Skip to main content

Rate-1 Key-Dependent Message Security via Reusable Homomorphic Extractor Against Correlated-Source Attacks

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12710))

Abstract

In this work, we first present general methods to construct information rate-1 PKE that is \(\mathsf {KDM}^{(n)}\)-secure with respect to block-affine functions for any unbounded polynomial n. To achieve this, we propose a new notion of extractor that satisfies reusability, homomorphic, and security against correlated-source attacks, and show how to use this extractor to improve the information rate of the \(\mathsf {KDM}\)-secure PKE of Brakerski et al. (Eurocrypt 18). Then, we show how to amplify \(\mathsf {KDM}\) security from block-affine function class into general bounded size circuits via a variant of the technique of Applebaum (Eurocrypt 11), achieving better efficiency. Furthermore, we show how to generalize these approaches to the IBE setting.

Additionally, our PKE and IBE schemes are also leakage resilient, with leakage rates \(1-o(1)\) against a slightly smaller yet still general class – block leakage functions. We can instantiate the required building blocks from \(\mathsf {LWE}\) or \(\mathsf {DDH}\).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Information rate is defined as the message-to-ciphertext ratio when one encrypts sufficiently long plaintexts.

  2. 2.

    When the secret key is stored in blocks, a block leakage function can leak individual blocks one after another, as long as the blocks still remain a block source.

  3. 3.

    The extractor can extract uniform string (up to statistical distance \(\varepsilon \)) for any source with min-entropy k.

  4. 4.

    Clearly, this notion cannot be achieved unconditionally, as an information-theoretic extractor requires (conditional) min-entropy from the source, which would be exhausted after a bounded number of extractions.

  5. 5.

    Clearly, this notion is stronger than the reusable extractor, which can be viewed as a special case where \(\mathfrak {g}_i\)’s are all the identity function. Thus, this notion is only possible under computational assumptions.

  6. 6.

    Here, t denotes the number of times the weak source being reused.

  7. 7.

    Just as described in full version, block leakage means that each block of source is leaked by an independent function and remain enough entropy conditioned on leakage against other blocks.

  8. 8.

    In [4], Applebaum leverages the abstract notion of randomized encoding to achieve \(\mathsf {KDM}\) amplification. Here, we directly amplify our scheme through using Garbled Circuits, which is a well-known instantiation of randomized encoding.

References

  1. Adão, P., Bana, G., Herzog, J., Scedrov, A.: Soundness of formal encryption in the presence of key-cycles. In: di Vimercati, S.C., Syverson, P., Gollmann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp. 374–396. Springer, Heidelberg (2005). https://doi.org/10.1007/11555827_22

    Chapter  Google Scholar 

  2. Alwen, J., Dodis, Y., Naor, M., Segev, S. Walfish, G., Wichs, D.: Public-key encryption in the bounded-retrieval model. In: Gilbert [17], pp. 113–134

    Google Scholar 

  3. Alwen, J., Krenn, S., Pietrzak, K., Wichs, D.: Learning with rounding, revisited. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 57–74. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_4

    Chapter  Google Scholar 

  4. Applebaum, B.: Key-dependent message security: generic amplification and completeness. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 527–546. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_29

    Chapter  Google Scholar 

  5. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives and circular-secure encryption based on hard learning problems. In: Halevi [20], pp. 595–618

    Google Scholar 

  6. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 719–737. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_42

    Chapter  Google Scholar 

  7. Barak, B., Haitner, I., Hofheinz, D., Ishai, Y. Bounded key-dependent message security. In: Gilbert [17], pp. 423–444

    Google Scholar 

  8. Black, J., Rogaway, P., Shrimpton, T.: Encryption-scheme security in the presence of key-dependent messages. In: Nyberg, K., Heys, H. (eds.) SAC 2002. LNCS, vol. 2595, pp. 62–75. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36492-7_6

    Chapter  MATH  Google Scholar 

  9. Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryption from decision Diffie-Hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 108–125. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5_7

    Chapter  Google Scholar 

  10. Brakerski, Z., Goldwasser, S.: Circular and leakage resilient public-key encryption under subgroup indistinguishability. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 1–20. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_1

    Chapter  Google Scholar 

  11. Brakerski, Z., Goldwasser, S., Kalai, Y.T.: Black-box circular-secure encryption beyond affine functions. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 201–218. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-6_13

    Chapter  Google Scholar 

  12. Brakerski, Z., Lombardi, A., Segev, G., Vaikuntanathan, V.: Anonymous IBE, leakage resilience and circular security from new assumptions. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 535–564. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_20

    Chapter  Google Scholar 

  13. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anonymous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6_7

    Chapter  Google Scholar 

  14. Dodis, Y., Kalai, Y.T., Lovett, S.: On cryptography with auxiliary input. In: Mitzenmacher, M. (ed.) 41st ACM STOC, pp. 621–630. ACM Press, May/June (2009)

    Google Scholar 

  15. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.D.: Fuzzy extractors: how to generate strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139 (2008)

    Article  MathSciNet  Google Scholar 

  16. Döttling, N.: Low noise LPN: KDM secure public key encryption and sample amplification. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 604–626. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2_27

    Chapter  MATH  Google Scholar 

  17. Gilbert, H. (ed.): EUROCRYPT 2010, volume 6110 of LNCS. Springer, Heidelberg, May/June 2010

    Google Scholar 

  18. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2), 270–299 (1984)

    Article  MathSciNet  Google Scholar 

  19. Goyal, V., Song, Y.: Correlated-source extractors and cryptography with correlated-random tapes. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 562–592. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2_19

    Chapter  Google Scholar 

  20. Halevi, S. (ed.): CRYPTO 2009. LNCS, vol. 5677. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8

    Book  MATH  Google Scholar 

  21. Hazay, C., López-Alt, A., Wee, H., Wichs, D.: Leakage-resilient cryptography from minimal assumptions. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 160–176. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_10

    Chapter  Google Scholar 

  22. Hofheinz, D., Unruh, D.: Towards key-dependent message security in the standard model. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 108–126. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_7

    Chapter  MATH  Google Scholar 

  23. Kitagawa, F., Tanaka, K.: Key dependent message security and receiver selective opening security for identity-based encryption. In: Abdalla, M., Dahab, R. (eds.) PKC 2018, Part I. LNCS, vol. 10769, pp. 32–61. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76578-5_2

    Chapter  Google Scholar 

  24. Laud, P., Corin, R.: Sound computational interpretation of formal encryption with composed keys. In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971, pp. 55–66. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24691-6_5

    Chapter  Google Scholar 

  25. Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. In: Halevi [20], pp. 18–35

    Google Scholar 

  26. Vadhan, S.P.: Pseudorandomness. Found. Trends®  Theor. Comput. Sci. 7(1–3), 1–336 (2012)

    Google Scholar 

  27. Wee, H.: KDM-security via homomorphic smooth projective hashing. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016, Part II. LNCS, vol. 9615, pp. 159–179. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49387-8_7

    Chapter  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous reviewers of PKC 2021 for their insightful advices. Qiqi Lai is supported by the National Key R&D Program of China (2017YFB0802000), the National Natural Science Foundation of China (61802241, U2001205, 61772326, 61802242), the Natural Science Basic Research Plan in Shaanxi Province of China (2019JQ-360), the National Cryptography Development Foundation during the 13th Five-year Plan Period (MMJJ20180217), and the Fundamental Research Funds for the Central Universities (GK202103093). Feng-Hao Liu and Zhedong Wang are supported by an NSF Award CNS-1657040 and an NSF Career Award CNS-1942400. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the sponsors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiqi Lai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lai, Q., Liu, FH., Wang, Z. (2021). Rate-1 Key-Dependent Message Security via Reusable Homomorphic Extractor Against Correlated-Source Attacks. In: Garay, J.A. (eds) Public-Key Cryptography – PKC 2021. PKC 2021. Lecture Notes in Computer Science(), vol 12710. Springer, Cham. https://doi.org/10.1007/978-3-030-75245-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75245-3_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75244-6

  • Online ISBN: 978-3-030-75245-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics