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Abstract
We study q-SAT in the multistage model, focusing on the linear-time solvable 2-SAT. Herein, given a
sequence of q-CNF fomulas and a non-negative integer d, the question is whether there is a sequence
of satisfying truth assignments such that for every two consecutive truth assignments, the number
of variables whose values changed is at most d. We prove that Multistage 2-SAT is NP-hard even
in quite restricted cases. Moreover, we present parameterized algorithms (including kernelization)
for Multistage 2-SAT and prove them to be asymptotically optimal.
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1 Introduction

q-Satisfiability (q-SAT) is one of the most basic and best studied decision problems in
computer science: It asks whether a given boolean formula in conjunctive normal form, where
each clause consists of at most q literals, is satisfiable. q-SAT is NP-complete for q ≥ 3, while
2-Satisfiability (2-SAT) is linear-time solvable [1]. The recently introduced multistage
model [17, 24] takes a sequence of instances of some decision problem (e.g., modeling one
instance that evolved over time), and asks whether there is a sequence of solutions to them
such that, roughly speaking, any two consecutive solutions do not differ too much. We
introduce q-SAT in the multistage model, defined as follows.1

Multistage q-SAT (MqSAT)
Input: A set X of variables, a sequence Φ = (φ1, . . . , φτ ), τ ∈ N, of q-CNF formulas over

literals over X, and an integer d ∈ N0.
Question: Are there τ truth assignments f1, . . . , fτ : X → {⊥,>} such that
(i) for each i ∈ {1, . . . , τ}, fi is a satisfying truth assignment for φi, and
(ii) for each i ∈ {1, . . . , τ − 1}, it holds that |{x ∈ X | fi(x) 6= fi+1(x)}| ≤ d?

Constraint (ii) of MqSAT can also be understood as that the Hamming distance of two
consecutive truth assignments interpreted as n-dimensional vectors over {⊥,>} is at most d,
or when considering the sets of variables set true, then the symmetric difference of two
consecutive sets is at most d.

In this work, we focus on M2SAT yet relate most of our results to MqSAT. We study
M2SAT in terms of classic computational complexity and parameterized algorithmics [13].

1 We identify false and true with ⊥ and >, respectively.
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2 Multistage 2-SAT
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Figure 1 Our results for Multistage 2-SAT. Each box gives, regarding to a parameterization (top
layer), our parameterized classification (middle layer) with additional details on the corresponding
result (bottom layer). Arrows indicate the parameter hierarchy: An arrow from parameter p1

to p2 indicates that p1 ≤ p2. “PK” and “no PK” stand for “polynomial problem kernel” and
“no polynomial problem kernel unless NP ⊆ coNP /poly”, respectively. †: unless the ETH
breaks (Thm. 3.4). ‡: unless the ETH breaks (Thm. 3.1). ¶: unless NP ⊆ coNP / poly (Thm. 7.6)
§: unless NP ⊆ coNP /poly (Thm. 3.1).

Motivation. In theory as well as in practice, it is common to model problems as q-SAT- or
even 2-SAT-instances. Once being modeled, established solvers specialized on q-SAT are
employed. In some cases, a sequence of problem instances (e.g., modeling a problem instance
that changes over time) is to solve such that any two consecutive solutions are similar in some
way (e.g., when costs are inferred for setup changes). Hence, when following the previously
described approach, each problem instance is first modeled as a q-SAT instance such that a
sequence of q-SAT-instances remains to be solved. Comparably to the single-stage setting,
understanding the multistage setting could give raise to a general approach for solving
different (multistage) problems. With MqSAT we introduce the first problem that models
the described setup. Note that, though a lot of variants of q-SAT exist, MqSAT is one of
the very few variants that deal with a sequence of q-SAT-instances [34].

Our Contributions. Our results for Multistage 2-SAT are summarized in Figure 1. We
prove Multistage 2-SAT to be NP-hard, even in fairly restricted cases: (i) if d = 1 and
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the maximum number m of clauses in any stage is six, or (ii) if there are only two stages.
These results are tight in the sense that M2SAT is linear-time solvable when d = 0 or τ = 1.
While NP-hardness for d = 1 implies that there is no (n+m+ τ)f(d)-time algorithm for any
function f unless P = NP, where n denotes the number of variables, we prove that when
parameterized by the dual parameter n− d (the minimum number of variables not changing
between any two consecutive layers), M2SAT is W[1]-hard and solvable in O∗(nO(n−d))
time.2 We prove this algorithm to be tight in the sense that, unless the Exponential Time
Hypothesis (ETH) breaks, there is no O∗(no(n−d))-time algorithm. Further, we prove that
M2SAT is solvable in O∗(2O(n)) time but not in O∗(2o(n)) time unless the ETH breaks.
Likewise, we prove that M2SAT is solvable in O∗(nO(τ ·d)) time but not in O∗(no(d)·f(τ)) time
for any function f unless the ETH breaks. As to efficient and effective data reduction, we
prove M2SAT to admit problem kernelizations of size O(m · τ) and O(n2τ), but none of
size (n+m)O(1), O((n+m+ τ)2−ε), or O(n2−ετ), ε > 0, unless NP ⊆ coNP / poly.

Related Work. q-SAT is one of the most famous decision problems with a central role in
NP-completeness theory [12, 30], for the (Strong) Exponential Time Hypothesis [28, 29], and
in the early theory on kernelization lower bounds [6, 23], for instance. In contrast to q-SAT
with q ≥ 3, 2-SAT is proven to be polynomial- [31], even linear-time [1] solvable. Several
applications of 2-SAT are known (see, e.g., [11, 18, 25, 33]). In the multistage model, various
problems from different fields were studied, e.g. graph theory [2, 3, 10, 21, 22, 24], facility
location [17], knapsack [5], or committee elections [8]. Also variations to the multistage
model were studied, e.g. with a global budget [26], an online-version [4], or using different
distance measures for consecutive stages [8, 22].

2 Preliminaries

We denote by N and N0 the natural numbers excluding and including zero, respectively.
Frequently, we will tacitly make use of the fact that for every n ∈ N, 0 ≤ k ≤ n, it holds true
that 1 +

∑k
i=1
(
n
i

)
=
∑k
i=0
(
n
i

)
≤ 1 + nk ≤ 2nk.

Satisfiability. Let X denote a set of variables. A literal is a variable that is either positive
or negated (we denote the negation of x by ¬x). A clause is a disjunction over literals. A
formula φ is in conjunctive normal form (CNF) if it is of the form

∧
i Ci, where Ci is a clause.

A formula φ is in q-CNF if it is in CNF and each clause consists of at most q literals. An
truth assignment f : X → {⊥,>} is satisfying for φ (or satisfies φ) if each clause is satisfied,
which is the case if at least one literal in the clause is evaluated to true (a positive variable
assigned true, or a negated variable assigned false). For a, b ∈ {⊥,>}, let a⊕ b := ⊥ if a = b,
and a ⊕ b := > otherwise. For X ′ ⊂ X, an truth assignment f ′ : X ′ → {⊥,>} is called
partial. We say that we simplify a formula φ given a partial truth assignment f ′ (we denote
the simplified formula by φ[f ′]) if each variable x ∈ X ′ is replaced by f ′(x), and then each
clause containing an evaluated-to-true literal is deleted.

Parameterized Algorithmics. A parameterized problem L is a set of instances (x, p) ∈
Σ∗ ×N0, where Σ is a finite alphabet and p is referred to as the parameter. A parameterized
problem L is (i) fixed-parameter tractable (in FPT) if each instance (x, p) can be decided

2 The O∗-notation suppresses factors polynomial in the input size.
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for L in f(p) · |x|O(1) time, and (ii) in XP if each instance (x, p) can be decided for L in |x|g(p)

time, where f, g are computable functions only depending on p. If L is W[1]-hard, it is
presumably not in FPT. A problem bikernelization for a parameterized problem L to a
parameterized problem L′ takes any instance (x, p) of L and maps it in polynomial time to
an equivalent instance (x′, p′) of L′ (the so-called problem bikernel) such that |x′|+ p′ ≤ f(p)
for some computable function f . A problem kernelization is a problem bikernelization
where L = L′. If f is a polynomial, the problem (bi)kernelization is said to be polynomial. A
parametric transformation from a parameterized problem L to a parameterized problem L′

maps any instance (x, p) of L in f(p) · |x|O(1) time to an equivalent instance (x′, p′) of L′
such that p′ ≤ g(p) for some functions f, g each only depending on p. If there is a parametric
transformation from L to L′ with L being W[1]-hard, then L′ is W[1]-hard. If f(p) ∈ pO(1)

and g(p) ∈ O(p), then we have a linear parametric transformation [27]. If there is a linear
parametric transformation from a problem L to problem L′ with L′ admitting a problem
kernelization of size h(p′), then L admits a problem bikernelization of size h(p′).

Preprocessing on Multistage 2-SAT. Due to the following data reduction, we can safely
assume each stage to admit a satisfying truth assignment.

I Reduction Rule 1. If a stage exists with no satisfying truth assignment, then return no.

Reduction Rule 1 is correct and applicable in linear time.

3 From Easy to Hard: NP- and W-hardness

Multistage 2-SAT is linear-time solvable if the input consists of only one stage, or if all or
none variables are allowed to change its truth assignment between two consecutive stages.

I Observation 1. Multistage 2-SAT is linear-time solvable if (i) τ = 1, (ii) d = 0, or
(iii) d = n.

Proof. Let (X,Φ = (φ1, . . . , φτ ), d) be an instance of M2SAT. Case (i): τ = 1. Polynomial-
time many-one reduction to 2-SAT with instance (X,φ1). Case (ii): d = 0. Polynomial-time
many-one reduction to 2-SAT with instance (X,φ′), wheret φ′ =

∧τ
i=1 φi, Case (iii): d = n.

Solve each of the τ instances (X,φ1), . . . , (X,φτ ) of 2-SAT individually (Turing reduction).
J

We will prove that the cases (i) and (ii) in Observation 1 are tight: Multistage 2-SAT
becomes NP-hard if τ ≥ 2 (Sections 3.1 & 3.3) or d = 1 (Section 3.2). For the case (iii)
in Observation 1 the picture looks different: we prove Multistage 2-SAT to be polynomial-
time solvable if n− d ∈ O(1) (Section 5).

3.1 From One to Two Stages
In this section, we prove that Multistage 2-SAT becomes NP-hard if τ ≥ 2. In fact, we
prove the following.

I Theorem 3.1. Multistage 2-SAT is NP-hard, even for two stages, where the variables
appear all negated in one and all positive in the other stage. Moreover, Multistage 2-SAT
(i) is W[1]-hard when parameterized by d even if τ = 2,
(ii) admits no no(d)·f(τ)-time algorithm for any function f unless the ETH breaks, and
(iii) admits no problem kernelization of size O(n2−ε · f(τ)) for any ε > 0 and function f ,

unless NP ⊆ coNP / poly.
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We will reduce from the following NP-hard problem:

Weighted 2-SAT
Input: A set of variables X, a 2-CNF φ over X, and an integer k.
Question: Is there satisfying truth assignment for φ with at most k variables set true?

When parameterized by the number k of set-to-true variables, Weighted 2-SAT is W[1]-
complete [15, 20]. Moreover, Weighted 2-SAT admits no no(k)-time algorithm unless the
ETH breaks [9] and no problem bikernelization of size O(n2−ε), ε > 0, unless NP ⊆
coNP / poly [14].

I Construction 1. Let (X,φ, k) be an instance of Weighted 2-SAT, where φ =
∧m
i=1 Ci.

Construct Φ = (φ1, φ2), where φ2 := φ and φ1 :=
∧
x∈X(¬x) consists of n size-one clauses,

where each variable appears negated in one clause. Finally, set d := k. �

I Lemma 3.2. Let I = (X,φ, k) be an instance of Weighted 2-SAT, and let I ′ = (X,Φ, d)
be an instance of Multistage 2-SAT obtained from I using Construction 2. Then, I is a
yes-instance if and only if I’ is a yes-instance.

Proof. (⇒) Let f be a satisfying truth assignment for I. We claim that f1 : X → {⊥},
x 7→ ⊥, and f2 := f is a solution to I ′. Note that f1 and f2 satisfy φ1 and φ2, respectively.
Moreover, |{x ∈ X | f1(x) 6= f2(x)}| = |{x ∈ X | f2(x) = >}| ≤ d = k.

(⇐) Let (f1, f2) be a solution to I ′. Note that f1 : X → {⊥}. Since d = k, there are
at most k variables set to true by f2. Hence, f2 is a satisfying truth assignment for I with
at most k variables set to true, and thus I is yes-instance. J

Proof of Theorem 3.1. Construction 1 forms a polynomial-time many-one reduction to an
instance with two stages with d = k. Note that Weighted 2-SAT remains NP-hard if all
literals are positive (e.g., via a reduction from Vertex Cover). Hence, M2SAT is NP-hard,
even if the variables appear all negated in one and all positive in the other stage. Moreover,
unless the ETH breaks, M2SAT admits no no(d)·f(τ)-time algorithm for any function f since
no no(k)-time algorithm exists for Weighted 2-SAT [9]. As Construction 1 also forms a
parametric transformation, M2SAT is W[1]-hard when parameterized by d even if τ = 2.
Moreover, Construction 1 forms a linear parametric transformation from Weighted 2-SAT
parameterized by |X| to M2SAT parameterized by n · f(τ) for any function f . Hence,
M2SAT admits no problem kernel of size O(n2−ε · f(τ)) for any ε > 0 and function f ,
unless NP ⊆ coNP / poly. J

I Remark 3.3. Theorem 3.1(iii) can be generalized to Multistage q-SAT: Instead from
Weighted 2-SAT, we reduce (in an analogous way) from Weighted q-SAT which admits
no problem bikernelization of size O(nq−ε), ε > 0, unless NP ⊆ coNP /poly [14]. Thus,
unless NP ⊆ coNP / poly, Multistage q-SAT admits no problem kernel of size O(nq−ε ·f(τ))
for any ε > 0 and function f .

3.2 From Zero to One Allowed Change
In this section, we prove that Multistage 2-SAT becomes NP-hard if d = 1 and the
maximum number m of clauses in any stage is six. In fact, we prove the following.

I Theorem 3.4. Multistage 2-SAT is NP-hard, even if the number of clauses in each
stage is at most six and d = 1. Moreover, unless the ETH breaks, Multistage 2-SAT
admits no O∗(2o(n))-time algorithm.
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I Construction 2. Let (X,φ) be an instance of 3-SAT, where φ =
∧m
i=1 Ci and each clause

consists of exactly three literals. Let `ji , j ∈ {1, 2, 3}, denote the literals in Ci for each i ∈
{1, . . . ,m}. Construct instance (X ′,Φ, d) of M2SAT as follows. First, construct X ′ := X∪B,
where B := {b1, b2, b3}. Let

φB := (b1 ∨ b2) ∧ (b1 ∨ b3) ∧ (b2 ∨ b3), and
φ¬B := (¬b1 ∨ ¬b2) ∧ (¬b1 ∨ ¬b3) ∧ (¬b2 ∨ ¬b3).

Next, construct Φ := (φi, . . . , φ2m) as follows. For each i ∈ {1, . . . ,m}, construct

φ2i−1 := φ¬B , and φ2i := (`i1 ∨ b1) ∧ (`i2 ∨ b2) ∧ (`i3 ∨ b3) ∧ φB

Finally, set d := 1. �

I Observation 2. In every solution to an instance obtained from Construction 2, in each
odd stage exactly two bj are set to false and in each even stage exactly two bj are set to true.

Proof. Clearly, in every satisfying truth assignment for φ2i−1 = φ¬B , i ∈ {1, . . . ,m}, at least
two bj are set to false. In every satisfying truth assignment for φ2i, to satisfy φB, at least
two variables from B must be set to true. As d = 1, exactly one of B being set to false in a
satisfying truth assignment φ2i−1 can be set to true in a satisfying truth assignment for φ2i,
which implies that already one of B must be set to true in φ2i−1. J

I Lemma 3.5. Let I = (X,φ) be an instance of 3-SAT, and let I ′ = (X ′,Φ, d) be an
instance of Multistage 2-SAT obtained from I using Construction 2. Then, I is a
yes-instance if and only if I’ is a yes-instance.

Proof. (⇒) Let f : X → {⊥,>} be a satisfying truth assignment for φ. We construct truth
assignments f1, . . . , fτ : X ′ → {⊥,>} as follows. Let fi(x) = f(x) for all i ∈ {1, . . . , τ} and
all x ∈ X. Next, for each i ∈ {1, . . . ,m}, f2i assigns exactly two variables from B to true such
that φ2i is satisfied. This is possible since at least one clause from φ2i is already set to true by
one true literal. It remains to show that for each i ∈ {1, . . . ,m}, there is an truth assignment
of f2i−1 to the variables from B such that exactly two are set to false (in which case φ2i−1
is satisfied), and |{b ∈ B | f2i−2(b) 6= f2i−1(b)}| ≤ 1 (if i = 1, interpret f2i−2 = f2i)
and |{b ∈ B | f2i−1(b) 6= f2i(b)}| ≤ 1. Since |B| = 3, there is a j ∈ {1, . . . , 3} such
that f2i−2(bj) = f2i(bj) = >. Set f2i−1(bj) = > and f2i−1(b`) = ⊥ for ` ∈ {1, . . . , 3} \ {j}.
Observe that |{b ∈ B \ {bj} | f2i−2(b) 6= f2i−1(b)}| = |{b ∈ B \ {bj} | f2i−1(b) 6= f2i(b)}| = 1,
what we needed to show.

(⇐) By Observation 2, between every two consecutive stages, exactly one variable in B
changes its true-false value. Hence, each variable from X is assigned the same value in each
stage, i.e., fi(x) = fj(x) for every x ∈ X and every i, j ∈ {1, . . . , τ}. Let f : X → {⊥,>} be
the truth assignment of the variables in X with f(x) := f1(x) for all x ∈ X. Since in every
even stage, by Observation 2, exactly one variable from B is set to false, at least one literal
must be set to true. It follows that each clause in the 3-SAT instance is satisfied by f , that
is, f is a satisfying truth assignment for I. Thus, I is a yes-instance. J

Proof of Theorem 3.4. Construction 2 forms a polynomial-time many-one reduction to
an instance with d = 1, m = 6, and n = |X| + 3. Hence, M2SAT is NP-hard, even
if d = 1 and m = 6, and, unless the ETH breaks, admits no O∗(2o(n))-time algorithm since
no O∗(2o(|X|))-time algorithm exists for 3-SAT [9]. J
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3.3 From All to All But k Allowed Changes
In this section, we prove that Multistage 2-SAT is W[1]-hard when parameterized by the
lower bound n− d on the number of unchanged variables between any two consecutive stages.

I Theorem 3.6. Multistage 2-SAT is W[1]-hard when parameterized by n − d even
if τ = 2, and, unless the ETH breaks, admits no O∗(no(n−d)·f(τ))-time algorithm for any
function f .

We reduce from the following NP-hard problem:

Multicolored Independent Set (MIS)
Input: An undirected, k-partite graph G = (V 1, . . . , V k, E).
Question: Is there an independent set S such that |S ∩ V i| = 1 for all i ∈ {1, . . . , k}?

MIS is W[1]-hard with respect to k [19] and unless the ETH breaks, there is no f(k)·no(k)-time
algorithm [32].

I Construction 3. Let I = (G = (V 1, . . . , V k, E)) be an instance of MIS and let V :=
V 1 ] · · · ] V k, n := |V |, and V i = {vi1, . . . , vi|Vi|} for all i ∈ {1, . . . , k}. We construct
an instance I ′ = (X, (φ1, φ2), d) with d := n − k as follows. Let X := X1 ∪ · · · ∪ Xk

with Xi = {xij | vij ∈ Vi} for all i ∈ {1, . . . , k}. Let for all i ∈ {1, . . . , k}

φ∗i :=
∧

j,j′∈{1,...,|V i|}, j 6=j′
(¬xij ∨ ¬xij′), and let φE :=

∧
{vi
j
,vi
′
j′
}∈E

(¬xij ∨ ¬xi
′

j′).

Let

φ1 :=
∧
x∈X

(x) and φ2 := φE ∧
∧

i∈{1,...,k}

φ∗i .

This finishes the construction. �

I Lemma 3.7. Let I = (G = (V 1, . . . , V k, E)) be an instance of MIS, and let I ′ =
(X, (φ1, φ2), d) be an instance of Multistage 2-SAT obtained from I using Construction 3.
Then, I is a yes-instance if and only if I’ is a yes-instance.

Proof. (⇒) Let S = {v1
j1
, . . . , vkjk} ⊆ V be an independent set with S ∩ V i = {viji} for

all i ∈ {1, . . . , k}. Let XS := {x1
j1
, . . . , xkjk} be the variables in X corresponding to the

vertices in S. Let f1 : X → {⊥,>}, x 7→ > and f2 : X → {⊥,>} be defined as

f2(x) =
{
>, if x ∈ XS ,

⊥, otherwise.

Clearly, f1 satisfies φ1. Further, observe that for each r ∈ {1, . . . , k}, f2 satisfies φ∗r since
all variables from Xi except for xiji is set to ⊥. Since S is an independent set, and only
variables corresponding to vertices from S are set to true by f2, f2 satisfies φE . It follows
that f2 satisfies φ2, and hence, f = (f1, f2) is a solution for I ′.

(⇐) Let f = (f1, f2) be a solution to I ′. Let S := {vij ∈ V | f2(vij) = >}. We claim
that S is an independent set in G with |S ∩ V i| = 1 for all i ∈ {1, . . . , k}.

First, observe that S is an independent set in G: Suppose not, then there are vij , vi
′

j′ ∈ S
such that {vij , vi

′

j′} ∈ E. By construction, f2(xij) = f2(xi′j′) = >. Since φE contains the
clause (¬xij ∨¬xi

′

j′), f2 does not satisfy φE (and, thus, φ2), contradicting the fact that f is a
solution. It follows that S is an independent set in G.
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It remains to show that |S ∩ V i| = 1 for all i ∈ {1, . . . , k}. Observe that for all i ∈
{1, . . . , k}, |{x ∈ Xi | f2(x) = >}| ≤ 1. Suppose not, that is, there is some i ∈ {1, . . . , k}
such that there are x, y ∈ Xi with x 6= y and f2(x) = f2(y) = >. By construction, φ∗i
contains the clause (¬x ∨ ¬y), which is evaluated to false under f2. This is a contradiction
to the fact that f is a solution.

Observe that for all i ∈ {1, . . . , k}, |{x ∈ Xi | f2(x) = >}| > 0: By construction of φ1, we
know that f1(x) = > for all x ∈ X. Since d = n− k, there are at least k vertices set to true
by f2. If for some i ∈ {1, . . . , k} we have that |{x ∈ Xi | f2(x) = >}| = 0, then, by the pigeon-
hole principle, there is an i′ ∈ {1, . . . , k} with i 6= i′ such that |{x ∈ Xi | f2(x) = >}| ≥ 2,
which yields a contradiction as discussed. Thus, |S ∩ V i| = 1 for all i ∈ {1, . . . , k}. It follows
that S is a solution to I. J

Proof of Theorem 3.6. Construction 3 runs in polynomial time and outputs an equivalent
instance (Lemma 3.7) with two stages and d = n − k. As Construction 1 also forms a
parametric transformation, M2SAT is W[1]-hard when parameterized by n− d even if τ = 2.
Moreover, unless the ETH breaks, M2SAT admits no no(n−d)·f(τ)-time algorithm for any
function f since no no(k)-time algorithm exists for MIS. J

4 Fixed-Parameter Tractability Regarding the Number of Variables
and m+ n− d

In this section, we prove that Multistage 2-SAT is fixed-parameter tractable regarding
the number of variables (Section 4.1) and regarding the parameter m+ n− d, the maximum
number of clauses over all input formulas and the minimum number of variables not changing
between any two consecutive stages (Section 4.2).

4.1 Fixed-Parameter Tractability Regarding the Number of Variables

We prove that Multistage 2-SAT is fixed-parameter tractable regarding the number of
variables.

I Theorem 4.1. Multistage 2-SAT is solvable in O(min{2nnd, 4n} · τ · (n+m)) time.

Proof. Let I = (X,φ, d) be an instance of M2SAT with Φ = (φ1, . . . , φτ ). Construct the
digraph D with vertex set V = V 1 ] · · · ] V τ ] {s, t} and arc set A as follows. Add two
designated vertices s and t to V . For each i ∈ {1, . . . , τ}, for every truth assignment f
satisfying φi, add a vertex vif to V i. Note that there are at most 2n truth assignments, where
we can test for each truth assignment whether it is satisfying in O(n+m) time. Add the
arc (s, v) for all v ∈ V 1 and the arc (v, t) for all v ∈ V τ . Moreover, for each i ∈ {1, . . . , τ −1},
add the arc (vif , vi+1

g ) if and only if |{x ∈ X | f(x) 6= g(x)}| ≤ d. This finishes the
construction of D. Note that |V i| ≤ 2n, and each vertex (except for s) has outdegree at
most

∑d
j=1

(
n
j

)
≤ nd. Hence, |A| ∈ O(min{2nnd, 4n}τ).

It is not difficult to see that D admits an s-t path if and only if I is a yes-instance (see,
e.g., [8, 21, 22]). Checking whether D admits an s-t path can be done in O(|V |+ |A|). J

I Remark 4.2. Theorem 4.1 is asymptotically optimal regarding n unless the ETH breaks (The-
orem 3.4). Moreover, Theorem 4.1 is easily adaptable to Multistage q-SAT with q ≥ 3 as,
for every q ≥ 3, the number of truth assignments is 2n and each is verifiable in linear time.
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4.2 Fixed-Parameter Tractability Regarding m+ n− d

We prove that Multistage 2-SAT is fixed-parameter tractable regarding the parameter m+
n− d.

I Theorem 4.3. Multistage 2-SAT is solvable in O(42(m+n−d)τ(n+m)) time.

To prove Theorem 4.3, we will show that either Theorem 4.1 applies with n ≤ 2(m+ n− d)
or the following.

I Lemma 4.4. Multistage 2-SAT solvable in O(τ(n+m)) time if 2m < d.

Proof. Let I = (X,φ, d) be an instance of M2SAT with Φ = (φ1, . . . , φτ ) on n variables and
each formula contains at most m clauses. Due to Reduction Rule 1, we can safely assume that
each formula of Φ admits a satisfying truth assignment. Let Xi ⊆ X be the set of variables
appearing as literals in φi for each i ∈ {1, . . . , τ}. Note that |Xi| ≤ 2m for each i ∈ {1, . . . , τ}.
Compute in linear time a satisfying truth assignment f1 : X → {⊥,>} for φ1. Compute
for each i ∈ {2, . . . , τ} in linear time a satisfying truth assignment f ′i : Xi → {⊥,>} for φi.
Next, iteratively for i = 2, . . . , τ , set for all x ∈ X

fi(x) =
{
f ′i(x), if x ∈ Xi,

fi−1(x), if x ∈ X \Xi.

Clearly, truth assignment fi satisfies φi. Moreover, for all i ∈ {2, . . . , τ} it holds that
|{x ∈ X | fi−1(x) 6= fi(x)}| ≤ |Xi| ≤ 2m < d, and hence (f1, . . . , fτ ) is a solution to I. J

Proof of Theorem 4.3. Let I = (X,φ, d) be an instance of M2SAT with Φ = (φ1, . . . , φτ )
on n variables and each formula contains at most m clauses. We distinguish how 2(m+n−d)
relates to 2n− d.
Case 1 : 2(m+ n− d) ≥ 2n− d. Since d ≤ n, it follows that 2(m + n − d) ≥ n. Due

to Theorem 4.1, we can solve I in O(min{2nnd, 4n}τ(n+m)) ⊆ O(42(m+n−d)τ(n+m))
time.

Case 2 : 2(m+ n− d) < 2n− d. We have that

2(m+ n− d) < 2n− d ⇐⇒ 2m < d.

Due to Lemma 4.4, we can solve I in O(τ(n+m)) time.
J

I Remark 4.5. Theorem 4.3 can be adapted for Multistage q-SAT for every q ≥ 3,
where Lemma 4.4 is restated for qm < d and we check for a satisfying truth assignment for
each stage in O∗(2qm) time. To adapt the proof of Theorem 4.3, we then relate q(m+ n− d)
with qn − (q − 1)d and either employ the adapted Theorem 4.1 (see Remark 4.2), or the
adapted Lemma 4.4.

5 XP Regarding the Number of Consecutive Non-Changes

We prove that Multistage 2-SAT is in XP when parameterized by the lower bound n− d
on non-changes between consecutive stages, the parameter “dual” to d.

I Theorem 5.1. Multistage 2-SAT is solvable in O(n4(n−d)+1 · 24(n−d)τ(n+m)) time.
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Let I = (X,Φ = (φ1, . . . , φτ ), d) be a fixed yet arbitrary instance with n variables. Two partial
truth assignments fY : Y → {⊥,>} and fZ : Z → {⊥,>} with Y,Z ⊆ X are called compatible
if for all x ∈ Y ∩ Z it holds that fY (x) = fZ(x). For two compatible assignments fY , fZ , we
denote by

fY ∪ fZ :=
{
fY (x), x ∈ Y,
fZ(x), x ∈ Z \ Y.

With a similar idea as in the proof of Theorem 4.1, we will construct a directed graph with
terminals s and t such that there is an s-t path in G if and only if I is a yes-instance.

I Construction 4. Given I, we construct a graph G = (V,E) with vertex set

V := V 1→3 ∪ V 2→3 ∪ · · · ∪ V τ−2→τ ∪ {s, t},

where for each Y, Z ∈
(
X
n−d
)
, we have that (fY , fZ) ∈ V i→i+2 if and only if fY , fZ are

compatible and each of φi[fY ], φi+1[fY ∪ fZ ], and φi+2[fZ ] is satisfiable, and the following
arcs: (i) (s, v) for all v ∈ V 1→3, (ii) (v, t) for all v ∈ V τ−2→τ , and (iii) ((fY , fZ), (fY ′ , fZ′)) ∈
V i→i+2 × V j→j+2 if j = i+ 1 and fZ = fY ′ (implying that Z = Y ′). �

I Lemma 5.2. Construction 4 computes a graph of size O(n4(n−d)+1 · 24(n−d)τ) and can be
done in O(n4(n−d)+1 · 24(n−d)τ(n+m)) time.

Proof. To construct a set V i→i+2, we compute each tuple (fY , fY ) in O(n2(n−d) · 22(n−d))
time, and check whether they are compatible in O(n+m) time, and whether each of φi[fY ],
φi+1[fY ∪ fZ ], and φi+2[fZ ] is satisfiable, each in O(n + m) time. Since for any fY , fZ
we can check whether fY = fZ in O(n) time, we add the O(n4(n−d) · 24(n−d)) many arcs
from V i→i+2 to V i+1→i+3 in O(n4(n−d)+1 · 24(n−d)) time. In total, G can be constructed
in O(n4(n−d)+1 · 24(n−d)τ(n+m)) time. J

I Lemma 5.3. Let I be an instance of Multistage 2-SAT and let G be the graph obtained
from applying Construction 4 to I. Then, I is a yes-instance if and only if G admits
an s-t paths.

Proof. (⇒) Let f = (f1, . . . , fτ ) be a solution to I. For each i ∈ {1, . . . , τ −1}, since |{x ∈
X | fi(x) 6= fi+1(x)}| ≤ d, there is a set Yi ⊆ {x ∈ X | fi(x) = fi+1(x)} with |Yi| =
n − d. Observe that vfi := (fi|Yi , fi+1|Yi+1) ∈ V i→i+2: Clearly φi[fi|Yi ] and φi[fi+2|Yi+1 ]
satisfiable. Note that fi|Yi , fi+1|Yi+1 are compatible since Yi ∩ Yi+1 ⊆ {x ∈ X | fi(x) =
fi+1(x) = fi+2(x)}. Moreover, φi+1[fi|Yi ∪ fi+1|Yi+1 ] is satisfiable since fi+1(x) = fi|Yi ∪
fi+1|Yi+1(x) for all x ∈ Yi ∪ Yi+1. It follows that there is an s-t path in G with the arc
sequence ((s, vf1 ), (vf1 , v

f
2 ), . . . , (vfτ−1, t)).

(⇐) Let P be an s-t path in G. By construction of G, P contains s, t, and from
each V i→i+2 exactly one vertex. Moreover, if arc ((fX , fY ), (fX′ , fY ′)) is contained in P ,
then fY = fX′ . Let (s, ((fYi , fYi+1))τ−2

i=1 , t) be the sequence of vertices in P . We know that
there exists an f ′1 : X \Y1 → {⊥,>} that satisfies φ1[fY1 ], and hence f1 := f ′1∪fY1 satisfies φ1.
Moreover, we know that for all i ∈ {2, . . . , τ − 1}, there exists f ′i : X \ (Yi−1 ∪ Yi)→ {⊥,>}
that satisfies φi[fYi−1 ∪fYi ], and hence fi := f ′i ∪fYi−1 ∪fYi satisfies φi. Finally, we know that
there exists an f ′τ : X \ Yτ−1 → {⊥,>} that satisfies φτ [fYτ−1 ], and hence fτ := f ′τ ∪ fYτ−1

satisfies φτ .
It remains to show that |{x ∈ X | fi(x) 6= fi+1(x)}| ≤ d for all i ∈ {1, . . . , τ − 1}. Note

that fi(x) = fi+1(x) for all x ∈ Yi, and since |Yi| = n− d, the claim follows. J
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Algorithm 1 XP-algorithm on input instance (X,φ, d).

1 foreach X ′ ⊆ X : |X ′| ≤ τ · d do // 1 + nτ ·d many
2 foreach f1 : X ′ → {⊥,>} do // 2|X′| many
3 φ∗1 ← simplify(φ1, f1);
4 foreach g2, g3, . . . , gτ : gi ∈ F(X ′) ∀i ∈ {2, . . . , τ} do // 2τ |X ′|τ ·d many
5 foreach i ∈ {2, . . . , τ} do
6 fi(x)← fi−1(x)⊕ gi(x) ∀x ∈ X ′; φ∗i ← simplify(φi, fi);
7 if (X \X ′, (φ∗1, . . . , φ∗τ ), 0) is a yes-instance of M2SAT then
8 return yes // decidable in linear time (Observation 1)

9 return no

Proof of Theorem 5.1. Given an instance I = (X,Φ = (φ1, . . . , φτ ), d) of M2SAT, ap-
ply Construction 4 in O(n4(n−d)+1 ·24(n−d)τ(n+m)) time to obtain graph G with terminals s
and t of size O(n4(n−d)+1 · 24(n−d)τ) (Lemma 5.2). Return, in time linear in the size of G,
yes if G admits an s-t path, and no otherwise (Lemma 5.3). J

I Remark 5.4. Theorem 5.1 is asymptotically optimal regarding n − d unless the ETH
breaks (Theorem 3.6). Moreover, Theorem 5.1 does not generalize to Multistage q-SAT
for q ≥ 3, as MqSAT is already NP-hard for one stage and hence for any number n− d.

6 XP Regarding Number of Stages and Consecutive Changes

In this section, we prove that Multistage 2-SAT is in XP when parameterized by τ + d.

I Theorem 6.1. Multistage 2-SAT is solvable in O(n2τ ·d · 2τ ·d+1 · τ · (n+m)) time.

Let I = (X,Φ = (φ1, . . . , φτ ), d) be a fixed yet arbitrary instance with τ · d < n, as
otherwise Theorem 4.1 applies. On a high level, our Algorithm 1 works as follows:
(1) Guess q ≤ τ · d variables X ′ ⊆ X that will change over time.
(2) Guess an initial truth assignment of the variables in X ′.
(3) For each but the first stage, guess the at most min{q, d} possible variables to change.
(4) Set the variables to the guessed true or false values, delete clauses which are set to true.
(5) Return yes if the resulting instance with d = 0 is a yes-instance (linear-time checkable).
(6) If the algorithm never (for all possible guesses) returned yes, then return no.

For any X ′ ⊆ X, define the set of all truth assignments to variables of X ′ with at
most min{|X ′|, d} true values by

F(X ′) :=
{
f : X ′ → {⊥,>}

∣∣ |{x ∈ X ′ | f(x) = >}| ≤ min{|X ′|, d}
}
.

With the next two lemmas, we prove that Algorithm 1 is correct and runs in XP-time
regarding τ + d.

I Lemma 6.2. Algorithm 1 returns yes if and only if the input instance is a yes-instance.

Proof. (⇒) If Algorithm 1 returns yes, then for some X ′ ⊆ X, and some f1, . . . , fτ that
simplified φ1, . . . , φτ to φ∗1, . . . , φ∗τ , instance I∗ := (X \X ′, (φ∗1, . . . , φ∗τ ), 0) is a yes-instance
of M2SAT. Let f∗1 , . . . , f∗τ : X \X ′ → {⊥,>} be a solution to I∗. Let h1, . . . , hτ be defined
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as hi(x) := fi(x) if x ∈ X ′, and hi(x) := f∗i (x) otherwise, i.e., if x ∈ X \ X ′. We claim
that (h1, . . . , hτ ) is a solution to I. Observe that hi satisfies φi for each i ∈ {1, . . . , τ}.
Moreover, for each i ∈ {1, . . . , τ − 1} we have |{x ∈ X | hi(x) 6= hi+1(x)}| = |{x ∈ X ′ |
gi+1(x) = >}| ≤ d.

(⇐) Let h = (h1, . . . , hτ ) be a solution to I. Let X ′ ⊆ X with |X ′| ≤ τ · d the set of
all variables which change at least once over the stages their true-false value. Algorithm 1
guesses X ′ in line 1. Let f = (f1, . . . , fτ ) be such that for each i ∈ {1, . . . , τ}, fi : X ′ →
{⊥,>} is hi restricted to the variables in X ′. In line 2, Algorithm 1 guesses f1. Since h is
a solution to I, we know that |{x ∈ X | hi(x) 6= hi+1(x)}| = |{x ∈ X | fi(x) 6= fi+1(x)}| ≤
min{|X ′|, d} for each i ∈ {1, . . . , τ − 1}. It follows that for each i ∈ {2, . . . , τ} there exists
a gi ∈ F(X ′) such that fi(x) = fi−1(x) ⊕ gi(x). Algorithm 1 guesses g2, . . . , gτ in line 4,
and finds f in line 6. Let (φ∗1, . . . , φ∗τ ) be the formulas (φ1, . . . , φτ ) simplified according to f ,
as done by Algorithm 1 in line 3 and line 6. Since h is a solution, f ′ = (f ′1, . . . , f ′τ ) where
for each i ∈ {1, . . . , τ}, f ′i : X \X ′ → {⊥,>} is hi restricted to the variables in X \X ′, is a
solution to (X \X ′, (φ∗1, . . . , φ∗τ ), 0). Hence, (X \X ′, (φ∗1, . . . , φ∗τ ), 0) is a yes-instance, and
consequently Algorithm 1 returns yes in line 8. J

I Lemma 6.3. Algorithm 1 runs in O(n2τ ·d · 2τ ·d+1τ(n+m)) time.

Proof. The running time T (I) is T (I) ≤ (1 + nτ ·d) · T1(I), where T1(I) is the worst-case
running time inside the first for-loop (line 2 to line 8). Analogously, we have T1(I) ≤
2τ ·d · T2(I), and T2(I) ∈ O(n+m) + (1 + (τ · d)d)τ−1 · T3(I). Now, T3(I) ∈ O(τ(n+m)),
as line 6 can be done in O(n+m) time with (τ − 1) executions of this line, and checking the
if-condition for line 8 can be done in O(τ(n+m)) time. We arrive at

T (I) ∈ O((1 + nτ ·d) · 2τ ·d · ((n+m) + (1 + τ · d)τ ·d · τ(n+m)))
⊆ O(n2τ ·d · 2τ ·d+1 · τ(n+m)) J

We are set to prove the main result from this section.

Proof of Theorem 6.1. Let I = (X,Φ = (φ1, . . . , φτ ), d) be an instance of M2SAT with
n variables and at most m clauses in each stage’s formula. If τ · d ≥ n, then, by Theorem 4.1,
we know that M2SAT is solvable in O(22τ ·d · τ(n+m)) time. Otherwise, if τ · d < n, then
Algorithm 1 runs in O(n2τ ·d · 2τ ·d+1τ(n + m)) time (Lemma 6.3) and correctly decides I
(Lemma 6.2). J

I Remark 6.4. Theorem 6.1 is asymptotically optimal regarding d unless the ETH breaks (The-
orem 3.1). Moreover, Theorem 6.1 is not adaptable to Multistage q-SAT with q ≥ 3
unless P = NP since Multistage q-SAT with q ≥ 3 is NP-hard even with τ + d ∈ O(1).

7 Efficient and Effective Data Reduction

In this section, we study efficient and provably effective data reduction for Multistage 2-SAT
in terms of problem kernelization. We focus on the parameter combinations n+m, n+ τ ,
and m + τ . We prove that no problem kernelization of size polynomial in n + m exists
unless NP ⊆ coNP / poly (Section 7.1), and that a problem kernelization of size quadratic
in m+ τ and of size cubic in n+ τ exists (Section 7.2). Finally, we prove that no problem
kernel of size truly subquadratic in m+ τ exists unless NP ⊆ coNP / poly (Section 7.2.1).
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7.1 No Time-Independent Polynomial Problem Kernelization
When parameterized by n+m, efficient and effective data reduction appears unlikely.

I Theorem 7.1. Unless NP ⊆ coNP /poly, Multistage 2-SAT admits no problem kernel
of size polynomial in nf(m,d), for any function f only depending on m and d.

We will prove Theorem 7.1 via an AND-composition [6, 7], that is, we prove that given
t instances of Multistage 2-SAT, each with d = 1 and the same number of variables
and stages, we can compute in polynomial time an instance of Multistage 2-SAT such
that all input instances are yes if and only if the output instance is yes, and the number
of variables and the maximum number of clauses in one stage does not exceed those from
all input instances. Drucker [16] proved that if a parameterized problem admits an AND-
composition from an NP-hard problem, then it admits no polynomial problem kernelization,
unless NP ⊆ coNP / poly.

I Construction 5. Let I1, . . . , It be t instances of M2SAT with d = 1, m = 6, n variables,
and τ stages, where Ii = (Xi,Φi, d) withXi = {xi1, . . . , xin} and Φi = (φi1, . . . , φiτ ). Construct
the instance I := (X,Φ, d) as follows. Construct the set X = {x1, . . . , xn} of variables, and
identify xj with xij for each i ∈ {1, . . . , t}, j ∈ {1, . . . , n}. In a nutshell, we construct
the sequence of formulas by chaining up the input instances’ formulas, and add n stages
between any two consecutive instances each consisting of the always-true formula (x1∨¬x1)—
these ensure a reconfiguration of the last truth assignment to the initial truth assignment
of the subsequent instance. Formally, construct Φ = (φ1, . . . , φt·(τ+n)) as follows. For
all i ∈ {1, . . . , t}, j ∈ {1, . . . , τ + n}, set (where S(i) := (i− 1) · (τ + n))

φS(i)+j :=
{
φij , if 1 ≤ j ≤ τ,
(x1 ∨ ¬x1), if τ + 1 ≤ j ≤ τ + n.

Finally, set d = 1. �

I Lemma 7.2. Let I1, . . . , It be t instances of Multistage 2-SAT with d = 1, m = 6,
n variables, and τ stages, and let I be the instance obtained from Construction 5. Then,
each Ii is a yes-instance if and only if I is a yes-instance.

Proof. (⇐) Let (f1, . . . , ft(τ+n)) be a solution to I. It is not difficult to see that, for
each i ∈ {1, . . . , t}, the sequence (fS(i)+1, . . . , fS(i)+τ ) is a solution to Ii.

(⇒) For each i ∈ {1, . . . , t}, let (f i1, . . . , f iτ ) denote a solution for Ii. We construct a
solution f = (f1, . . . , ft(τ+n)) for I as follows. For each i ∈ {1, . . . , t} and j ∈ {1, . . . , τ},
set fS(i)+j := f ij . For each i ∈ {1, . . . , t− 1}, we define fS(i)+τ+1, . . . , fS(i)+τ+n iteratively
as follows. For j = 1, . . . , n, let

fS(i)+τ+j(x) :=
{
fS(i)+τ+(j−1)(x), if x ∈ X \ {xj},
fS(i+1)+1(x), if x = xj .

Observe that for each j ∈ {1, . . . , n}, it holds true that |{x ∈ X | fS(i)+τ+(j−1)(x) 6=
fS(i)+τ+j(x)}| ≤ 1, and that fS(i)+τ+n = fS(i+1)+1. J

Proof of Theorem 7.1. Construction 5 forms an AND-composition (Lemma 7.2) from an
NP-hard special case of M2SAT (Theorem 3.4) to M2SAT when parameterized by n+m,
in fact, mapping m and d to a constant. Thus, due to Drucker [16], M2SAT admits no
problem kernelization of size polynomial in nf(m,d) for any function f only depending on m
and d. J
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I Remark 7.3. Due to Theorem 4.1, Multistage 2-SAT yet admits a problem kernel of
size 2O(n).

7.2 Polynomial Problem Kernelizations
We prove problem kernelizations of size polynomial in n+ τ and m+ τ .

I Theorem 7.4. Multistage 2-SAT admits a linear-time computable problem kernelization
of size O(n2τ) and of size O(m · τ).

We employ the following two immediate reduction rules (each is clearly correct and applicable
in linear time):

I Reduction Rule 2. In each stage, delete all but one appearances of a clause in the formula.

I Reduction Rule 3. Delete a variable that appears in no stage’s formula as a literal.

Proof of Theorem 7.4. Observe that there are at most N := 2n +
(2n

2
)
∈ O(n2) many

pairwise different clauses. After exhaustively applying Reduction Rule 2, we have m ≤ N ∈
O(n2). After exhaustively applying Reduction Rule 3, it follows that for each variable, there
is at least one clause, and hence, n ≤ 2 ·m · τ . J

I Remark 7.5. Theorem 7.4 adapts easily to Multistage q-SAT. Herein, the problem kernel
sizes are O(nq · τ) and O(q ·m · τ).

Subsequently, we prove that a linear kernel appears unlikely.

7.2.1 No Subquadratic Problem Kernelization
I Theorem 7.6. Unless NP ⊆ coNP / poly, Multistage 2-SAT admits no problem kernel
of size O((m+ n+ τ)2−ε) for any ε > 0.

To prove Theorem 7.6, we show that there is a linear parametric transformation from Vertex
Cover parameterized by |V | to Multistage 2-SAT parameterized by n+m+ τ .

I Construction 6. Let I = (G, k) with G = (V,E) be an instance of Vertex Cover.
Denote the vertices V = {v1, . . . , vn}. We construct the instance I ′ = (X,Φ, d) of M2SAT
with d = k and Φ = (φ0, φ1, . . . , φn) as follows. Let X = XV ∪B with XV = {xi | vi ∈ V }
and B = {b1, . . . , bk}. Let

φ0 :=
n∧
i=1

(¬xi) ∧
k∧
j=1

(¬bj) and

φi :=
∧

{vi,vj}∈E

(xi ∨ xj) ∧
{∧k

j=1(bj) if i mod 2 = 0,∧k
j=1(¬bj) if i mod 2 = 1,

∀i ∈ {1, . . . , n}.

Note that τ +m+ |X| ∈ O(n), since each vertex degree is at most n− 1. �

I Lemma 7.7. Let I = (G, k) be an instance of Vertex Cover, and let I ′ = (X ′,Φ′, d)
be the instance of Multistage 2-SAT obtained from I using Construction 6. Then, I is a
yes-instance if and only if I ′ is a yes-instance.
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Proof. (⇒) Let V ′ ⊆ V be a size-at-most-k vertex cover of G. Let XW := {xi ∈ XV | vi ∈
W}. Define f0 : X → {⊥,>} such that f0(x) = ⊥ for all x ∈ X. Define f1, . . . , fn : X →
{⊥,>} and f∗ : XV → {⊥,>} as

fi(x) =


f∗(x), if x ∈ XV ,

>, if x ∈ B and i mod 2 = 0,
⊥, if x ∈ B and i mod 2 = 1,

where f∗(x) =
{
>, if x ∈ XW ,

⊥, if x ∈ XV \XW .

Observe that |{x ∈ X | f0(x) 6= f1(x)}| = |{x ∈ XV | f∗(x) = >}| = |XW | = |W | ≤ k.
Moreover, for each i ∈ {1, . . . , n− 1}, we have that |{x ∈ X | fi(x) 6= fi+1(x)}| = |B| = k.
It is not difficult to see that fi satisfies φi for each i ∈ {0, . . . , τ}. Hence, (f0, f1, . . . , fn) is a
solution to I ′.

(⇐) Let f = (f0, f1, . . . , fn) be a solution to I ′. By construction of φ0, it must hold
that f0(x) = ⊥ for all x ∈ X. Moreover, by construction of φ1, we know that f1(x) = ⊥
for all x ∈ B, and hence X ′ := {x ∈ XV | f0(x) 6= f1(x)} = {x ∈ XV | f1(x) = >}
has |X ′| ≤ k. Since for each i ∈ {1, . . . , n− 1}, we have that {x ∈ X | fi(x) 6= fi+1(x)} = B

by construction, we know that for each i, j ∈ {1, . . . , n} it holds true that fi(x) = fj(x)
for all x ∈ XV . We claim that W = {vi ∈ V | xi ∈ X ′} is a size-at-most-k vertex cover
of G. We know that |W | = |X ′| ≤ k. Suppose towards a contradiction that there is an
edge {vi, vj} ∈ E disjoint from W . This implies that fi(xi) = fi(xj) = ⊥. By construction,
φi contains the clause (xi ∨ xj), which is not satisfied by fi. This contradicts the fact that f
is a satisfying truth assignment. It follows that W is a size-at-most-k vertex cover of G, and
thus, I is a yes-instance. J

Proof of Theorem 7.6. Construction 6 is a linear parametric transformation (Lemma 7.7)
such that τ +m+ |X| ∈ O(|V |). Since Vertex Cover admits no problem bikernelization
of size O(|V |2−ε), ε > 0 [14], the statement follows. J

I Remark 7.8. Theorem 7.6 can be easily adapted to Multistage q-SAT when tak-
ing q-Hitting Set as source problem [14], ruling out problem kernelizations of size O((n+
m+ τ)q−ε), ε > 0 (unless NP ⊆ coNP / poly).

8 Conclusion

While 2-SAT is linear-time solvable, its multistage model Multistage 2-SAT is intractable
in even surprisingly restricted cases. This is also reflected by the fact that several of our
direct upper bounds are already asymptotically optimal. By our results, the most interesting
difference between Multistage 2-SAT and Multistage q-SAT, with q ≥ 3, is that the
former is efficiently solvable if the numbers of stages and allowed consecutive changes are
constant, which is not the case for the latter (unless P = NP). Finally, our results show
that exact solutions are far from practical, waving the path for randomized or heuristic
approaches.
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