,
the minimisation of idle memory, or the maximisation of idle combined
resources. The implementation documentation gives more details on what
is implemented and how to implement further combinations. This solver
uses constrained programming to define rules and constrains that describe
the resource matching problem in mathematical terms. Afterwards this
optimisation is solved as optimal as possible. The results of this solver
differ from the greedy ones: if this solver cannot come up with an optimal
solution the run will fail and all resources are displayed as unschedulable.
This feasibility constraint is enforced on each label group (if labels are
defined).



5 Tool Implementation

Continuum Deployer is implemented as command-line tool with several input
assistance features including syntax completion and adaptive menus. For the
purpose of automation, arguments can be passed to reduce or even avoid any
interactive step. A state machine is used to control the internal workflow and
any shortcuts through passed arguments, as shown in Fig. 3.

init

start

input_resources

dsl_type config_dsl

input_dsl

solver_type

config_solver

alter_definitions

matching

check_results

export

Fig. 3 State machine representing the process of deployment planning

The initial interaction screen implies the parsing of the specified resource
definition file and shows the initial resource utilisation. Fig. 4 shows the case
of three initially ’empty’ resources, referring to all resource metrics (proces-
sor utilisation, memory allocation) beyond the necessary minimum occupied
by the operating system, virtualisation environment and cloud stack (e.g.
Kubernetes).

Afterwards, the user selects a domain-specific language, and furthermore
selects among given file format options (Fig. 5). Eventually, an application
description in the selected domain-specific language (DSL) and format is
loaded, and the matchmaking to assign the set of application parts to the
set of resources begins. The deployer implementation supports Helm as DSL
with local, templated and packaged Helm charts as flavours.

The matchmaking performs the user-selected algorithm (SAT, greedy or
user-extensible search). The SAT solver is implemented with the Google OR
tools for combinatorial optimisation.

Eventually, the best assignment is visualised. Even the best one may not
be sufficient and requires a (minimum) amount of additional resources. In
the given scenario (Fig. 6), a basic deployment of the Nginx web server is
possible but a replicated deployment is not, as evidenced by the inability to
find a suitable spot for the replica nginx-deployment-1-2.



Fig. 4 Start screen of Continuum Deployer after resource parsing

Fig. 5 Selection of cloud application DSL and packaging format

The chosen assignment can be refined by interactively tuning the resource
definitions, for instance removing a resource that turned out to be under-
utilised. Eventually, the resulting deployment plan can be exported into the
Kubernetes manifest format. This allows the use of a separate deployment
tool, ranging from simple kubectl invocations in DevOps scenarios to so-
phisticated GitOps deployers [9], to turn the plan into an actual deployment.

6 Evaluation

6.1 Empirical application evaluation and feasibility

analysis

We evaluate two popular and industrially relevant packaging formats, Helm
charts for container compositions and SAM for serverless applications. We
are interested in knowing how many of them specify resource constraints in



Fig. 6 Best (albeit invalid) greedy match between application and resources

order to make them eligible for a resource-aware distributed multi-cloud or
edge-cloud deployment. All evaluations are conducted with October 8, 2020
data snapshots.

Due to the popularity of Helm, several public marketplaces to share Helm-
packaged cloud applications exist, such as KubeApps Hub, Helm Hub and
Artifact Hub. We include 306 Helm charts retrieved from KubeApps Hub
into our analysis. They reference 459 deployable container images. Out of
those, 114 are resource-constrained, with 113 constraining memory and 109
constraining CPU cycles. The physical units differ - 93% use Mi to refer to
memory in mebibytes (multiple of 220 bytes), while the remainder uses Gi as
well M (multiple of 106 bytes). For CPU usage, 97% use m to refer to milli-
vCPU, while the remainder uses fractions of vCPUs (1, 0.1). To facilitate the
comparison, we unify all units to mebibytes and vCPU fractions, respectively.
Fig. 7a/b contain the resulting breakdowns of memory and CPU constraints.

Moreover, we compare with 535 SAM files retrieved from the AWS Server-
less Application Repository. With 63 of them bundling multiple deployable
Lambda functions, they reference a total of 615 Lambda functions. Out of
those, 387 are resource-constrained; due to the Lambda execution model that
allocates CPU cycles proportionally to memory, only the memory size is spec-
ified explicitly. In contrast to helm, the physical units are equalised, and
allocations are restricted to a small set of possible values. Fig. 8 contains



0 500 1000 1500 2000 2500 3000
MiB

0

50

100

150

200

250
Docker container memory allocations

0 500 1000 1500 2000 2500 3000
vCPUs

0

50

100

150

200

250
Docker container CPU slices

Fig. 7 Frequency of resource allocations for Docker containers in Helm charts

the breakdown of memory allocations, clearly showing a dominance of small
functions that can run on resource-constrained devices.

0 500 1000 1500 2000 2500 3000
MiB

0

50

100

150

200

250
AWS Lambda memory allocations

Fig. 8 Frequency of resource allocations for Lambda functions in SAM files

The analysis of Helm charts and SAM files shows that our assumption that
at least a significant portion of applications packages ship with maintained
resource constraints holds true and therefore the deployer is able to perform
useful work.

6.2 Exemplary performance evaluation

We measure the placement determination of two popular Helm charts,
wordpress and redis, with the two built-in algorithms, greedy solver and
SAT solver, in various configurations to convey the practical feasibility of
incorporating a placement decision in real-time as part of deployment work-
flows. Both charts are modest in size and are fed to the solver in different
formats. Redis consists of one secret, two config maps, three services and



two stateful sets, or a total of eight Kubernetes objects in rendered tem-
plate format. Wordpress consists of a dependency chart, mariadb, and seven
Kubernetes objects. in compressed chart format.

All measurements are averaged across 100 invocations to reduce the influ-
ence of outliers. Fig. 9 summarises the results. There are no grave differences
between any of the algorithm combinations, although evidently the Redis
numbers are lower due to the already rendered charts. Moreover, the per-
formance is worst for the holistic idle resource maximisation for Wordpress,
whereas it is worst for idle CPU-only maximisation for Redis. In all cases,
the DevOps overhead is less than half a second and thus acceptable to trigger
the matching from code commits.

gr
ee

dy
-c
pu

gr
ee

dy
-m

em

sa
t-m

ax
-id

le
-c
pu

sa
t-m

ax
-id

le
-m

em

sa
t-m

in
-id

le
-c
pu

sa
t-m

in
-id

le
-m

em

sa
t-m

in
-id

le
-re

s

sa
t-m

ax
-id

le
-re

s

combo

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40 wordpress
redis

Fig. 9 Performance of placement determination algorithms

6.3 Synthetic scalability evaluation

The assignment problem is NP-hard and thus requires specific scalability
techniques for interactive matching to ensure that any chosen algorithm will
remain controllable by the user. We assign up to 10 synthetically generated
multi-container applications to 10 randomly determined resources. While this
typically yields a first feasible solution within one second through the SAT
solver configured for maximum idle resource optimisation, finding the op-
timal solution even for only 4 applications may take up almost 3 minutes
on a 2.6 GHz CPU. The Continuum Deployer addresses this problem by (i)
showing intermediate results, (ii) letting the user accept those results instead
of waiting for the optimum, and (iii) allowing for roundtripping with ad-



justed configuration and relaxed constraints. The batch mode thus allows for
inclusion in latency-critical processes such as CI/CD hooks assuming that
non-optimal deployments are acceptable.

7 Conclusions and Material

With this paper, we have introduced the Continuum Deployer as solution for
transparent and interactive deployments of composite applications to hetero-
geneous resources across computing continuums. We followed a systematic
approach to contribute a practically useful and extensible tool and to evalu-
ate some of the possible combinations between application packaging formats
and solution algorithms. The implementation of Continuum Deployer is avail-
able as open source at https://doi.org/10.5281/zenodo.4584220.

References

1. D. Balouek-Thomert, E.G. Renart, A.R. Zamani, A. Simonet, M. Parashar, Int. J. High
Perform. Comput. Appl. 33(6) (2019). DOI 10.1177/1094342019877383

2. M.D. Donno, K. Tange, N. Dragoni, IEEE Access 7, 150936 (2019). DOI 10.1109/

ACCESS.2019.2947652
3. J.A. Añel, D.P. Montes, J.R. Iglesias, Cloud and Serverless Computing for Scientists -

A Primer (Springer, 2020). DOI 10.1007/978-3-030-41784-0

4. J. Spillner, P. Gkikopoulos, A. Buzachis, M. Villari, in 2nd International Workshop
on Cloud, IoT and Fog Systems/Security (CIFS) / 14th IEEE/ACM International

Conference on Utility and Cloud Computing (UCC) (2020)

5. K. Saatkamp, U. Breitenbücher, O. Kopp, F. Leymann, in CLOSER 2017 - Proceedings
of the 7th International Conference on Cloud Computing and Services Science, Porto,

Portugal, April 24-26, 2017, ed. by D. Ferguson, V.M. Muñoz, J.S. Cardoso, M. Helfert,

C. Pahl (SciTePress, 2017), pp. 247–258. DOI 10.5220/0006371002470258
6. T. Quang, Y. Peng, in 2020 IEEE International Conference on Pervasive Comput-

ing and Communications Workshops, PerCom Workshops 2020, Austin, TX, USA,

March 23-27, 2020 (IEEE, 2020), pp. 1–6. DOI 10.1109/PerComWorkshops48775.2020.
9156140

7. P. Wintersberger, H. Nicklas, T. Martlbauer, S. Hammer, A. Riener, in AutomotiveUI
’20: 12th International Conference on Automotive User Interfaces and Interactive Ve-

hicular Applications, Virtual Event, Washington, DC, USA, September 21-22, 2020

(ACM, 2020), pp. 252–261. DOI 10.1145/3409120.3410659
8. G.D. Col, E. Teppan, in Proceedings 35th International Conference on Logic Pro-

gramming (Technical Communications), ICLP 2019 Technical Communications, Las
Cruces, NM, USA, September 20-25, 2019, EPTCS, vol. 306, ed. by B. Bogaerts, E. Er-
dem, P. Fodor, A. Formisano, G. Ianni, D. Inclezan, G. Vidal, A. Villanueva, M.D. Vos,
F. Yang (2019), EPTCS, vol. 306, pp. 259–265. DOI 10.4204/EPTCS.306.30

9. J. Spillner, D. Boruta, T. Brunner, S. Gerber, A. Kosmaczewski. Syn: GitOps on
Stereoids with Kubernetes the Swiss Way. 3rd International Conference on Microser-

vices (Microservices) (2020)


