Skip to main content

Subversion-Resilient Public Key Encryption with Practical Watchdogs

  • Conference paper
  • First Online:
Public-Key Cryptography – PKC 2021 (PKC 2021)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12710))

Included in the following conference series:

Abstract

Restoring the security of maliciously implemented cryptosystems has been widely considered challenging due to the fact that the subverted implementation could arbitrarily deviate from the official specification. Achieving security against adversaries that can arbitrarily subvert implementations seems to inherently require trusted component assumptions and/or architectural properties. At ASIACRYPT 2016, Russell et al. proposed an attractive model where a watchdog is used to test and approve individual components of an implementation before or during deployment. Such a detection-based strategy has been useful for designing various cryptographic schemes that are provably resilient to subversion.

We consider Russell et al.’s watchdog model from a practical perspective regarding watchdog efficiency. We find that the asymptotic definitional framework, while permitting strong positive theoretical results, does not yet guarantee practical watchdogs, due to the fact that the running time of a watchdog is only bounded by an abstract polynomial. Hence, in the worst case, the running time of the watchdog might exceed the running time of the adversary, which seems impractical for most applications. We adopt Russell et al.’s watchdog model to the concrete security setting and design the first subversion-resilient public-key encryption scheme which allows for extremely efficient watchdogs with only linear running time.

At the core of our construction is a new variant of a combiner for key encapsulation mechanisms (KEMs) by Giacon et al. (PKC’18). We combine this construction with a new subversion-resilient randomness generator that also can be checked by an efficient watchdog, even in constant time, which could be of independent interest for the design of other subversion-resilient cryptographic schemes. Our work thus shows how to apply Russell et al.’s watchdog model to design subversion-resilient cryptography with efficient watchdogs. We insist that this work does not intend to show that the watchdog model outperforms other defense approaches, but to demonstrate that practical watchdogs are practically achievable.

The first author was supported by the research training group “Human Centered Systems Security” (NERD.NRW) sponsored by the state of North-Rhine Westphalia. The second author was supported by the National Natural Science Foundation of China (Grant No. 62032005, No. 61702541, No. 61872087, No. 61872089) and the Young Elite Scientists Sponsorship Program by China Association for Science and Technology (No. YESS20170128). The third author was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme, grant agreement 802823.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Such a trusted operation is also required in the PKE construction by Russell et al.. in [28].

  2. 2.

    In our model the adversary provides an implementation of each building block instead of an implementation of \(\mathsf {KEMSR}\).

  3. 3.

    Even though it is straightforward to extend our description to the general case capturing both classical cases of “indistinguishability” and “search problems”, we refrain from introducing additional notation to achieve this. We will only consider indistinguishability in this paper.

References

  1. Ateniese, G., Francati, D., Magri, B., Venturi, D.: Public immunization against complete subversion without random Oracles. In: Deng, R.H., Gauthier-Umaña, V., Ochoa, M., Yung, M. (eds.) ACNS 2019. LNCS, vol. 11464, pp. 465–485. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21568-2_23

    Chapter  Google Scholar 

  2. Ateniese, G., Magri, B., Venturi, D.: Subversion-resilient signature schemes. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS 2015, pp. 364–375. ACM Press, October 2015

    Google Scholar 

  3. Bellare, M., Fuchsbauer, G., Scafuro, A.: NIZKs with an untrusted CRS: security in the face of parameter subversion. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 777–804. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6_26

    Chapter  MATH  Google Scholar 

  4. Bellare, M., Hoang, V.T.: Resisting randomness subversion: fast deterministic and hedged public-key encryption in the standard model. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 627–656. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_21

    Chapter  Google Scholar 

  5. Bellare, M., Jaeger, J., Kane, D.: Mass-surveillance without the state: strongly undetectable algorithm-substitution attacks. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS 2015, pp. 1431–1440. ACM Press, October 2015

    Google Scholar 

  6. Bellare, M., Paterson, K.G., Rogaway, P.: Security of symmetric encryption against mass surveillance. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 1–19. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_1

    Chapter  Google Scholar 

  7. Berndt, S., Liskiewicz, M.: Algorithm substitution attacks from a steganographic perspective. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 1649–1660. ACM Press, October/November 2017

    Google Scholar 

  8. Blum, M., Luby, M., Rubinfeld, R.: Self-testing/correcting with applications to numerical problems. In: 22nd ACM STOC, pp. 73–83. ACM Press, May 1990

    Google Scholar 

  9. Bossuat, A., Bultel, X., Fouque, P.-A., Onete, C., van der Merwe, T.: Designing reverse firewalls for the real world. In: Chen, L., Li, N., Liang, K., Schneider, S. (eds.) ESORICS 2020. LNCS, vol. 12308, pp. 193–213. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58951-6_10

    Chapter  Google Scholar 

  10. Chakraborty, S., Dziembowski, S., Nielsen, J.B.: Reverse firewalls for actively secure MPCs. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12171, pp. 732–762. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1_26

    Chapter  Google Scholar 

  11. Chen, R., Huang, X., Yung, M.: Subvert KEM to break DEM: practical algorithm-substitution attacks on public-key encryption. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12492, pp. 98–128. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64834-3_4

    Chapter  Google Scholar 

  12. Chen, R., Mu, Y., Yang, G., Susilo, W., Guo, F., Zhang, M.: Cryptographic reverse firewall via malleable smooth projective hash functions. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 844–876. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6_31

    Chapter  Google Scholar 

  13. Chow, S.S.M., Russell, A., Tang, Q., Yung, M., Zhao, Y., Zhou, H.-S.: Let a non-barking watchdog bite: cliptographic signatures with an offline watchdog. In: Lin, D., Sako, K. (eds.) PKC 2019. LNCS, vol. 11442, pp. 221–251. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17253-4_8

    Chapter  Google Scholar 

  14. Claburn, T.: NSA: we’ve learned our lesson after foreign spies used one of our crypto backdoors - but we can’t say how exactly. The Register (2020). https://www.theregister.com/2020/10/28/nsa_backdoor_wyden/

  15. Degabriele, J.P., Farshim, P., Poettering, B.: A more cautious approach to security against mass surveillance. In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 579–598. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48116-5_28

    Chapter  Google Scholar 

  16. Dodis, Y., Impagliazzo, R., Jaiswal, R., Kabanets, V.: Security amplification for Interactive cryptographic primitives. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 128–145. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5_9

    Chapter  Google Scholar 

  17. Dodis, Y., Mironov, I., Stephens-Davidowitz, N.: Message transmission with reverse firewalls—secure communication on corrupted machines. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 341–372. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4_13

    Chapter  Google Scholar 

  18. Dziembowski, S., Faust, S., Standaert, F.X.: Private circuits III: hardware trojan-resilience via testing amplification. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 142–153. ACM Press, October 2016

    Google Scholar 

  19. Fischlin, M., Mazaheri, S.: Self-guarding cryptographic protocols against algorithm substitution attacks. In: CSF, pp. 76–90. IEEE Computer Society (2018)

    Google Scholar 

  20. Fuchsbauer, G.: Subversion-zero-knowledge SNARKs. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10769, pp. 315–347. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76578-5_11

    Chapter  Google Scholar 

  21. Giacon, F., Kiltz, E., Poettering, B.: Hybrid encryption in a multi-user setting, revisited. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10769, pp. 159–189. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76578-5_6

    Chapter  Google Scholar 

  22. Holenstein, T., Renner, R.: One-way secret-key agreement and applications to circuit polarization and immunization of public-key encryption. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 478–493. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218_29

    Chapter  Google Scholar 

  23. Jain, A., Korb, A., Manohar, N., Sahai, A.: Amplifying the security of functional encryption, unconditionally. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12170, pp. 717–746. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56784-2_24

    Chapter  Google Scholar 

  24. Jain, A., Manohar, N., Sahai, A.: Combiners for functional encryption, unconditionally. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 141–168. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_6

    Chapter  Google Scholar 

  25. Mironov, I., Stephens-Davidowitz, N.: cryptographic reverse firewalls. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 657–686. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_22

    Chapter  Google Scholar 

  26. Poettering, B., Rösler, P.: Combiners for AEAD. IACR Trans. Symmetric Cryptol. 2020(1), 121–143 (2020)

    Article  Google Scholar 

  27. Russell, A., Tang, Q., Yung, M., Zhou, H.-S.: Cliptography: clipping the power of kleptographic attacks. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 34–64. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6_2

    Chapter  Google Scholar 

  28. Russell, A., Tang, Q., Yung, M., Zhou, H.S.: Generic semantic security against a kleptographic adversary. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 907–922. ACM Press, October/November 2017

    Google Scholar 

  29. Russell, A., Tang, Q., Yung, M., Zhou, H.-S.: Correcting subverted random oracles. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 241–271. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_9

    Chapter  Google Scholar 

  30. von Neumann, J.: Various techniques used in connection with random digits. In: Householder, A., Forsythe, G., Germond, H. (eds.) Monte Carlo Method, pp. 36–38. National Bureau of Standards Applied Mathematics Series, 12, U.S. Government Printing Office, Washington, D.C (1951)

    Google Scholar 

  31. Young, A., Yung, M.: The dark side of “Black-Box” cryptography or: should we trust capstone? In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 89–103. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5_8

    Chapter  Google Scholar 

  32. Young, A., Yung, M.: Kleptography: using cryptography against cryptography. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 62–74. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-69053-0_6

    Chapter  Google Scholar 

Download references

Acknowledgments

We would like to thank Moti Yung and the anonymous reviewers of PKC 2021 for their helpful comments and suggestions, and in particular Cristina Onete for shepherding this paper and providing very detailed and valuable inputs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal Bemmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bemmann, P., Chen, R., Jager, T. (2021). Subversion-Resilient Public Key Encryption with Practical Watchdogs. In: Garay, J.A. (eds) Public-Key Cryptography – PKC 2021. PKC 2021. Lecture Notes in Computer Science(), vol 12710. Springer, Cham. https://doi.org/10.1007/978-3-030-75245-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75245-3_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75244-6

  • Online ISBN: 978-3-030-75245-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics