
ar
X

iv
:2

00
8.

12
54

5v
1 

 [
cs

.P
L

] 
 2

8 
A

ug
 2

02
0

Effectiveness of Annotation-Based Static Type Inference

Isabel Wingen, Philipp Körner �

Institut für Informatik, Universität Düsseldorf

Universitätsstr. 1, D-40225 Düsseldorf, Germany

{isabel.wingen,p.koerner}@uni-duesseldorf.de

Abstract. Benefits of static type systems are well-known: they offer guarantees

that no type error will occur during runtime and, inherently, inferred types serve

as documentation on how functions are called. On the other hand, many type

systems have to limit expressiveness of the language because, in general, it is

undecidable whether a given program is correct regarding types. Another concern

that was not addressed so far is that, for logic programming languages such as

Prolog, it is impossible to distinguish between intended and unintended failure

and, worse, intended and unintended success without additional annotations.

In this paper, we elaborate on and discuss the aforementioned issues. As an al-

ternative, we present a static type analysis which is based on plspec. Instead of

ensuring full type-safety, we aim to statically identify type errors on a best-effort

basis without limiting the expressiveness of Prolog programs. Finally, we eval-

uate our approach on real-world code featured in the SWI community packages

and a large project implementing a model checker.

Keywords: Prolog, static verification, optional type system, data specification

1 Introduction

Dynamic type systems often enable type errors during development. Generally, this is

not too much of an issue as errors usually get caught early by test cases or REPL-

driven development. Prolog programs however do not follow patterns prevalent in other

programming paradigms. Exceptions are thrown rarely and execution is resumed at

some prior point via backtracking instead, before queries ultimately fail (or succeed due

to the wrong reason). This renders it cumbersome to identify type errors, their location

and when they occur.

There has been broad research on type systems offering a guarantee about the ab-

sence of type errors (briefly discussed in Section 2). Yet, in dynamic programming

languages such as Prolog, a complete well-typing of arbitrary programs is undecid-

able [14]. Thus, in order for the type system to work, the expressiveness of the lan-

guage often is limited. This hinders adaptation to existing code severely, and, as a con-

sequence, type errors are often ignored in larger projects.

At DECLARE’17, we presented plspec [7], a type system that uses annotations in

order to insert run-time type checks (cf. Section 3). During discussions, the point was

raised that some type checks could be made statically even with optional types. This

paper thus contributes the following:

http://arxiv.org/abs/2008.12545v1
https://orcid.org/0000-0001-7256-9560


– A type analysis tool usable for any unmodified Prolog program. It handles a proper

“any” type and is extensible for any Prolog dialect (Section 4).

– An empirical evaluation of the amount of inferred types using this tool (Section 5).

– Automatic inference and generation of pre- and postconditions of plspec.

2 A Note on Type Systems and Related Work

Static type systems have a huge success story, mostly in functional programming lan-

guages like Haskell [6], but also in some Prolog derivatives, such as Mercury [4], which

uses type and mode information in order to achieve major performance boosts. Even

similar dynamic languages such as Erlang include a type specification language [5].

Many static type systems for logic programming languages have been presented [13],

including the seminal works of Mycroft and O’Keefe [12], which also influenced Typed

Prolog [8], and a pluggable type system for Yap and SWI-Prolog [16].

All type systems have some common foundations, yet usually vary in expressive-

ness. Some type systems suggest type annotations for functions or predicates, some

require annotations of all predicates or those of which the type cannot be inferred au-

tomatically to a satisfactory level. Yet, type checking of logic programs is, in general,

undecidable [14]. This renders only three feasible ways to deal with typing:

1. Allow only a subset of types, for which typing is decidable, e.g., regular types [2]

or even only mode annotations [15].

2. Require annotations where typing is not decidable without additional information.

3. Work on a best-effort basis which may let some type errors slip through.

Most type systems fall into the first or the second category. Yet, this usually limits

how programs can be written: some efficient or idiomatic patterns may be rejected by

the type system. As an example, most implementations of the Hindley-Milner type sys-

tem [11] do not allow heterogeneous lists, though always results in a well-typing of the

program. Additionally, most type systems refuse to handle a proper “any” type, where

not enough information is available and arguments may, statically, be any arbitrary

value. Such restrictions render adaptation of type systems to existing projects infea-

sible. Annotations, however, can be used to guide type systems and allow more precise

typing. The trade-off is code overhead introduced by the annotations themselves, which

are often cumbersome to write and to maintain.

Into the last category falls the work of Schrijvers et al. [16], and, more well-known,

the seminal work of Ciao Prolog [3] featuring a rich assertion language which can

be used to describe types. Unfortunately, [16] seems to be abandoned after an early

publication and the official release was removed. Ciao’s approach, on the other hand, is

very powerful, but suffers due to incompatibilities with other Prolog dialects.

We share the reasoning and philosophy behind Ciao stated in [3]: type systems

for languages such as Prolog must be optional in order retain usefulness, power and

expressiveness of the language, even if it comes at the cost that not all type errors can

be detected. Mycroft-O’Keefe identified two typical mistakes type systems uncover:

firstly, omitted cases and, secondly, transposed arguments. We argue that omitted cases

might as well be intended failure and, as such, should not be covered by a type system

2



at all. Traditional type systems such as the seminal work of Mycroft-O’Keefe [12] often

are not a good fit, as typing in Prolog is a curious case: due to backtracking and goal

failure, type errors may lead to behaviour that is valid, yet unintended.

Backtracking. Prolog predicates are allowed to offer multiple solutions which is often

referred to as non-determinism. Once a goal fails, execution continues at the last choice

point where another solution might be possible. Thus, if a predicate was called incor-

rectly, the program might still continue because another solution is found, e.g., based

on other input. Consider an error in a specialised algorithm: if there is a choice point,

a solution might still be found if another, slower, fall-back implementation is invoked

via backtracking. Such errors could go unnoticed for a long time as they cannot be

uncovered by testing if a correct solution is still found in a less efficient manner.

Goal Failure. Most ISO Prolog predicates raise an error if they are called with incorrect

types. However, non-ISO predicates usually fail as no solution is found because the

input does not match with any clause. E.g., consider a predicate as trivial as member:

member(H, [H|_]). member(E, [_|T]) :- member(E, T).

Querying member(1, [2,3,4]) will fail because the first argument is not in the list,

which is the second argument. We name this intended failure. Yet, if the second argu-

ment is not a list, e.g., when called as member(1, 2), it will fail because the second

argument is not a list. We call this unintended failure, as the predicate is called in-

correctly. The story gets even worse: additionally to failure cases, there can also be

unintended success. Calling member(2, [1, 2|foo]) is not intended to succeed, as

the second argument is not a list, yet the query returns successfully. Distinguishing be-

tween intended and unintended behaviour is impossible as they use the same signal, i.e.

goal failure (or success). We argue that the only proper behaviour would be to raise an

error on unintended input instead because this most likely is a programming error.

In this paper, we investigate the following questions: Can we implement an optional

type system that supports any Prolog dialect? How well does such a type system per-

form and is a subset of errors that are identified on best-effort basis sufficient? We think

that the most relevant class of errors is that an argument is passed incorrectly, i.e. the

type is wrong. Thus, an important question is how precise type inference by such a

type system could be. If it works well enough, popular error classes such as transposed

arguments, as described by [12], can be identified in most cases.

3 Foundation: plspec

plspec is an ad-hoc type system that executes type checks at runtime via co-routining.

With plspec, it is possible to add two kinds of annotations. The first kind of annotation

allows introduction of new types. plspec offers three different ways for this. For our

type system, we currently focus only on the first one and implement shipped special

cases that fall under the third category, i.e. tuples, lists and compound terms:

1. recombination of existing types
2. providing a predicate that acts as characteristic function
3. rules to check part of a term and generate new specifications for sub-terms

3



any

varnonvar

ground

compound

list

empty list

atomic

atom string

(SWI only)

exact

number

int float

Fig. 1. Abstract Type Domain

plspec’s built-in types are shown in

Fig. 1. They correspond to Prolog types,

with the addition of “exact”, which only al-

lows a single specified atom (like a zero-

arity compound), and “any”, which allows

any value. Some types are polymorphic, e.g.

lists can be instantiated to lists of a spe-

cific type. There are also two combinators,

one_of that allows union types as well as

and, which is the intersection of two types.

Combination of built-in types is certainly

very expressive. While such structures can-

not be inferred easily without prior defini-

tion, as a realistic example, it is possible to

define a tree of integer values by using the one_of combinator as follows:

defspec(tree, one_of([int, compound(node(tree, int, tree))])).

Valid trees are 1, node(1, 2, 3), node(node(0, 1, 2), 3, 4) but not, e.g.

tree(1, 2, 3), where the functor does not match, or node(a, b, c) which stores

atoms instead of integer values. Note that it is also possible to use a wildcard type

to define a tree tree(specvar(X)), which passes the variable down into its nodes.

specvars are a placeholder to express that two or more terms share a common, but

arbitrary type. This can be used to define template-like data structures which can be

instantiated as needed, e.g., as a tree(int).

The second kind of annotations specifies how predicates may be called and, possi-

bly, what parameters are return values. We re-use two different annotations for that:

1. Preconditions specify types for all arguments of a predicate. For a call to be valid,

at least one precondition has to be satisfied.

2. Postconditions add promises for a predicate: if the predicate was called with certain

types and if the call was successful, specified type information holds on exit.

Both pre- and postconditions must be valid for every clause of the specified predi-

cate. Consider a variation of member/2, where the second argument has to be a list of

atoms, and the first argument can either be an atom or var:

atom_member(H,[H|_]). atom_member(E,[_|T]) :- atom_member(E,T).

Instead of checking the terms in the predicate, type constraints describing intended input

are added via plspec’s pre- and postconditions. The following preconditions express the

valid types one has to provide: the first argument is either a variable or an atom, and the

second argument must be a list of atoms.

:- spec_pre(atom_member/2, [var, list(atom)]).

:- spec_pre(atom_member/2, [atom, list(atom)]).

As the second argument is always a ground list of atoms, we can assure callers of

atom_member/2, that the first term is bound after the execution using a postcondition:

4



:- spec_post(atom_member/2, [var, list(atom)], [atom, list(atom)]).

Postconditions for a predicate are defined using two argument lists: they are read as

an implication. For atom_member/2 above, this means that “if the first argument is a

variable and the second argument is a list of atoms, and if atom member/2 succeeds,

it is guaranteed that the second argument is still a list of atom, but also that the first

argument will be bound to an atom”. If the premise of the postcondition does not hold

or the predicate fails, no information is gained.

Extensions to plspec. The traditional understanding if there are two instances of the

same type variable, e.g. in a call such as spec_pre(identity/2, [X, X]), is that

both arguments share all types. Yet, we want to improve on the expressiveness of,

say, spec_pre(member/2, [X, list(X)]), and allow heterogeneous lists. This ex-

tension is not yet implemented in plspec itself and is only part of the static analy-

sis in plstatic. In order to express how the type of type variables is defined, we use

compatible for the homogeneous and union for the heterogeneous case.

If a list is assigned the type list(compatible(X)), every item in the list is as-

signed the type compatible(X). Now plstatic checks whether all these terms share all

types, thus enforcing a homogeneous list. If a list is assigned the type list(union(X)),

every item in the list is assigned the type union(X). But instead of a type intersection,

plstatic collects the types of these terms and builds a union type.

To give an example for the semantics of compatible and union, the list [1, a] has

the inner type one_of([int, atom]) under the semantics of a union, and results in a

type error (as the intersection of int and atom is empty) if its elements should be com-

patible. A correct annotation for member/2 would be the following postcondition:

spec_post(member/2,[any,list(any)],[compatible(X),list(union(X))]),

i.e., the list is heterogeneous, and the type of the first argument must occur in this list.

4 Our Type System

In the following, we describe a prototype named plstatic. It uses an abstract interpreter

in order to collect type information on Prolog programs and additionally to identify type

errors on a best-effort (i.e., based on available type information due to annotations) ba-

sis, without additional annotations. The tool is available at https://github.com/isabelwingen/prolog-analyzer.

Due to page limitation, we can only present some points we deem important.

Purpose and Result. The tool plstatic performs a type analysis on the provided code.

All inferred information can be written out in form of annotations in plspec syntax,

or HTML data that may serve, e.g., as documentation. Naturally, plstatic shows an

overview of type errors, which were found during the analysis. plstatic is not intended

to uncover all possible type errors. Instead, we are willing to trade some false negatives

for the absence of false positives, as they might overwhelm a developer in pure quantity.

Whether true programming errors can be discovered is discussed in Section 5.

As typing can be seen as a special case of abstract interpretation [1], we use plspec’s

annotations to derive an abstract value, i.e. a type, for terms in a Prolog clause. Abstract

5

https://github.com/isabelwingen/prolog-analyzer


types correspond to the types shown in Fig. 1, where a type has an edge pointing to a

strict supertype. However, as distinguishing ground from nonvar terms often is impor-

tant, compound terms are tried to be abstracted to the ground type first, represented by

the dashed edge. We use the least upper bound and greatest lower bound operations as

they are induced by the type subset relation. This analysis is done statically and without

concrete interpretation of Prolog code, based on plspec annotations and term literals.

Annotations. plstatic works without additional annotations in the analysed code. It de-

rives type information from (a large subset of) built-in (ISO) predicates, that we manu-

ally provided pre- and postconditions for. We also annotated a few popular libraries, e.g.

the lists library. For predicates lacking annotations, types can be derived if type infor-

mation exists for predicates called in their body, or can be inferred from unification with

term structure in the code. Derived types describe intended success for the unannotated

predicate. Naturally, precision of the type analysis improves with more annotations.

4.1 Tool Architecture

plstatic is implemented in Clojure. An alternative was to implement a meta-interpreter

in Prolog. A JVM-based language allows easier integration into text editors, IDEs and

potentially also web services. However, this requires to extract a representation of the

Prolog program. We decided against parsing Prolog due to operator definitions and

loss of term expansion1. Instead, we add a term expander ourselves before we load the

program. It implements plspec’s syntax for annotations and extracts those alongside the

program itself. All gathered information is transformed to edn2.

plstatic consists of two parts pictured in Fig. 2: a binary (jar) that contains the static

analysis core, and a term expander written in Prolog, The analysis core is started with

parameters specifying the path to a Prolog source file or directory and a Prolog di-

alect (for now, “swipl” or “sicstus”). Additionally, the path to the term expander can be

passed as an argument as well, if another syntax for annotations than plspec’s is desired.

Regarding module resolution, special care has to be taken when an entire directory

is analysed: when modules are included, it is often not obvious where a predicate is

located. It can be hard to decide whether a predicate is user-defined, shipped as part of

a library or part of the built-in predicates available in the user namespace. Thus, when

the edn-file is imported, a data structure is kept in order to resolve calls correctly.

As our evaluation in Section 5 uses untrusted third-party code, we take care that the

Prolog code, that may immediately run when loaded, is not executed. Instead, the term

expander does not return any clause, effectively removing the entire program during

compilation. Trusted term expanders can be loaded beforehand if required.

4.2 Analysis

Our approach to type inference implements a classical abstract interpreter. Each clause

is analysed individually in a first phase. We use plspec’s annotations of the clause and

1 Term expansion is a mechanism that allows source-to-source transformation.
2 https://github.com/edn-format/edn

6



Analysis Core (Clojure)

edn

Term Expander

Source File(s)

call Prolog (1)

read (4) load (2)

write (3)

Fig. 2. Tool Architecture

the sub-goals to derive an abstract type domain for all terms in the clause. In a second

phase, those results are combined: After the first phase, we have obtained a typing for

every clause, which describes the types that the terms have after a successful execution

of the clause. The inferred type information for all clauses of a predicate, can be stored

as a postcondition. This postcondition may be more accurate than the already provided

one. In this case, the analysis of a predicate would in turn improve the analysis result

for clauses that call that predicate.

For this reason, plstatic works in two phases: first, clause-local analysis that is based

on already known information, and, second, merging information of all clauses of a

single predicate, propagating newly gained information to the caller(s). Without the

presence of a one-of combinator, this would guarantee a fixed point as a result of

the analysis. As we cannot infer recursive datatypes yet, which might result in infinite

one-of-sequences, we limit the number of steps in order to ensure termination.

Example: Rate My Ship The following code will accompany us during this section.

ship(Ship) :- member (Ship , [destiny , galactica , enterprise ]).
rating (stars (Rate )) :- member (Rate , [1,2,3,4,5]).
rate_my_ship(S,R) :- ship(S), rating (R).

Preparation For every loaded predicate, we check, if there are pre- and postcondi-

tions already specified, ones provided by the user or our own manual annotations of

ISO predicates. Otherwise, they are created containing any-types during the prepara-

tion as follows: all literals, e.g., lists, compound or atomic terms, in the clause head are

considered: their type is already known after loading the program. For variable literals,

however, we initially assume the type any. Additionally, if not annotated otherwise, we

assume that a clause may be called by a variable. Based on this information, we create

initial pre- and postconditions for all predicates, considering the entire argument vector.

Below, we show the generated specs for our example after the preparation step:

:- spec_pre (ship/1, [any ]).
:- spec_post (ship/1, [any], [any ]).
:- spec_pre (rating /1, [one_of ([var , compound ([ stars(any )])])]).
:- spec_post (rating /1, [any], [compound ([ stars(any )])]).
:- spec_pre ( rate_my_ship/2, [any , any ]).
:- spec_post (rate_my_ship/2, [any , any ], [any , any ]).

Phase 1: Clause-Local Analysis Because of the nondeterministic nature of Prolog,

it is not sufficient to store the current type for a variable at a given point: we also

7



brother(Lore,Data)
{:dom tuple([atom,atom])}

Lore
{:dom atom}

Data
{:dom atom}

:arg 0 :arg 1

Fig. 3. An Example Environment (Using edn-Formatted Maps)

have to consider relationships between several terms that are caused by unification.

Such relationships are stored in an environment, for which we use a directed graph

per clause. The inferred types of the terms are stored in the vertices. Relationships

between terms and sub-terms e.g. [H|T], where head and tail might have a depen-

dency on the entire list term (e.g., list(int)), or postconditions are saved as labelled

edges between the term vertices. An example showing the structure of a compound term

brother(Lore, Data) is given in Fig. 3.

During the analysis of a clause, the type domains of the terms are updated and their

precision is improved. We assume that each predicate call in the body has to succeed,

and gather information from their pre- and postconditions. When new type informa-

tion about a term is gained, the greatest lower bound is calculated by intersecting both

domains. When considering variables in Prolog however, this comes with some pitfalls

that are discussed in more details in Step 2. If the type intersection is empty, no concrete

value is possible for the Prolog term and a type error is reported. However, this relies

on the assumption that all given annotations are correct.

Step 1: Clause Head. The environment is initialised with all terms occurring in the

head of the clause. Information about the head of the clause can be derived from the

preconditions. According to plspec, at least one precondition must be fulfilled.

This raises the issue of tuple distributivity. Consider a predicate cake(X, Y) that

is annotated with the preconditions [atom, int] and [int, atom]. This means that

cake/2 expects an atom and an integer, no matter the order. For both X and Y, one

could derive one_of([atom, int]) as type information. However, this would render

X=1,Y=2 to be valid input, as the individual type constraint are fulfilled, yet, the original

precondition is violated.

As we aim at keeping the most precise type information possible, we create an

artificial tuple containing all arguments, whose domain is a union-type containing all

supplied preconditions. This artificial term functions as a “watcher”, and ensures all

type constraints. For the cake predicate, the term [X,Y] is added to the environment,

along with its type one_of([tuple([atom,int]), tuple([int,atom])]). Once

we know a more specific type for, e.g., Y, we can derive which option must be valid for

the “watcher”, and we can derive a type for X. The environment is pictured in Fig. 4.

Due to page limitations, we only consider the environment of rate_my_ship/2

here: in this step, it infers types for S, R and the entire argument vector [S,R].

Step 2: Evaluate Body. We analyse the body step by step, making use of (generated or

annotated) pre- and postconditions of all encountered sub-goals. This allows us to refine

the type step by step: for example, if member(X,L) is called, one can infer that L must

be a list on success, even if no information on the variable was known before. On the

first occurrence of a term, it is added to the environment. Similarly to the clause head, at

8



X {:dom one of([atom,int])} Y {:dom one of([atom,int])}

[X,Y]
{:dom one of([tuple([atom,int]),

tuple([int,atom])])}

[Y] {:dom
one of([tuple([int]),
tuple([atom])])}

:is-head :is-head

:is-tail

Fig. 4. Environment with a Watcher (Using edn-Formatted Maps)

Table 1. Environment for rate my ship/2

Variable Term Clause Head after 1st sub-goal after 2nd sub-goal

[S, R] tuple([any, any]) tuple([any, any]) tuple([any, any])

[R] tuple([any]) tuple([any]) tuple([any])

R any any compound(star([any]))

S any any any

least one precondition of the sub-goal must be compatible with the combination of the

arguments it is called with. Otherwise, for the example calling member, if L is known

not to be a list but, e.g., an integer, a type error is raised.

The analysis does not step into the sub-goal, and only uses pre- and postconditions.

A postcondition specifies type constraints on a term after the called predicate succeeds.

Thus, it is checked which premises of postconditions are fulfilled. Then, the greatest

lower bound of the current type domain and the possible conclusion of the postcondi-

tions is calculated in order to improve precision. An example is shown in Table 1.

Type Variables. We have introduced two new kinds of type variables (cf. Section 3):

union and compatible. It is possible to use union(X) or compatible(X), where X is

a type variable. Both are placeholders for yet unknown types and express two different

relationships between terms:

Every term that is assigned the type union(X) contributes to the definition of the

type that is X. The connection is made by adding a labelled edge :union between the

term and X. Then, the domain of all contributing terms is calculated as described. At the

end of the analysis step, the union type of the variable X is inferred via the least upper

bound of all connected terms. As an example, if an integer and an atom is part of the

same union type, it will result in one_of(int, atom).

On the other hand, terms that are assigned the type compatible(X), must be

compatible with all other terms that are assigned that type. This implies that their

intersection must not be empty. As with the union type, we create a labelled edge

:compatible connecting the term to X. These edges are processed after all union edges

have been visited. For example, if a known atomic value and a known integer have to

be compatible within the same type variable, we can infer that both values are integer,

as it is the intersection of both types.

In order to determine the type of a type variable, it is required to know all con-

tributing terms. Thus, for compound or a list terms of a known size, the assigned type

9



is passed down to its sub-terms using the mechanisms described above. Yet, even if we

know that L is a list of union(X), we do not know the list items yet – even worse,

the variable may only be bound later on! This requires an additional step in order to

ensure that the domain for the type variable X is compiled correctly: we opted to add

a :has-type edge to the environment, which connects a Prolog variable, e.g. T, to an

artificially created variable T__<uuid> storing the inner type, i.e. union(X) in the ex-

ample above. Whenever the domain of a connected variable is updated, so is the type

variable itself. Effectively, this delays the computation of the actual type variable. The

artificial list type variable then is connected with union(X). For compound and tuple

type specifications, an artificial term is created and linked to the variable term via a

special edge. This is required to mimic unification of Prolog variables. Whenever the

domain of the variable term is updated, the artificial term’s domain is updated as well.

Finally, the information is propagated into the corresponding sub-terms if required.

Have a look at member/2 used in the body of ship/1. The provided postcondition is

post_spec(member/2, [any, any], [compatible(X), list(union(X))]).

Therefore, after analysing the body of ship/1, we know the following:

1. The second argument of member contributes to the variable X in form of a union.

We learn that X is either destiny, galactica or enterprise.

2. We learn that the variable Ship must be compatible with X, so it must be one of the

three atoms named above.

Step 3: Term Relationships. After analysing the body, all terms in the clause are in-

cluded in the environment. Then, nodes that may be destructured, i.e. lists and com-

pound terms, are looked up in the graph. As sub-terms, e.g. X in a(X), can be used in-

dividually in subsequent sub-goals, i.e. without the wrapping functor a(...), inferred

information has to be propagated back to the larger compound term. We introduce the

following edges in order to provide the necessary mechanism:

For lists, we extract the head and tail terms and add them to the environment, if they

are not already contained. Those terms are marked with special edges :is-tail and

:is-head (cf. Fig. 4) pointing to the original list. For compounds, we add the argument

terms to the environment and store the position of every term in the compound by adding

an edge :pos (cf. Fig. 3).

For rate_my_ship/2, three edges are added due to this step: the environment al-

ready contains the argument vector [S,R] after Step 1. We add that S is the head item,

that [R] is the tail of the list, and that R is the head of the tail [R].

Prolog Variables. The any-type can be split into two disjoint sets: variables and non-

variable terms. After processing a sub-goal, non-variable terms can only gain precision.

Variables, however, have the unique property that their type can change, as they can be

bound to, say, an atom, which is not a sub-type. To take this into account, a different

intersection mechanism is required for variables:

– Preconditions of the currently analysed predicate may render a variable non-variable.

– Preconditions of a called sub-goal cannot render a variable term non-variable.

– Postconditions of a called sub-goal may render a variable term non-variable.

– Once a Prolog variable is bound to a non-variable, it behaves like any non-variable.

10



Step 4: Fixed-Point Algorithm. During the prior steps, we added edges to the environ-

ment. These are now used to update the types of the linked terms. If the environment no

longer changes, we have consumed all collected knowledge and have found a prelimi-

nary result for a clause.

For example, in rate_my_ship/2, we will update the tuples [R] and [S,R] once

we learn that R must be of the form compound(stars([any])).

Phase 2: Global Propagation of Type Information During the local analysis, each

clause was inspected in isolation. The type domains in the returned environments con-

tain the types after a successful execution of a clause with the knowledge gained so far.

The gathered information then must be propagated to the caller of the corresponding

predicate in order to improve the precision of the type inference.

Each resulting environment can be used to generate the conclusion of a postcon-

dition. If a predicate succeeds, at least one of its clauses succeeded. As postconditions

must be valid for the entire predicate, the conclusion of a new postcondition is the union

of all conclusions of the corresponding clauses. This newly gained knowledge (in form

of a postcondition) is added to the analysed data for every predicate. Afterwards, both

local analysis and global propagation are triggered, until a fixed-point is reached. In-

ferred pre- and postconditions can be written out after analysis in plspec’s syntax.

Example: append/2. Consider the append program:

append([], Y, Y). append([H|T], Y, [H|R]) :- append(T, Y, R).

For the first clause, plstatic would derive the types [list(any), any, any]. For the

second clause, we gain no additional information from the body, because append/2

is calling itself, so we derive the types [list(any), any, list(any)]. To create

a conclusion of a postcondition for the predicate, we need to combine the results of

the two clauses. Unfortunately, as the type of the third argument is any in one case,

it swallows the more precise type list(any). We obtain the following conclusion:

[list(any), any, any]. While the intention is that the second and third arguments

are lists as well, this cannot be inferred without annotations.

As you have probably noticed, plstatic has not yet found the accurate type atom

for S or R in rate_my_ship/2. This is because the pre- and postconditions of ship/1

have not been updated yet, so plstatic has no way of knowing that S is an atom. In

the first phase, we have concluded that the argument given to ship/1 must be of type

atom after a successful execution. As ship/1 has only one clause, we can infer the

postcondition: :- post_spec(ship/1, [any], [atom]). Analogously, we obtain

:- post_spec(rating/1, [any], [compound(stars([atom]))]).

The propagation of the newly gained knowledge is shown in Table 2. Afterwards

we can update the pre- and postconditions for rate_my_ship/2, but ship/1 and

rating/1 are not affected from this. If our program has no more clauses, the fixed-

point is reached, and the analysis stops.

Backtracking. Preconditions specify a condition which must be fulfilled at the moment

of the call, and postconditions can provide information about the type of the used terms

11



Table 2. Environment for rate my ship/2

Variable Term Newly Gained Knowledge After Propagation

[S, R] tuple([any, compound(star([any]))]) tuple([atom, compound(star([atom]))])

[R] tuple([compound(star([any]))]) tuple([compound(star([atom]))])

R compound(star([atom])) compound(star([atom]))

S atom atom

after a successful execution. The caller of a predicate is unaware which clause provided

the result. Thus, the union of all gained type information has to be considered in the

second phase. As a result, it is safe to ignore backtracking: yet, precision could in some

cases be improved if clause ordering and cuts (!) were considered.

5 Evaluation

To our knowledge, papers on type systems for Prolog usually omit an evaluation of their

applicability for existing, real-world Prolog code and offer insights on their type infer-

ence mechanisms on small toy examples, such as the well-known append predicate.

However, we want to consider code that is more involved than homework assignments.

There is no indication to what extent type inference approaches are applicable to the real

world, or how much work has to be spent re-writing code for full-fledged type systems.

In contrast, we baptise plstatic by fire and evaluate for how many variables in the

code we can infer a type that is more precise than any. For this, we use smaller SWI

community packages3, as well as PROB [9], a model checker and constraint solver that

currently consists of more than 120000 lines of Prolog code.

5.1 Known Limitations

Currently, we face three limitations in plstatic: firstly, as we try to avoid widening when-

ever possible, i.e., we try to use the most precise type like a one_of instead of generalis-

ing to their common supertype, performance is not too good. Analysis of small projects

runs neglectably fast, yet PROB requires several hours to complete a full analysis. Sec-

ondly, libraries throw a wrench into our scheme: modern Prolog systems pre-compile

the code. Hence, meta-programs, such as term expanders, cannot access their clauses.

Thus, library code is not considered and plstatic has to rely on annotations. Currently,

we only provide annotations for large parts of the lists library (for both SWI Prolog and

SICStus Prolog) and the AVL tree library (for SICStus Prolog only). Otherwise, for all

library predicates that are not annotated, an any type has to be assumed. Thirdly, we

currently do not consider disjunctions and if-then-else constructs, but may gain addi-

tional precision once this is implemented.

Additionally, there is an inherent limitation in our analysis strategy: some predicates

may really work on any type, e.g. term type checking predicates (such as ground/1

or nonvar/1) or the member/2 predicate regarding the first argument. As no similar

3 http://www.swi-prolog.org/pack/list

12

http://www.swi-prolog.org/pack/list


Table 3. Amount of Inferred Types for Variables

Repository # Variables Inferred Types Unknown Calls

bddem 196 31.63 % 57.6 %

dia 400 68.5 % 8.23 %

maybe 32 6.25 % 70.0 %

plsmf 67 37.31 % 37.5 %

quickcheck 122 42.6 % 34.1 %

thousands 19 94.73 % 0.0 %

∅ SWI Community Packages 68344 21.8 % 39.0 %

PROB 81893 21.2 % 20.8 %

analysis for Prolog programs exists yet and type inference by hand is infeasible for

large programs, it is certainly hard to gauge the precision of our type inference.

5.2 Empirical Evaluation

0 20 40 60 80 100
0

20

40

60

80

100

Unknown Calls in %

A
n
y

T
y

p
es

in
%

Fig. 5. Correlation Between Unknown Calls and

Inferred Types

In Table 3, the results of some repos-

itories4 and the mean value of the

198 smallest community packages is

shown. We give the amount of Prolog

variables, and the percentage of which

we can infer a type that is a strict sub-

type of any. For reference, we also

give the amount of calls to unknown

predicates in order to give an idea how

many missing types are caused by, e.g.,

library predicates lacking annotations.

Though, once a variable is assigned an

any type, the missing precision typically is passed on to terms that are interacting with

the any term as the predicate is implemented in a library.

At first glance, the fraction of inferred types seems to be rather low. For some repos-

itories, such as “dia” and “thousands”, a specific type could be inferred for a large per-

centage of variables. Note that in return, the amount of unknown calls is relatively low.

Then, there are repositories such as “bddem” and “plsmf”, which both are wrappers of

a C library. As such, the interop predicates are unknown and the inferred types are sig-

nificantly lower. Finally, there are packages like “maybe”, “quickcheck” and projects

such as PROB, that make use of other libraries, conditional compilation, meta-calls and

other features that decrease accuracy of type inference.

Overall, we were surprised how small the amount of inferred types was. Though,

one has to consider that a large amount of predicates are library calls, e.g. into the

popular CLP and CHR libraries. In Fig. 5, we show this relation. One can clearly recog-

nise that (unknown) library calls negatively impact the results of our type analysis. Yet,

many auxiliary predicates are written to be polymorphic and deal with any type.

4 Full results: https://github.com/pkoerner/plstatic-results/tree/wflp-20

13

https://github.com/pkoerner/plstatic-results/tree/wflp-20


With plstatic, we were able to find several errors: many SWI libraries have been

broken with changes introduced in SWI Prolog 7 [19]. Strings now are proper strings,

where legacy code relies on the assumption that they are represented as code lists. Fur-

thermore, plstatic located calls in PROB that were guaranteed to fail every time due to

type errors. These calls decide whether a backend is usable in order to solve a given

predicate and always fail. Thus, the errors have gone unnoticed for eight years, as the

backend simply was not used. One error was reported due to missing term expansion as

we did not execute untrusted Prolog code. We found another false-positive due to meta

predicate annotations which add the module to a goal, thus altering the term structure.

Additionally, we found some extensions SICStus Prolog made to the ISO standard that

we were not aware of: e.g., arithmetic expressions in SICStus Prolog allow expressions

such as X is integer(3.14) or Y is log(2, 42). Thus, plstatic raised type errors

for terms that did not match our type describing ISO arithmetic expressions.

6 Conclusion and Future Work

In this paper, we presented plstatic, a tool that re-uses its annotations in order to ver-

ify types statically where possible. In several existing Prolog repositories, plstatic was

able to locate type errors. Yet, without annotations of further libraries, the amount of

actual inferred types remains relatively low. We invite the Prolog community to discuss

whether such type annotations are desired and should be shipped as part of packages.

There remains some work on plstatic: performance bottlenecks need to be reviewed.

Furthermore, the analysis would heavily benefit from a mechanism for the term ex-

pander to hook into library packages, manual annotations or generated annotations

based on library source code as far as it is available. It might also be possible to anal-

yse some pre-compiled library beforehand and re-use those results in the analysis of

the main program. We also plan to implement semantics for new types, for which the

structure is not specified, but they may only be created by libraries. E.g., Prolog streams

cannot be created manually and one of the built-in predicates must be called. Other ex-

amples include ordered sets or AVL trees, where it is possible to create or manipulate

such a term, but it is heavily discouraged as it is very easy to introduce subtle errors.

Moreover, it would be exciting to compare the amount of inferred types to similar

implementations such as CiaoPP. We assume their analysis to be stronger, but suspect

that Ciao’s approach might not scale as well for larger programs. Yet, comparison might

be hindered, again, because features of other Prolog systems are not supported. It might

also be interesting to see whether our semantics can be integrated into CiaoPP.

In [18] and also in the evaluation of plspec [7], it was determined that the overhead

of run-time type checks can be enormous, especially if applied to recursive predicates.

With additional type information, a large amount of run-time checks can be eliminated,

as, e.g., proposed by [18]. It is fairly straightforward to generate a list of already dis-

charged annotations and use that as a blacklist in plspec. This could move the tool

towards gradual typing [17], combining benefits of static typing and reducing overhead

of static checks with the potential for many optimisations.

It is well-known that compilers often benefit heavily from type information. An in-

teresting research question is to investigate the impact of type information, e.g. gained

14



by plstatic or by annotations, when added to the binding-time analysis of a partial eval-

uator, such as LOGEN [10]. This might greatly reduce the work required of manually

improving generated annotations in order to gain additional performance.

As a more pragmatic approach to future work, it would be greatly appreciated if the

state-of-the-art of Prolog development tooling could be improved. Currently, IDEs and

editor integrations are lacking. Including type information would be a great start.

References

1. P. Cousot. Types as abstract interpretations. In Proceedings POPL, pages 316–331. ACM,

1997.

2. J. P. Gallagher and K. S. Henriksen. Abstract domains based on regular types. In Proceedings

ICLP, pages 27–42. Springer, 2004.

3. M. V. Hermenegildo, F. Bueno, M. Carro, P. López-Garcı́a, E. Mera, J. F. Morales, and

G. Puebla. An overview of Ciao and its design philosophy. TPLP, 12(1-2):219–252, 2012.

4. D. Jeffery. Expressive Type Systems for Logic Programming Languages. PhD thesis, Depart-

ment of Computer Science and Software Engineering, The University of Melbourne, 2002.

5. M. Jimenez, T. Lindahl, and K. Sagonas. A Language for Specifying Type Contracts in

Erlang and Its Interaction with Success Typings. In Proceedings ERLANG, pages 11–17.

ACM, 2007.

6. S. P. Jones. Haskell 98 language and libraries: the revised report. Cambridge University

Press, 2003.

7. P. Körner and S. Krings. plspec – A Specification Language for Prolog Data. In Proceedings

WFLP, volume 10997 of LNAI, pages 198–213. Springer, 2017.

8. T. Lakshman and U. S. Reddy. Typed Prolog: A Semantic Reconstruction of the Mycroft-

O’Keefe Type System. In ISLP, volume 91, pages 202–217, 1991.

9. M. Leuschel and M. J. Butler. ProB: A model checker for B. In Proceedings FME, volume

2805 of LNCS, pages 855–874. Springer, 2003.

10. M. Leuschel, S. J. Craig, M. Bruynooghe, and W. Vanhoof. Specialising interpreters using

offline partial deduction. In Program Development in Computational Logic, volume 3049 of

LNCS, pages 340–375. Springer, 2004.

11. R. Milner. A theory of type polymorphism in programming. Journal of computer and system

sciences, 17(3):348–375, 1978.

12. A. Mycroft and R. A. O’Keefe. A polymorphic type system for Prolog. Artificial intelligence,

23(3):295–307, 1984.

13. F. Pfenning. Types in logic programming. MIT Press Cambridge, Massachusetts, USA, 1992.

14. F. Pfenning. On the undecidability of partial polymorphic type reconstruction. Fundam.

Inform., 19(1/2):185–199, 1993.

15. E. Rohwedder and F. Pfenning. Mode and termination checking for higher-order logic pro-

grams. In Proceedings ESOP, volume 1058 of LNCS, pages 296–310. Springer, 1996.

16. T. Schrijvers, V. S. Costa, J. Wielemaker, and B. Demoen. Towards typed Prolog. In Pro-

ceedings ICLP, volume 5366 of LNCS, pages 693–697. Springer, 2008.

17. J. G. Siek, M. M. Vitousek, M. Cimini, and J. T. Boyland. Refined criteria for gradual typing.

In Proceedings SNAPL. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015.

18. N. Stulova, J. F. Morales, and M. V. Hermenegildo. Reducing the overhead of assertion

run-time checks via static analysis. In Proceedings PPDP, pages 90–103. ACM, 2016.

19. J. Wielemaker. SWI-Prolog version 7 extensions. In Proceedings CICLOPS-WLPE, page

109, 2014.

15


	Effectiveness of Annotation-Based Static Type Inference

