
Lattice-Based Proof of Shuffle and
Applications to Electronic Voting

Diego F. Aranha1 ID , Carsten Baum1⋆ ID , Kristian Gjøsteen2 ID ,

Tjerand Silde2 ID , and Thor Tunge2

1 Aarhus University, Denmark
{dfaranha,cbaum}@cs.au.dk

2 Norwegian University of Science and Technology, Norway
{kristian.gjosteen,tjerand.silde}@ntnu.no

Abstract. A verifiable shuffle of known values is a method for proving
that a collection of commitments opens to a given collection of known
messages, without revealing a correspondence between commitments and
messages. We propose the first practical verifiable shuffle of known values
for lattice-based commitments.

Shuffles of known values have many applications in cryptography, and
in particular in electronic voting. We use our verifiable shuffle of known
values to build a practical lattice-based cryptographic voting system that
supports complex ballots. Our scheme is also the first construction from
candidate post-quantum secure assumptions to defend against compro-
mise of the voter’s computer using return codes.

We implemented our protocol and present benchmarks of its computa-
tional runtime. The size of the verifiable shuffle is 22τ KB and takes time
33τ ms for τ voters. This is around 5 times faster and 40 % smaller per
vote than the lattice-based voting scheme by del Pino et al. (ACM CCS
2017), which can only handle yes/no-elections.

Keywords: Lattice-Based Cryptography, Proof of Shuffle, Verifiable En-
cryption, Return Codes, Electronic Voting, Implementation

1 Introduction

A verifiable shuffle of known values is a method for proving that a collection of
commitments opens to a given collection of known messages, without revealing
exactly which commitment corresponds to which message.

One well-known approach is due to Neff [Nef01]: Define two polynomials,
one that has the known messages as its roots and another that has the values
committed to as its roots. Since polynomials are stable under permutation of

⋆ This work was funded by the European Research Council (ERC) under the European
Unions’ Horizon 2020 research and innovation programme under grant agreement No
669255 (MPCPRO). Part of this work was done while visiting NTNU in Trondheim.

https://orcid.org/0000-0002-2457-0783
https://orcid.org/0000-0001-7905-0198
https://orcid.org/0000-0001-7317-8625
https://orcid.org/0000-0002-5455-0409

their roots, it is sufficient to prove that these two polynomials have the same
evaluation at a randomly chosen point.

Proving that the second polynomial has a given evaluation at a given point
could be done using multiplication and addition proofs on the commitments.
Usually multiplication proofs for committed values are quite expensive, while it
is somewhat cheap to do proofs of linear combinations of committed values with
public coefficients. Following the idea of Neff, the determinant of a particular
band matrix is the difference of the two polynomials, and we show that the
polynomials are equal by showing that the columns of the matrix are linearly
dependent.

1.1 Our Contribution

Verifiable shuffle of known values. Our main contribution is a verifiable shuffle
of known values for lattice-based commitments. This is the first efficient con-
struction from a candidate post-quantum secure assumption of such a primitive.
As discussed above, our construction is based on techniques originating with
Neff [Nef01], although there are a number of obstacles with this approach in the
lattice-based setting, where we use the commitments of Baum et al. [BDL+18].

First of all, many group-homomorphic commitment schemes allow either di-
rect or very simple verification of arbitrary linear relations. No known commit-
ment scheme secure under an assumption considered as post-quantum secure
has a similar structure, which means that we must use adaptations of existing
proofs for linear relations. Secondly, the underlying algebraic structure is a ring,
not a field. Since we need certain elements to be invertible, we need to choose
challenges from special sets of invertible elements, and carefully adapt the proof
so that the correctness of the shuffle is guaranteed.

In order to make our construction practical, we use the Fiat-Shamir trans-
form to make the underlying Zero-Knowledge proofs non-interactive. We want
to stress that our proof of security only holds in the conventional Random Or-
acle Model, which is not a sound model when considering quantum adversaries.
Constructing a post-quantum secure verifiable shuffle of known values is an in-
teresting open problem.

Voting from lattices. Our second contribution is the first construction of a practi-
cal voting system that is suitable for more general ballots (such as various forms
of ranked choice voting, perhaps in various non-trivial combinations with party
lists and candidate slates) and that is secure under lattice-based assumptions.

We adopt an architecture very similar to deployed cryptographic voting sys-
tems [HR16,Gjø11]. The protocol works as follows:

– The voter’s computer commits to the voter’s ballot and encrypts an opening
of the ballot. The commitment and ciphertext are sent to a ballot box.

– When counting starts, the ballot box removes any identifying material from
the ciphertext and sends this to the shuffle server.

2

– The shuffle server decrypts the openings, verifies the commitments and out-
puts the ballots. It uses our verifiable shuffle of known values to prove that
the ballots are consistent with the commitments.

– One or more auditors inspect the ballot box and the shuffle server.

For this to work, the voter’s ciphertext must contain a valid opening of the
voter’s commitment. To achieve this, we use the verifiable encryption scheme of
Lyubashevsky and Neven [LN17].

This architecture seems to be an acceptable trade-off between security and
practicality. It achieves privacy for voters under the usual threat models, it pro-
vides cast-as-intended verification via return codes, it achieves coercion-resistance
via revoting, and it achieves integrity as long as at least one auditor is honest.
However, the architecture makes it difficult to simultaneously achieve privacy
and universal verifiability. (We cannot simply publish the ballot box, the de-
crypted ballots and the shuffle proofs, because the shuffle server then learns who
submitted which ballot, breaking privacy.) This is often not a significant prob-
lem, because coercion resistance requires keeping the decrypted ballots secret
when so-called Italian attacks apply, and it is usually quite expensive to achieve
universal verifiability without publishing the decrypted ballots. If Italian attacks
do not apply or coercion resistance is otherwise not an issue, if one is willing to
pay the price, it would be possible to distribute the decryption among two (or
more) players by using nested encryption and nested commitments, after which
everything could be published and universal verifiability is achieved. The cost is
significant, though. Limited verifiability can be achieved in cheaper ways.

Voting with return codes. Our third contribution is the first construction of
a voting system that supports so-called return codes for verifying that ballots
have been cast as intended and that is based on a candidate post-quantum
assumption.

One of the major challenges in using computers for voting is that computers
can be compromised. Countermeasures such as Benaloh challenges do not work
very well in practice, since they are hard to understand3. Return codes can
provide integrity for voters with a fairly high rate of fraud detection [GL16].
Return codes do not work well with complex ballots, but our scheme could be
modified to use return codes only for parts of a complex ballot.

We again use the commitments and verifiable encryption. The voter’s com-
puter commits to a pre-code and proves that this pre-code has been correctly
computed from the ballot and some key material. It also verifiably encrypts an
opening of this commitment. The pre-code is later decrypted and turned into a
return code, which the voter can inspect.

Implementation of our voting scheme. Our fourth contribution is a concrete
choice of parameters for the system along with a prototype implementation,
demonstrating that the scheme is fully practical. We choose parameters in such

3 Very few members of the International Association for Cryptologic Research use
Benaloh challenges when casting ballots in their elections.

3

a way that arithmetic in the used algebraic structures can be efficiently imple-
mented. This gives a fairly low computational cost for the scheme, so the limiting
factor seems to be the size of the proofs. For elections with millions of voters, the
total proof size will be measured in gigabytes, while systems based on discrete
logarithms would produce much smaller proofs. Since we do not try to achieve
universal verifiability, which means that proofs in our architecture are only han-
dled by well-resourced infrastructure players, the proof size is unlikely to matter
much. (If ordinary voters were to verify all the shuffle proofs, this would still not
be infeasible, but it would be more of an issue.)

1.2 Related Work

Verifiable shuffles. The idea for a verifiable shuffle of known values that we use
was introduced by Neff [Nef01]. Since [Nef01], there has been a huge body of
work improving verifiable shuffles of ciphertexts, but not for constructions that
use post-quantum assumptions.

Costa et al. [CMM19] use ZK proofs for lattice commitments to show a correct
shuffle and re-randomization of a collection of ciphertexts. They also adopt some
of the techniques from Neff, but instead of using a linear algebra argument they
use multiplication proofs. This is conceptually simpler than our approach, but
turns out to be less efficient even with the newer, improved multiplication proofs
of [ALS20]. A related concept to the verifiable shuffle of known values is the
decrypting mix-net [Cha81], which proves that the decryption of a collection
of ciphertexts equals a given collection of messages. Decryption mix-nets can
be very fast [BHM20], but these constructions provide guarantees of correct
decryption only if at least one participant in the mix-net is honest at the time of
decryption, unlike our approach which provides proper soundness even if both
the ballot box and shuffle server are compromised at the time of decryption.

Candidate post-quantum cryptographic voting systems. There is a large body of
academic work on cryptographic voting systems, and several systems have been
deployed in practice in Europe in e.g. Estonia [HR16] and Norway [HR16,Gjø11],
while Switzerland [LPT19] also planned to use an e-voting system. All of these
systems make significant efforts to provide so-called cast-as-intended verification,
to defend against compromise of the voter’s computer. For lower-stakes elections,
Helios [Adi08] has seen significant use. All of these systems have roughly the same
architecture, and offer varying levels of verifiability. None of these systems are
secure against quantum computers.

Many real-world political elections have ballots that are essentially very sim-
ple, such as a single yes/no question, or a t-out-of-n structure (even though many
such races can be combined to form a visually and cognitively complex ballot).
However, real-world voting systems can also have more complicated ballots that
cannot be decomposed to a series of simple, independent races. For example, the
Australian parliamentary ballot may encode a total order on all candidates in
a district, and transferable votes make counting quite complex. While work has

4

been done on homomorphic counting for such elections, the usual approach is to
recover cleartext ballots and count them.

While it is a simple exercise to use existing theoretical constructions to build
a candidate quantum-safe voting system similar to the above deployed systems,
the problem is that these constructions are practically inefficient, either because
they are too computationally expensive or the proofs used are too large to make
verification of many such proofs practical.

del Pino et al. [dLNS17] gives a feasible construction that uses homomorphic
counting, but it is only applicable to yes/no-elections (though it can be extended
to 1 out of n elections, at some cost). The scheme also does not try to defend
against compromise of the voter’s computer, limiting its applicability. Chillotti
et al. [CGGI16] proposed a system based on homomorphic counting, but using
fully homomorphic encryption. Again, this only supports 1 out of n elections, and
practical efficiency is unclear. Gjøsteen and Strand [GS17] proposed a method
for counting a complex ballot using homomorphic encryption. However, their
scheme is not complete and the size of the circuit makes the system barely
practical.

As discussed above, existing verifiable shuffles for candidate post-quantum se-
cure cryptosystems could be used for generic constructions. Costa et al. [CMM19]
uses certain ZK proofs for lattice commitments to show a correct shuffle and re-
randomization of a collection of ciphertexts. The bottleneck of their approach are
the underlying rather inefficient ZK proofs. The faster construct by Strand [Str19]
is too restrictive in the choice of plaintext domain. Even given that shuffle, these
schemes still require a verifiable (distributed) decryption for lattice-based con-
structions. These, currently, do not exist.

1.3 Using Verifiable Shuffles of Known Values

There are many other applications of a verifiable shuffle of known values than
the one that is presented in this work. We give a brief overview of three such
applications.

Verifiable shuffles. One application is to build a verifiable shuffle of ciphertexts of
a homomorphic encryption scheme. The idea is to provide a method for proving
that one collection of ciphertexts is a re-randomization of a second collection of
ciphertexts, without revealing the correspondence of the ciphertexts.

The ciphertexts of such schemes can be re-randomized by adding an encryp-
tion of 0. The idea is then to commit to each homomorphic encryption separately
and use a proof of linearity to show that the committed value is the ciphertext,
plus an encryption of 0. Depending on the commitment and homomorphic en-
cryption scheme, this proof can be very efficient - in particular if proofs of correct
encryption are “cheap” using the commitment scheme. Then, one can perform
a proof of shuffle of known openings on these auxiliary commitments, which
succeeds if a permutation of the re-randomized ciphertexts is revealed.

5

Verifiable shuffled decryption. A related concept is verifiable shuffled decryption,
to prove that a collection of ciphertexts decrypt to a collection of messages.

For this, one would create auxiliary commitments to the decryptions of each
ciphertext as well as make a commitment to the secret key. Using the homomor-
phism on the commitments, one can now show that each commitment indeed
contains the correct plaintext. Then, one can apply the proof of verifiable shuffle
of known values to reveal the openings of the commitments in shuffled form.

The efficiency of this approach depends again on the choice of commitment
and encryption scheme, and how good they fit together in terms of homomor-
phically evaluating the decryption function.

Voting with less trust. The above two ideas can be used to construct a cryp-
tographic voting system that does not rely on a single server which performs
decryptions and shuffles together. Each voter would directly encrypt his ballot,
instead of committing to it. These votes are then shuffled and re-randomized
multiple times, before they are verifiably decrypted (using threshold decryp-
tion). Such a system would be less susceptible to attacks against the secrecy of
the votes. The downside is that it needs efficient threshold verifiable decryption
to protect the privacy of the ballot.

2 Preliminaries

2.1 Notation

If Φ is a probability distribution, then z
$← Φ denotes that z was sampled accord-

ing to Φ. If S is a finite set, then s
$← S denotes that s was sampled uniformly

from the set S. The expressions z ← xy and z ← Func(x) denote that z is as-
signed the product of x and y and the value of the function Func evaluated on
x, respectively.

For two matrices A ∈ Sα×β ,B ∈ Sγ×δ over an arbitrary ring S, we denote
by A⊗B ∈ S(α·γ)×(β·δ) their tensor product, i.e. the matrix

B =


b1,1 . . . b1,δ
...

. . .
...

bγ,1 . . . bγ,δ

 , A⊗B :=


b1,1 ·A . . . b1,δ ·A

...
. . .

...

bγ,1 ·A . . . bγ,δ ·A

 .

2.2 The Rings R and Rp

Let p, r ∈ N+ and N = 2r. Then we define the rings R = Z[X]/⟨XN + 1⟩ and
Rp = R/⟨p⟩, that is, Rp is the ring of polynomials modulo XN + 1 with integer
coefficients modulo a prime p. If p is congruent to 1 mod 2δ, for N ≥ δ > 1 a
power of 2, then XN + 1 splits into δ irreducible factors.

6

We define the norms of elements f(X) =
∑

αiX
i ∈ R to be the norms of

the coefficient vector as a vector in ZN :

||f ||1 =
∑
|αi| ||f ||2 =

(∑
α2
i

)1/2
||f ||∞ = max

i∈{1,...,N}
{|αi|}.

For an element f̄ ∈ Rp we choose coefficients as the representatives in[
−p−1

2 , p−1
2

]
, and then compute the norms as if f̄ is an element in R. For vec-

tors a = (a1, . . . , ak) ∈ Rk we define the 2-norm to be ∥a∥2 =

√∑
∥ai∥2, and

analogously for the ∞-norm. We omit the subscript in the case of the 2-norm.
One can show that sufficiently short elements in the ring Rp (with respect

to the aforementioned norms) are invertible.

Lemma 1 ([LS18], Corollary 1.2). Let N ≥ δ > 1 be powers of 2 and p a
prime congruent to 2δ+1 mod 4δ. Then XN +1 factors into δ irreducible factors
XN/δ + rj, for some rj’s in Rp. Additionally, any non-zero y such that

∥y∥∞ < p1/δ/
√
δ or ∥y∥ < p1/δ

is invertible in Rp.

For the remaining part of this paper we will assume that the parameters p, δ and
N are chosen such that Lemma 1 is satisfied. We define a set of short elements

Dβ∞ = {x ∈ Rp | ∥x∥∞ ≤ β∞}.

We furthermore define

C = {c ∈ Rp | ∥c∥∞ = 1, ∥c∥1 = ν} ,

which consists of all elements in Rp that have trinary coefficients and are non-
zero in exactly ν positions, and we denote by

C̄ = {c− c′ | c ̸= c′ ∈ C}

the set of differences of distinct elements in C. The size of C is 2ν
(
N
ν

)
. It can be

seen from Lemma 1 that, for a suitable choice of parameters, we can ensure that
all non-zero elements from the three sets are invertible.

We need a bound on how many roots a polynomial can have over the ring
Rp. The total number of elements in the ring is |Rp| = pN .

Lemma 2. Let N ≥ δ ≥ 1 be powers of 2, p a prime congruent to 2δ+1 mod 4δ
and T ⊆ Rp. Let g ∈ Rp[X] be a polynomial of degree τ . Then, g has at most τ δ

roots in T , and Pr[g(ρ) = 0|ρ $← T] ≤ τ δ/|T |.

Proof. First, by Lemma 1, we divide XN +1 into δ irreducible factors XN/δ+rj .
Each of the irreducible factors contributes at most τ roots to a polynomial
g ∈ Rp[X] of degree τ . Using the Chinese remainder theorem to combine the

roots, we get that g has at most τ δ roots in Rp. If we choose ρ
$← Rp uniformly

at random, the probability that this is a root of g is the total number of roots
divided by the size of the ring. Since T is a subset of Rp, it can contain at most
as many roots as Rp itself. ⊓⊔

7

2.3 The Discrete Gaussian Distribution

The continuous normal distribution over Rk centered at v ∈ Rk with standard
deviation σ is given by

ρ(x)Nv,σ =
1√
2πσ

exp

(
−||x− v||2

2σ2

)
.

When sampling randomness for our lattice-based commitment and encryption
schemes, we’ll need samples from the discrete Gaussian distribution. This distri-
bution is achieved by normalizing the continuous distribution over Rk by letting

N k
v,σ(x) =

ρkNv,σ(x)

ρkNσ (Rk)
where x ∈ Rk and ρkNσ (Rk) =

∑
x∈Rk

ρkNσ (x).

When σ = 1 or v = 0, they are omitted.

2.4 Knapsack Problems

We first define the Search Knapsack problem in the ℓ2 norm, also denoted as
SKS2. The SKS2 problem is exactly the Module-SIS problem in its Hermite
Normal Form.

Definition 1. The SKS2n,k,β problem is to find a short vector y satisfying [In A′]·
y = 0n for a given random matrix A′. An algorithm A has advantage ϵ in solving
the SKS2n,k,β problem if

Pr

[
∥yi∥2 ≤ β∧ A′ ← R

n×(k−n)
q ;[

In A′] · y = 0n 0 ̸= y = [y1, . . . , yk]
⊤ ← A(A′)

]
≥ ϵ

Additionally, we define the Decisional Knapsack problem in the ℓ∞ norm
(DKS∞). The DKS∞ problem is equivalent to the Module-LWE problem when
the number of samples is limited.

Definition 2. The DKS∞n,k,β problem is to distinguish the distribution [In A′]·
y for a short y from the uniform distribution when given A′. An algorithm A
has advantage ϵ in solving the DKS∞n,k,β problem if∣∣∣Pr[b = 1 | A′ ← Rn×(k−n)

q ;y ← Dk
β ; b← A(A

′, [In A′] · y)]

− Pr[b = 1 | A′ ← Rn×(k−n)
q ;u← Rn

q ; b← A(A
′,u)]

∣∣∣ ≥ ϵ

3 Lattice-Background: Commitments and ZK Proofs

We first introduce the commitments of Baum et al. [BDL+18], and continue with
a zero-knowledge proof protocol of linear relation over the ring Rp using these
commitments. The protocol is implicitly mentioned in [BDL+18].

8

3.1 Lattice-Based Commitments

Algorithms. The scheme consists of three algorithms: KeyGenC, Com, and Open

for key generation, commitments and verifying an opening, respectively. We
describe these algorithms for committing to one message, and refer to [BDL+18]
for more details.

KeyGenC outputs a public matrix B over Rp of the form

B1 =
[
In B′

1

]
whereB′

1
$← Rn×(k−n)

p

b2 =
[
0n 1 b′2

]
where (b′2)

⊤ $← R(k−n−1)
p ,

for width k and height n+ 1 of the public key pk := B =

[
B1

b2

]
.

Com commits to messages m ∈ Rp by sampling an rm
$← Dk

β∞
and computing

Com(m; rm) = B · rm +

[
0

m

]
=

[
c1

c2

]
= [[m]].

Com outputs [[m]] and d = (m; rm, 1).

Open verifies whether an opening (m; rm, f) with f ∈ C̄ is a valid opening of
c1, c2 by checking if

f ·

[
c1

c2

]
?
= B · rm + f ·

[
0

m

]
,

and that ∥rm[i]∥ ≤ 4σC

√
N for i ∈ [k] with σC = 11 · β∞ · ν ·

√
kN . Open

outputs 1 if all these conditions hold, and 0 otherwise.

Baum et al. [BDL+18] proved the security properties of the commitment
scheme with respect to the knapsack problems (which in turn are versions of
standard Module-SIS/Module-LWE problems) defined in Section 2.4. More con-
cretely, they showed that any algorithm A that efficiently solves the hiding prop-
erty can be turned into an algorithm A′ solving DKS∞n+1,k,β∞

with essentially
the same runtime and success probability. Furthermore, any algorithm A that
efficiently solves the binding problem can be turned into an algorithm A′′ solving
SKS2

n,k,16σC

√
νN

with the same success probability.

The commitments [BDL+18] have a weak additively homomorphic property:

Proposition 1. Let z0 = Com(m; rm) be a commitment with opening (m; rm, f)
and let z1 = Com(ρ;0). Then z0−z1 is a commitment with opening (m−ρ; rm, f).

The proof follows from the linearity of the verification algorithm.

9

3.2 Zero-Knowledge Proof of Linear Relations

Let [[x]], [[x′]] be commitments as above such that x′ = αx + β for some public
α, β ∈ Rp. Then ΠLin in Figure 1 shows a zero-knowledge proof of knowledge
(ZKPoK) of this fact (it is an adapted version of the linearity proof in [BDL+18]).
The proof is a Σ protocol that aborts4 with a certain probability to achieve the
zero-knowledge property. For the protocol in Figure 1 we define

[[x]] = Com(x; r) =

[
c1

c2

]
, [[x′]] = Com(x′; r′) =

[
c′1
c′2

]
.

Prover P Verifier V

y,y′ $← N k
σC

t← B1y, t
′ ← B1y

′

u← α⟨b2,y⟩ − ⟨b2,y′⟩ t, t′, u

d d
$← C

z ← y + dr

z′ ← y′ + dr′

Continue with probability:∏
(a,b)∈{(r,z),(r′,z′)}

min

(
1,

N k
σC

(b)

M · N k
da,σC

(b)

)
z,z′

return Accept iff

1 : ∥z[i]∥ ,
∥∥z′[i]

∥∥ ≤ 2σC

√
N, i ∈ [k]

2 : B1z
?
= t+ dc1

3 : B1z
′ ?
= t′ + dc′1

4 : α⟨b2,z⟩ − ⟨b2,z′⟩ ?
= (αc2 + β − c′2)d+ u

Fig. 1: Protocol ΠLin is a Sigma-protocol to prove the relation x′ = αx+β, given
the commitments [[x]], [[x′]] and the scalars α, β.

In [BDL+18] the authors show that a version ofΠLin is a Honest-Verifier Zero-
Knowledge Proof of Knowledge for the aforementioned commitment scheme.
This can directly be generalized to relations of the form α · x̃+ β as follows:

Lemma 3. Let α, β, [[x]], [[x′]] be defined as above. Then ΠLin is a HVZK proof
of the relation

RLin =

{
(s, w)

s = (α, β, [[x]], [[x′]],B1, b2), w = (x̃, r̃, r̃′, f),

Open([[x]], x̃, r̃, f) = Open([[x′]], α · x̃+ β, r̃′, f) = 1

}

4 This approach is usually referred to as Fiat Shamir with Aborts (see e.g. [Lyu09,
Lyu12] for a detailed description). If the proof is compiled with a random oracle into
a NIZK, then these aborts only increase the prover time by a constant factor.

10

The proof for this is exactly the same as in [BDL+18], and we do only sketch
it now: Assume that we can rewind an efficient poly-time prover and obtain
two accepting transcripts with the same first message t, t′, u but differing d, d
(as well as responses z, z′, z, z′). Then one can extract valid openings (x̃; r̃, f)
and (αx̃ + β; r̃′, f) for [[x]], [[x′]] respectively as follows: From the two accepting
transcripts and the equations checked by the verifier we can set f = d − d,
r̃ = z − z, r̃′ = z′ − z′ where it must hold that

α⟨b2, r̃⟩ − ⟨b2, r̃′⟩
?
= f(αc2 + β − c′2).

By setting x̃ = c2 − f−1⟨b2, r̃⟩ and x̃′ = c′2 − f−1⟨b2, r̃′⟩, we then have that
αx + β = x′ by the aforementioned equation. The validity and bounds of the
opening follow from the same arguments as in [BDL+18].

Compression. Using the techniques from [GLP12,BG14], as already mentioned
in [BDL+18, Section 5.3], allows to compress the non-interactive version of the
aforementioned zero-knowledge proof. The main idea is that the prover only
hashes the parts of the proof that got multiplied by the uniformly sampled part
B′

1 of B1, and that the verifier only checks an approximate equality with these
when recomputing the challenge. We do the following changes to the protocol.

The prover samples vectors y,y′ of dimension k − n according to σC, then
computes t = B′

1y and t′ = B′
1y

′. Note that u is computed as before, as the
n first values of b2 are zero. Then z and z′ are computed as earlier, but are of
dimension k − n instead of k. The prover computes the challenge d as

d = H(B, [[x]], [[x′]], α, β, u, ⌊t⌉γ , ⌊t′⌉γ)

where γ ∈ N and ⌊·⌉γ denotes rounding off the least γ bits.
To make sure that the non-interactive proof can be verified, we must ensure

that d can be re-computed from the public information. Let t̂ = B′
1z − dc1 and

t̂
′
= B′

1z
′ − dc′1 and observe that t̂[i]− t[i] = dr[i], for each coordinate i ∈ [n],

and similar for t̂
′
and t′. For honestly generated randomness, for each i ∈ [k],

we have that ∥r[i]∥ ≤ β∞
√
N , and since d ∈ C̄, we have that ∥d∥ =

√
ν. It

follows that ∥dr[i]∥∞ ≤ β∞
√
νN , and similar for dr′[i]. When hashing t and t′

to get the challenge d, we then remove the γ = ⌈log β∞
√
νN⌉ lower bits of each

coordinate first, to ensure that both the prover and the verifier compute on the
same value. Hence, before outputting the proof, the prover will also test that

d′ = H(B, [[x]], [[x′]], α, β, û, ⌊B′
1z − dc1⌉γ , ⌊B′

1z
′ − dc′1⌉γ), where

û = α⟨[1 b′2], z⟩ − ⟨[1 b′2], z
′⟩ − (αc2 + β − c′2)d.

The prover then outputs the proof (d, z, z′) if d = d′ and ∥z[i]∥ , ∥z′[i]∥ ≤
2σC

√
N (when setting up the check as in [GLP12, BG14], then the test will

fail with probability at most 1/2), and the verifier will make the same checks
to validate it. The proof size is reduced from k to k − n Gaussian-distributed
ring-elements, making the proof size a total of 2(k − n) log(6σC) bits.

11

4 Protocol: Zero-Knowledge Proof of Correct Shuffle

In this section we present the shuffle protocol for openings of commitments. We
construct a public-coin 4 + 3τ -move protocol5 such that the commit-challenge-
response stages require the prover to solve a system of linear equations in order
to prove a correct shuffle. Our construction extends Neff’s construction [Nef01]
to the realm of post-quantum assumptions.

The proof of shuffle protocol will use the commitments defined in Section
3. For the shuffle proof to work, the prover P and verifier V receive commit-
ments {[[mi]]}τi=1. P also receives the set of openings {(mi, ri)}τi=1 as well as a
permutation π ∈ Sτ . Additionally, both parties also obtain {m̂i}τi=1.

The goal is to ensure that the following relation RShuffle holds:

RShuffle =

 (s, w)

s = ([[m1]], . . . , [[mτ]], m̂1, . . . , m̂τ , m̂i ∈ Rp),

w = (π, f1, . . . , fτ , r1, . . . , rτ), π ∈ Sτ ,

∀i ∈ [τ] : Open([[mπ−1(i)]], m̂i, ri, fi) = 1


To use the idea of Neff, all m̂i messages involved have to be invertible. How-

ever, this may not be the case for arbitrary ring elements. We start by showing
that if V samples a random ρ in Rp then all m̂i − ρ will be invertible with high
probability:

Proposition 2. Let N ≥ δ ≥ 1 be powers of 2, p a prime congruent to 2δ +
1 mod 4δ. Then

Pr
x1,...,xτ∈Rp

[x1−ρ, . . . , xτ−ρ invertible in Rp | ρ
$← Rp] ≤ 1−max(1, τ ·(1−e−δ/p)).

Plugging in realistic parameters (p = 232, δ = 2, τ = 1, 000, 000) we see that the
probability of of all m̂i − ρ being simultaneously invertible is essentially 1.

Proof. By assumption, Rp factors into δ irreducible factors. Therefore, the num-
ber of invertible elements in Rp is exactly

(pN/δ−1 · (p− 1))δ = (pN/δ − pN/δ−1)δ.

Let S1 be the set of choices of ρ ∈ Rp such that x1 − ρ is not invertible, and
similarly define S2, . . . , Sτ . We know that |Si| ≤ pN − (pN/δ − pN/δ−1)δ and so,
if all Si are disjoint sets, |S1 ∪ · · · ∪Sτ | ≤ τpN − τ(pN/δ − pN/δ−1)δ. Dividing by
the total number of elements in Rp we then get that the probability of ρ hitting
S1 ∪ · · · ∪ Sτ can be bounded by

τ · p
N − (pN/δ − pN/δ−1)δ

pN
= τ − τ ·

(
pN/δ − pN/δ−1

pN/δ

)δ

= τ ·

(
1−

(
1− 1

p

)δ
)
≤ τ · (1− e−δ/p),

where the inequality follows from 1 + x ≤ ex. ⊓⊔
5 This is only a theoretical problem as the protocol is public-coin and can therefore
directly be transformed into NIZKs using the Fiat-Shamir transform.

12

The first step for our shuffle protocol will be that V picks a random appropri-

ate ρ
$← Rp and sends ρ to P. P and V then locally compute the values M̂i,Mi

by setting Mi = mi − ρ, M̂i = m̂i − ρ. The proof, on a high level, then shows
that

∏
i Mi =

∏
i M̂i. This is in fact sufficient, as the mi, m̂i can be considered

as roots of polynomials of degree τ . By subtracting ρ from each such entry and
multiplying the results we obtain the evaluation of these implicit polynomials in
the point ρ, and if the m̂i are not a permutation of the mi then these implicit
polynomials will be different. At the same time, the number of points on which
both polynomials can agree is upper-bounded as shown in Lemma 2.

Prover P Verifier V

ρ ρ
$← Rp \ {m̂i}τi=1

M̂i = m̂i − ρ M̂i = m̂i − ρ

Mi = mi − ρ [[Mi]] = [mi]− ρ

θi
$← Rp, ∀i ∈ [τ − 1]

Compute [[Di]] as in Eq. (1), i.e.

[[D1]] = [[θ1M̂1]], [[Dτ]] = [[θτ−1Mτ]],

[[Di]] = [[θi−1Mi + θiM̂i]] for i ∈ [τ − 1] \ {1} {[[Di]]}τi=1

β β
$← Rp

Compute si, ∀i ∈ [τ − 1] as in (3). {si}τ−1
i=1

Use ΠLin to prove that

(1) β[[M1]] + s1M̂1 = [[D1]]

(2) ∀i ∈ [τ − 1] \ {1} : si−1[[Mi]] + siM̂i = [[Di]]

(3) sτ−1[[Mτ]] + (−1)τβM̂τ = [[Dτ]]

i.e. all equations from (2)

return accept iff all instances of ΠLin are accepting

Fig. 2: The public-coin zero-knowledge protocol of correct shuffle ΠShuffle.

Our public-coin zero-knowledge protocol proves this identity of evaluations
of these two polynomials by showing that a particular set of linear relations (2)
is satisfied (we will show later how it is related to the aforementioned product
of Mi and M̂i).

As a first step, P draws θi
$← Rp uniformly at random for each i ∈ {1, . . . , τ},

and computes the commitments

[[D1]] = [[θ1M̂1]]

∀j ∈ {2, . . . , τ − 1} : [[Dj]] = [[θj−1Mj + θjM̂j]]

[[Dτ]] = [[θτ−1Mτ]].

(1)

13

P then sends these commitments {[[Di]]}τi=1 to the verifier6 V, which in turn
chooses a challenge β ∈ Rp, whereupon P computes si ∈ Rq such that the
following equations are satisfied:

βM1 + s1M̂1 = θ1M̂1

∀j ∈ {2, . . . , τ − 1} : sj−1Mj + sjM̂j = θj−1Mj + θjM̂j

sτ−1Mτ + (−1)τβM̂τ = θτ−1Mτ .

(2)

To verify the relations, P uses the protocol ΠLin from Section 3 to prove that
the content of each commitment [[Di]] is such that Di,Mi and M̂i satisfies the
equations (2). The protocol ends when V has verified all the τ linear equations
in (2). In order to compute the si values, we can use the following fact:

Lemma 4. Choosing

sj = (−1)j · β
j∏

i=1

Mi

M̂i

+ θj (3)

for all j ∈ 1, . . . , τ − 1 yields a valid assignment for Equation (2).

Proof. The correctness of this choice follows directly by considering all three
cases: For the first case, we have that

βM1 + s1M̂1 = βM1 + (−βM1/M̂1 + θ1)M̂1

= θ1M̂1.

In the second case, it holds that

sj−1Mj + sjM̂j = ((−1)j−1β

j−1∏
i=1

Mi/M̂i + θj−1)Mj + ((−1)jβ
j∏

i=1

Mi/M̂i + θ1)M̂j

= θj−1Mj + θjM̂j

where the β-terms cancel. For the third case, since
M1 · · ·Mτ

M̂1 · · · M̂τ−1

= M̂τ so

sτ−1Mτ + (−1)τβM̂τ = ((−1)τ−1β

τ−1∏
i=1

Mi/M̂i + θτ−1)Mτ + (−1)τβM̂τ

= θτ−1Mτ

⊓⊔

From Lemma 4 it is clear that the protocol is indeed complete. Interestingly,
this choice of sj also makes these values appear random: each sj is formed by
adding a fixed term to a uniformly random private value θj . This will be crucial
to show the zero-knowledge property. For the soundness, we get the following:

6 P does not show that these commitments are well-formed, this will not be necessary.

14

Lemma 5. Assume that the commitment scheme is binding and that ΠLin is a
sound proof of knowledge for the relation RLin except with probability t. Then
the protocol in Figure 2 is a sound proof of knowledge for the relation RShuffle

except with probability ϵ ≤ τδ+1
|Rp| + 4τt.

Proof. To prove the statement, we will construct a PPT algorithm E called
extractor which interacts with P∗ in a black-box manner and which will output
a witness w for a statement s such that (s, w) ∈ RShuffle given that P∗ wins for
a given s with more than the stated probability. The expected runtime of E is
poly(τ, t)/ϵ. The extractor algorithm will proceed as follows:

1. Construct sub-extractors Ei which for each i ∈ [τ] do the following:
(a) Run instances with an arbitrary randomness tape for P∗ as well as ar-

bitrary challenges until an accepting transcript is found.
(b) Upon finding an accepting transcript, rewind P∗ until after the first

message in the ith instance of ΠLin was sent. Then probe for a second
challenge for the ith proof that leads to an accepting transcript7.

2. Subtract ρi from all Mi where ρi is the value used by the extractor Ei. Then
for each [[mi]] let the opening be (mi; ri, fi). If the mi are indeed a permu-
tation of the m̂i then output the respective w = (π, f1, . . . , fτ , r, . . . , rτ).

We will first argue why the above algorithm is expected polynomial-time: The
runtime of each Ei is expected polynomial time by a standard heavy-row ar-
gument, as we only need to rewind on a specific instance only. Applying the
heavy-row argument is possible as the success probability of P∗ is above 4t (we
lose a factor of 4 in the heavy-row argument). We now argue why also Step 2 is
polynomial-time i.e. that E outputs a witness.

Let us assume we would create two transcripts for an identical ρ but differing
β, β′ where we rewind P∗. We would then obtain different si, s

′
i such that all the

equations are proven by P∗ with ΠLin. From the soundness of ΠLin we obtain:

1. βM1 + s1M̂1 = D1 and β′M1 + s′1M̂1 = D1

2. ∀i ∈ [τ − 1] \ {1} : si−1Mi + siM̂i = Di and s′i−1Mi + s′iM̂i = Di

3. sτ−1Mτ + (−1)τβM̂τ = Dτ and s′τ−1Mτ + (−1)τβ′M̂τ = Dτ

Subtracting the equations with identical Di on the right-hand side yields the
following system of τ linear equations:

M1 M̂1 0 . . . 0 0

0 M2 M̂2 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . Mτ−1 M̂τ−1

(−1)τM̂τ 0 0 . . . 0 Mτ


M



β − β′

s1 − s′1
...

sτ−2 − s′τ−2

sτ−1 − s′τ−1


c

=



0

0
...

0

0

 (4)

7 One would additionally in parallel run a process that aborts Ei with very small
probability, see e.g. [BBC+18, Lemma 3]. We leave this out for the sake of simplicity.

15

We can directly see from the above that all Mi, si− s′i must be non-zero and
that therefore si ̸= s′i: From the last equation and the assumption that β ̸= β′

we know that Mτ × (sτ−1 − s′τ−1) ̸= 0 as M̂τ is invertible. From the second-to-

last equation and due to the invertibility of M̂τ−1 the same holds for Mτ−1 and
sτ−2 − s′τ−2. By induction, this applies to all values.

By a standard rule from linear algebra, we know that if det(M) ̸= 0 then 0
is the only element in the kernel of M , while c ̸= 0. Therefore, det(M) = 0. We
explicitly compute det(M) using the Laplace expansion obtained by removing
the first column (and then all rows successively). As most of the cofactors are 0,
we obtain 0 = det(M) = M1 · det(M1) + (−1)2τ+1 · det(M2) where

M1 =



M2 M̂2 . . . 0 0

0 M3 . . . 0 0
...

...
. . .

...
...

0 0 . . . Mτ−1 M̂τ−1

0 0 . . . 0 Mτ

 , M2 =



M̂1 0 . . . 0 0

M2 M̂2 . . . 0 0

0 M3 . . . 0 0
...

...
. . .

...
...

0 0 . . . Mτ−1 M̂τ−1

 .

Clearly det(M1) = M2 · · ·Mτ and det(M2) = M̂1 · · · M̂τ−1 and therefore det(M) =∏τ
i=1 Mi −

∏τ
i=1 M̂j and

∏τ
i=1 Mi =

∏τ
i=1 M̂j ̸= 0. Define the two polynomials

g(X) =
∏τ

i=1
(mi −X), and ĝ(X) =

∏τ

i=1
(m̂i −X),

that is, g(X) and ĝ(X) are the polynomials which have mi and m̂i as their roots,
respectively. If there exists no permutation such that m̂i = mπ(i),∀i = 1, . . . , τ ,

then g(ρ) = ĝ(ρ) (i.e. det(M) = 0) for at most τ δ choices of ρ according to
Lemma 2. Due to the lower-bound on the success probability of P∗ there must
exist accepting transcripts for more than τ δ choices of ρ with more than one
accepting choice of β where all instances of ΠLin prove correct. Then, by the
above argument and because the commitment scheme is binding, it must hold
that the values extracted by E indeed are a permutation of the m̂i. ⊓⊔

From Lemmas 4 and 5 we get the following theorem:

Theorem 1. Assume that (KeyGenC, Com, Open) is a secure commitment scheme
with ΠLin as a HVZK Proof of Knowledge of the relation RLin with soundness er-
ror t. Then the protocol ΠShuffle is an HVZK Proof of Knowledge for the relation
RShuffle with soundness error (τ δ + 1)/|Rp|+ 4τt.

The proof of completeness and HVZK can be found in Appendix A.

5 Applications to Electronic Voting

We now construct an e-voting protocol by combining the shuffle protocol from
Section 4 with a verifiable encryption scheme and a return code mechanism.

16

Towards this end, consider the shuffled openings of commitments as the
outcome of the election, meaning that each commitment will contain a vote.
Commitments are not sufficient for a voting system, and we also need encryp-
tions of the actual ballots and these must be tied to the commitments, so that
the shuffling server can open the commitments without anyone else being able
to. We use a version of the verifiable encryption scheme by Lyubashevsky and
Neven [LN17] to verifiably encrypt openings under a public key that belongs to
the shuffle server. We also reuse the verifiable encryption to get a system for
return codes. The return code computation is done in two stages, where the
first stage is done on the voter’s computer, and the second stage is done by an
infrastructure player. The voter’s computer commits to its result and verifiably
encrypts an opening of that commitment for the infrastructure player. Then it
proves that the commitment contains the correct value.

We will now describe the verifiable encryption scheme that we use as well as
the return code mechanism in more detail, before explaining how to construct
the full e-voting protocol.

5.1 Verifiable Encryption

In a verifiable encryption scheme, anyone can verify that the encrypted plaintext
has certain properties. We use a version of [LN17] where we use a generalization
of the [LPR13, BGV12] encryption system. The reason is that in [LN17] the
public key only consists of single polynomials of degree N , requiring that the
plaintext vector must also be a multiple of N - which might not always be the
case as in our setting.

In our setting, the goal is to show that the plaintext is a value µ ∈ Dκ
β∞

such
that

Tµ = u mod p, (5)

for some fixed T ,u and where T ∈ Rλ×κ
p . Using the construction of [LN17], one

can show a weaker version of the statement, namely that decryption yields a
small µ̄ and c̄ ∈ C over Rp such that

T µ̄ = c̄u mod p. (6)

We will see that this will be sufficient for our voting scheme8.
The [LN17] verifiable encryption scheme consists of 4 algorithms: Key gen-

eration KeyGenV , encryption Enc, verification Ver and decryption Dec. We will
first describe the underlying non-verifiable encryption scheme and then explain
how it is made verifiable.

The encryption, verification and decryption algorithms are described in Fig-
ures 3, 4 and 5 respectively. Here, encryption follows [LPR13,BGV12] but ad-
ditionally computes a NIZK that the plaintext is a valid preimage of Equation

8 Recently, [ALS20] showed a more efficient HVZKPoK for the respective relation.
Unfortunately, their proof cannot guarantee that c̄ is invertible, which is crucial for
the verifiability of the encryption scheme. Their optimization can therefore not be
applied in our setting.

17

5 and also bounded. Ver validates the NIZK, while Dec decrypts to a short
plaintext that is valid under Equation 6.

To generate a public key (A, t) for the verifiable encryption scheme one
samples A ← Rℓ×ℓ

q uniformly at random as well as s1, s2 ← Dℓ
1, setting t ←

As1 + s2 and outputting (A, t) as public key as well as s1 as private key. To
encrypt a single message µ ∈ Dβ∞ , first sample r, e ← Dℓ

1, e
′ ← D1 and then

compute [
v

w

]
=

[
p(A⊤r + e) mod q

p(⟨t, r⟩+ e′) + µ mod q

]
.

To decrypt a ciphertext (v, w) ∈ Rℓ
q ×Rq compute

w − ⟨v, s1⟩ mod q mod p = (p(⟨r, s2⟩+ e′ − ⟨e, s1⟩) + µ mod q) mod p = µ,

where the last equality holds if ∥p(⟨r, s2⟩+ e′ − ⟨e, s1⟩+ µ)∥∞ < q/2.
To encrypt a vector µ = (µ1, . . . , µκ) ∈ Dκ

β∞
we can abbreviate our equations

in matrix notation in the following way:

[
A⊤ ⊗ (pIκ) pIℓ·κ 0(ℓ·κ)×κ 0(ℓ·κ)×κ

t⊤ ⊗ (pIκ) 0κ×(ℓ·κ) pIκ Iκ

]
r

e

e′

µ

 =

[
v

w

]
mod q, (7)

for r, e
$← Dℓ·κ

1 , e′
$← Dκ

1 and where v ∈ Rℓ·κ
q ,w ∈ Rκ

q . For decryption we get:

µ[i] = w[i]− ⟨s1, v̂i⟩ mod q mod p

where v̂i = [v[(i− 1) · ℓ+1],v[(i− 1) · ℓ+2], . . . ,v[i · ℓ]]⊤ which follows from the
definition of the tensor product. For correctness, the aforementioned decryption
bound generalizes to

∥p(⟨r̂i, s2⟩+ e′[i]− ⟨ê, s1⟩) + µ[i]∥∞ < q/2

where r̂i, êi are analogously defined to v̂i. Using standard bounds on ∞-norms
of products of elements in Rp, this directly translates into the requirement that
q > 2p(2ℓ ·N2 · β∞

2 +N + 1).
To make this verifiable, we will use a NIZK which shows for a ciphertext v,w

that the sender knows r, e, e′,µ that are bounded such that

– r, e, e′,µ are a preimage of v,w modulo q as in Equation 7.
– µ fulfills equation (5) modulo p.

To prove both relations simultaneously we use a standard lattice-based zero-
knowledge proof for the specific relation, and by using the Fiat-Shamir transform
[FS87] this then becomes non-interactive. As mentioned before, the output of Dec
will be a witness for Equation 6, i.e. it will also contain the additional factor c.

We now argue that our modification of the scheme is still secure.

18

First of all, the encryption scheme (as the authors of [BGV12] show) can
be generalized to work with the generalized M-LWE assumption9. As the actual
matrix dimensions for the encryption scheme do not change between our instance
of the verifiable encryption scheme and [LN17] the same security proof still
applies with respect to privacy.

The verifiability and thus decryption of the above construction directly fol-
lows from the original proof, as neither of the conditions of [LN17, Lemma 3.1]
are altered by changing the matrix structure. Furthermore, as we will choose
ℓ = 2 in our setting even this Rq of smaller dimension than in the original work
has a large enough challenge space necessary for the (non-)interactive proofs to
be sound. We will therefore be able to basically rely on the same security anal-
ysis as [LN17] and can essentially re-use their parameters (with some slightly
increased p, q).

There are multiple parameter restrictions in [LN17] in order to achieve secu-
rity. These also apply to our setting:

1. The underlying encryption scheme must safely be able to encrypt and de-
crypt messages from Rκ

p . For this, we obviously need that message and noise,
upon decryption, do not “overflow” modq while the noise at the same time
must be large enough such that the underlying MLWE-problem is hard. For
concrete parameters, the latter can be established by e.g. using the LWE
Estimator [APS15]. For correctness of the decryption alone, we require that
the decryption of a correct encryption must yield10 a value < q/2. This also
means that the decryption algorithm will always terminate for c = 1 in case
the encryptor is honest.

2. The NIZK requires “quasi-unique responses”, which (as the authors of [LN17]
argue) it will have with overwhelming probability over the choice of A as
long as 24σ2

E < q.

Encrypting openings of commitments. We want to make sure that the
voter actually knows his vote, and that the commitment and the opening of the
commitment are well-formed. We also want to ensure that the ciphertext actually
contains a valid opening of the commitment. This can be achieved if the voter
creates a proof that the underlying plaintext is an opening of the commitment.
Then the ballot box can ensure that the shuffle server will be able to decrypt
the vote and use it in the shuffle protocol. Note that the voter may send a well-
formed but invalid vote, but then the shuffle server can publicly discard that
vote later, and everyone can check that the vote indeed was invalid.

Recall that the commitment is of the form

Com(m; rm) =

[
c1

c2

]
=

[
B1

b2

]
· rm +

[
0

m

]
.

9 M-LWE generalizes the Ring-LWE assumption [LS15] and is a more conservative
security assumption for the same dimensions of the matrix.

10 This translates into the requirement that q > 2p(2ℓ ·N2 · β∞
2 +N + 1).

19

Input: Public key pk = (A, t, p, q), pair (T ,u),µ ∈ Dκ
β such that

Tµ = u, hash function H : {0, 1}∗ → C,

σE = 11 ·max
c∈C
∥c∥ ·

√
κN(3 + β)

Output: ciphertext (v,w, c, z) ∈ Rℓ·κ
q ×Rκ

q × C ×R(2ℓ+2)κ

1 : r, e
$← Dℓ·κ

1 , e′ $← Dκ
1

2 :

[
v

w

]
←

[
A⊤ ⊗ (pIκ) pIℓ·κ 0(ℓ·κ)×κ 0(ℓ·κ)×κ

t⊤ ⊗ (pIκ) 0κ×(ℓ·κ) pIκ Iκ

] [
r e e′ µ

]⊤
3 : y ←

[
yr ye ye′ yµ

]⊤
$← DR(2ℓ+2)κ,0,σE

4 : Y ←

A
⊤ ⊗ (pIκ) pIℓ·κ 0(ℓ·κ)×κ 0(ℓ·κ)×κ

t⊤ ⊗ (pIκ) 0κ×(ℓ·κ) pIκ Iκ

0λ×(ℓ·κ) 0λ×(ℓ·κ) 0λ×κ T

 [
yr ye ye′ yµ

]⊤ mod q

mod q

mod p

5 : c← H


A

⊤ ⊗ (pIκ) pIℓ·κ 0(ℓ·κ)×κ 0(ℓ·κ)×κ

t⊤ ⊗ (pIκ) 0κ×(ℓ·κ) pIκ Iκ

0λ×(ℓ·κ) 0λ×(ℓ·κ) 0λ×κ T

 ,

vw
u

 ,Y


6 : s←

[
r e e′ µ

]⊤
c

7 : z ← s+ y

8 : With probability 1−min

(
1,

DR(2ℓ+2)κ,0,σE
(z)

3 ·DR(2ℓ+2)κ,s,σE
(z)

)
goto 3

9 : if ∥z∥∞ ≥ 6σE goto 3, else return e = (v,w, c, z)

Fig. 3: The verifiable encryption algorithm Enc.

Input: Secret key sk = (s1), pair x = (T ,u),

ciphertext t = (v,w, c, z), C = max
c∈C
||c||∞

1 : if Ver(t, x, pk) = 1 then

2 : while

3 : c′
$← C

4 : c← c− c′

5 : m[i]← (w − ⟨s1,vi⟩)c mod q for all i ∈ [κ]

6 : if ||m||∞ ≤ q/2C and ||m mod p||∞ < 12σE then

7 : return (m mod p, c)

Fig. 4: Algorithm Dec for decryption of a ciphertext.

Input: ciphertext t = (v,w, c, z) ∈ Rℓ·κ
q ×Rκ

q ×Rq ×R(2ℓ+2)κ, language element x = (T ,u),

public key pk = (A, t, p, q)

1 : if ∥z∥∞ > 6 · σE then return 0

2 : Z ←

A
⊤ ⊗ (pIκ) pIℓ·κ 0(ℓ·κ)×κ 0(ℓ·κ)×κ

t⊤ ⊗ (pIκ) 0κ×(ℓ·κ) pIκ Iκ

0λ×(ℓ·κ) 0λ×(ℓ·κ) 0λ×κ T

 z − c

vw
u

 mod q

mod q

mod p

3 : if c ̸= H


A

⊤ ⊗ (pIκ) pIℓ·κ 0(ℓ·κ)×κ 0(ℓ·κ)×κ

t⊤ ⊗ (pIκ) 0κ×(ℓ·κ) pIκ Iκ

0λ×(ℓ·κ) 0λ×(ℓ·κ) 0λ×κ T

 ,

vw
u

 ,Z

 then return 0

4 : return 1

Fig. 5: Algorithm Ver for verification of a ciphertext.

20

The value c1 serves to bind the committer to a single choice of rm, while
c2 hides the actual message using the unique rm. Fixing rm fixes m uniquely,
and m can indeed be recovered using rm only. The idea is to use the verifiable
encryption scheme to encrypt the opening rm, and prove that the voter knows
a witness for the relation c1 = B1rm mod p where rm is bounded. Any such
randomness could then be used to uniquely open the commitment.

To encrypt the opening rm verifiably, Step 4 in Figure 3 is now the system

 v

w

c1

 =

A
⊤ ⊗ (pIκ) pIℓ·κ 0(ℓ·κ)×κ 0(ℓ·κ)×κ

t⊤ ⊗ (pIκ) 0κ×(ℓ·κ) pIκ Iκ

0λ×(ℓ·κ) 0λ×(ℓ·κ) 0λ×κ B1

 ·


r

e

e′

rm

 .

Note that the encryption of the opening rm now contains two parts: v and
w correspond to the ciphertext of the encryption while c1 corresponds to the
verification of the opening of the commitment.

5.2 Return Codes

In the case of a malicious computer, we need to make sure that the voter can
detect if the encrypted vote being sent to the ballot box is not an encryption of
the correct ballot. We achieve this by giving the voter a pre-computed table of
return codes which he can use for verification. The return codes are generated
per voter, using a voter-unique blinding-key and a system-wide PRF-key.

A commitment to the blinding key is made public. The computer gets the
blinding-key and must create a pre-code by blinding the ballot with the blinding-
key. The computer also generates commitments to the ballot and the pre-code,
along with a proof that the pre-code has been generated correctly. Anyone with
an opening of the pre-code commitment and the PRF-key can now generate the
correct return code without learning anything about the ballot.

Defining the Return Code. Assume that the voters have ω different options in
the election. Let v̂1, v̂2, . . . , v̂ω ∈ Rp be ballots, let aj ∈ Rp be a blinding-key for
a voter Vj and let PRFk : {0, 1}∗ × Rp → {0, 1}n be a pseudo-random function,
instantiated with a PRF-key k, from pairs of binary strings and elements from
Rp to the set of binary strings of length n. The pre-code r̂ij corresponding to
the ballot v̂i is r̂ij = aj + v̂i mod p. The return code rij corresponding to the
ballot v̂i is rij = PRFk(Vj , r̂ij).

Let caj
, cj and cr̂j be commitments to the blinding key aj , the ballot

vj ∈ {v̂1, . . . , v̂ω} and the pre-code r̂j = aj + vj mod p. It is now clear that
we can prove that a given r̂j value has been correctly computed by giving a
proof of linearity that aj + vj = r̂j . This can be done either by adding the com-
mitments caj

and cj together directly to get a commitment caj+vj with larger
randomness (if the choice of parameters allows for the sum of the randomness
to be a valid opening of the commitment) and then prove the equality of the

21

committed messages, or to extend the proof of linearity to handle three terms.
Our return code construction is now straight-forward:

A commitment caj to voter Vj ’s voter-unique blinding key aj is public. The
voter Vj ’s computer will get the voter-unique blinding-key aj together with the
randomness used to create caj

. It has already created a commitment cj to the
ballot vj . It will compute the pre-code r̂j = aj + vj , a commitment cr̂j to r̂j and
a proof Πr̂j of knowledge of the opening of that sum. Finally, it will verifiably
encrypt as er̂j the opening of cr̂j with the return code generator’s public key.

The return code generator receives Vj , cr̂j , cj , er̂j and Πr̂j . It verifies the
proof and the encryption, and then decrypts the ciphertext to get r̂j . It computes
the return code as rj = PRFk(Vj , r̂j).

Note that if a voter re-votes (such as when exposed to coercion), the return
code generator would be able to learn something about the ballots involved.
The return code mechanism can be extended for re-voting using higher degree
polynomials to hide the vote.

5.3 The Voting Scheme

We get our e-voting protocol by combining the shuffle protocol with the verifiable
encryption scheme and the return code construction. A complete description of
this protocol can be found in Figure 6 and in Appendix B. All communication
happens over secure channels. We discuss the privacy, integrity and coercion
resistance of the voting scheme in detail in Appendix B.

Registration phase. The only thing that happens in this phase is key generation.
Every player generates their own key material and publishes the public keys and
any other commitments.

The voter’s computer, the return code generator and a trusted printer then
use a multi-party computation protocol11 to compute the ballot-return code
pairs for the voter, such that only the trusted printer learns the pairs. The
trusted printer then sends these pairs to the voter through a secure channel.
We emphasize that for many voters, the registration phase likely requires sig-
nificant computational resources for the return code generator and the trusted
printer. In practice, the voter’s computer will usually play a minor role in this
key generation.

Casting a ballot. The voter begins the ballot casting by giving the ballot vj to
the voter’s computer.

The voter’s computer has the per-voter secret key material, and gets the
ballot vj to be cast from the voter. It computes the pre-code r̂ and generates
commitments cj and cr̂ to the ballot and the pre-code, respectively. It creates

11 Since this happens before the election, speed is no longer essential. Even so, for the
computations involved here, ordinary MPC is sufficiently practical. In a practical
deployment, the voter’s computer is unlikely to be part of this computation. It
would instead be delegated to a set of trusted key generation players.

22

Vj

v̂1 r1j

v̂2 r2j
...

...

v̂ω rωj

r
?
= rij

D B

F R

S

A

dkS

Shuffle

Generate ΠS

k, caj , dkR

r ← PRFk(Vj , r̂)

Verify Πr̂

aj , caj

r̂ ← aj + vj

cr̂ ← Com(r̂)

er̂ ← Enc(r̂)

cj ← Com(vj)

ej ← Enc(dj)

Generate Πr̂

caj

Verify Πr̂

Key material

Computation

vj cj , ej , idj

cr̂, er̂, Πr̂

cr̂

er̂

Πr̂

{ci}τi=1

r

r

{ci, ei}τi=1

{vπ(i)}τi=1ΠS

{c
i} τ

i=
1

cr̂, er̂, Πr̂

{ci}τi=1

Fig. 6: Complete voting protocol. A voter Vj gives a vote vj to their computer
D. The value dj is the opening of the commitment cj . The public keys for
commitments and encryption are assumed known to all parties. Signatures are
omitted: D signs the vote to be verified by the ballot box B and the return
code server R, while R signs the incoming votes and sends the signature in
return, via B, to D to confirm that the vote is received. Both B and R sends
the commitments of the votes to authorities A to verify consistent views. After
all votes are cast, B forwards them to the shuffle server S, stripping away the
voters id’s and signatures.

a proof Πr̂ that the pre-code has been correctly computed (with respect to
the commitments). It creates a verifiable encryption ej of an opening of cj to
vj under the shuffle server’s public key, and a verifiable encryption er̂ of an
opening of cr̂ under the return code generator’s public key. It then signs all of
these values, together with its identity and every public key and commitment
used to create the proofs. We note that the voter’s identity and relevant keys
and commitments are included in the proofs used. (This is not an artifact of
making the security proof work, but it prevents real-world attacks.)

The computer sends the commitments, encryptions, proofs and signature to
the ballot box. The ballot box verifies the signature and the proofs. Then it
sends everything to the return code generator.

The return code generator verifies the signature and the proofs. Then it
decrypts the opening of er̂ and computes the return code from r̂. It hashes
everything and creates a signature on the hash. It sends the return code to the
voter’s phone and the signature to the ballot box. The ballot box verifies the

23

return code generator’s signature on the hash. Then it sends the return code
generator’s signature to the voter’s computer.

The voter’s computer verifies the return code generator’s signature and then
shows the hash and the signature to the voter as the transcript. The voter checks
that the computer accepts the ballot as cast. When the phone displays the return
code r, the voter accepts the ballot as cast if (vj , r) is in the return code table.

Tallying. When the tally phase begins, the ballot box sends everything from
every successful ballot casting to the auditors. It extracts the commitments to the
ballots and the encrypted openings (without any proofs), organizes them into a
sorted list of commitment-ciphertext pairs and sends the sorted list to the shuffle
server. The return code generator sends everything from every successful ballot
casting to the auditors. The shuffle server receives a sorted list of commitment-
ciphertext pairs from the ballot box. It hashes the list and sends a hash to the
auditors. The shuffle server waits for the auditors to accept provisionally.

An auditor receives data from the ballot box and the return code generator,
and a hash from the shuffle server. If the data from the ballot box and the return
code generator agree, the auditor extracts the sorted commitment-ciphertext
pairs from the data, hashes it and compares the result with the hash from the
shuffle server. If it matches, the auditor provisionally accepts.

When the shuffle server receives the provisional accept, it decrypts the com-
mitment openings and verifies that the openings are valid. For any invalid open-
ing, it sends the commitment-ciphertext pair and the opening to the auditors. It
then sorts the ballots and creates a shuffle proof for the ballots and the commit-
ments. It then counts the ballots to get the election result and sends the ballots,
the shuffle proof and the result to the auditors.

An auditor receives the ballots, the shuffle proof and the result from the
shuffle server. It verifies the proof and that the election result is correct. It
extracts the hashes (but not the signatures) signed by the return code generator
from the ballot box data and creates a sorted list of hashes. It signs the hash list
and the result and send both signature and hash list to the shuffle server. Once
the shuffle server has received signatures and hash lists from every auditor, it
verifies that the hash lists are identical and that the signatures verify. It then
outputs the result, the hash list and the auditors’ signatures as the transcript.

Verification. The voter has the transcript output by the voter’s computer and
the transcript output by the shuffle server. It first verifies that the hash from the
computer’s transcript is present in the shuffle server’s hash list. Then it verifies
all the signatures. If everything checks out, the voter accepts.

6 Performance

As outlined in our construction, we are nesting the commitment scheme of
[BDL+18] into the encryption scheme of [LN17]. To determine secure while not
enormously big parameters for our scheme, we need to first make sure that

24

Parameter Explanation Constraints

N, δ Degree of polynomial XN + 1 in R N ≥ δ ≥ 1, where N, δ powers of two

p Modulus for commitments Prime p = 2δ + 1 mod 4δ

β∞ ∞-norm bound of certain elements Choose β∞ such that β∞ < p1/δ/
√
δ

σC Standard deviation of discrete Gaussians Chosen to be σC = 22 · ν · β∞ ·
√
kN

k Width (over Rp) of commitment matrix

n Height (over Rp) of commitment matrix

ν Maximum l1-norm of elements in C
C Challenge space C =

{
c ∈ Rp | ∥c∥∞ = 1, ∥c∥1 = ν

}
C̄ The set of differences C − C excluding 0 C̄ = {c− c′ | c ̸= c′ ∈ C}

Dβ∞ Set of elements of ∞-norm at most β∞ Dβ∞ = {x ∈ Rp | ∥x∥∞ ≤ β∞}

σE Standard deviation of discrete Gaussians Chosen to be σE = 11 · ν ·
√

κN(3 + β∞)

κ Dimension of message space in encryption Equal to the length of randomness k

ℓ Dimension the encryption matrix Equal to the size of the commitments k − n

λ Dimension of public u in Tµ = u Equal to the height n+ 1 of the commitment matrix

q Modulus for encryption Must choose prime q such that q > 24σ2
E

and q > 2p(2ℓ ·N2 · β∞
2 +N + 1)

and q = 2δ + 1 mod 4δ

τ Total number of votes For soundness we need (τ δ + 1)/|Rp| < 2−128

Table 1: Parameters for the commitment and verifiable encryption schemes.

we have sufficiently large parameters to ensure both binding and hiding of the
commitments for which we will use the “optimal” parameter set of [BDL+18]
(but with twice the standard deviation to keep the probability of abort in the
rejection sampling down to 3 trials for the proofs of linearity) which is both
computationally binding and hiding (see Table 2). The LWE-estimator [APS15]
estimates at least 100 bits of security with these parameters. We then instantiate
the verifiable encryption scheme with compatible parameters, which is possible
due to our generalization of [LN17]. The verifiable encryption scheme will then
yield decryptions with an ∞-norm that is way below the bound for which the
commitment scheme is binding, so any valid decryption which differs from the
original vote would break the binding of the commitment scheme. In general, the
instantiation of the encryption scheme offers much higher security than the com-
mitment scheme, but the choice of parameters are restricted by the constraints
from combining it with the commitments.

6.1 Size

Size of the Votes. Note that each ciphertext e includes both the encrypted
opening (v,w) and the proof of valid opening (c, z). Using a lattice based signa-
ture scheme like Falcon-768 [PFH+17], we have signatures of size ≈ 1 KB. The
voter verifiability protocol requires a commitment, an encryption + proof, and
a proof of linearity. It follows that a vote (cj , ej , cr̂, er̂, Πr̂) is of total size ≈ 240
KB, which means that, for τ voters, the ballot box B receives 240τ KB of data.

Size of the Shuffle Proof. Our shuffle protocol is a 4+3τ -move protocol with
elements from Rp. Each element in Rp has at most N coefficients of size at most

25

Parameter Commitment (I) Encryption (III)

N 1024 1024

p ≈ 232 ≈ 232

q - ≈ 256

β∞ 1 1

σ σC ≈ 54000 σE ≈ 54000

ν 36 36

δ 2 2

k 3 -

n 1 -

ℓ - 2

κ - 3

λ - 2

Proof 9.4 KB 42.4 KB

Primitive 8.2 KB 64.5 KB

Table 2: Parameters for the commitments by Baum et al. [BDL+18] and verifiable
encryption scheme by Lyubashevsky and Neven [LN17].

p, and hence, each Rp-element has size at most N log p bits. For every Rp-vector
that follows a Gaussian distribution with standard deviation σ we assume that
we can represent the element using N · log(6σ) bits. Every element from C will
be assumed to be representable using at most 2N bits.

We analyze how much data we have to include in each step of the shuffling
protocol in Figure 2. Using the Fiat-Shamir transform [FS87], we can ignore the
challenge-messages from the verifier. The prover ends up sending 1 commitment,
1 ring-element and 1 proof of linearity per vote. Using the parameters from Table
2, we get that the shuffle proof is of total size ≈ 22τ KB.

6.2 Timings

We collected performance figures from our prototype implementation written in
C to estimate the runtime of our scheme. Estimates are based on Table 2 and the
implementation was benchmarked on an Intel Skylake Core i7-6700K CPU run-
ning at 4GHz without TurboBoost using clang 12.0 and FLINT 2.7.1 [HJP13].
Timings are available in Table 3, and the source code can be found on GitHub 12.

Elementary Operations. Multiplication in Rp and Rq is usually implemented
when p ≡ q ≡ 1 mod (2N) and XN + 1 splits in N linear factors, for which
the Number-Theoretic Transform is available. Unfortunately, Lemma 1 restricts

12 https://github.com/dfaranha/lattice-voting-ctrsa21

26

https://github.com/dfaranha/lattice-voting-ctrsa21

Our Scheme: Commit Open Encrypt Verify Decrypt Shuffle

Time 1.1 ms 1.2 ms 208 ms 39 ms 6 ms 27τ ms

Table 3: Timings for cryptographic operations. Numbers were obtained by com-
puting the average of 104 consecutive executions of an operation measured using
the cycle counter available in the platform.

parameters and we instead adopt p ≡ q ≡ 5 mod 8 [LN17]. In this case, XN + 1
splits in two N/2-degree irreducible polynomials (XN/2 ± r) for r a modular
square root of -1. This gives an efficient representation for a = a1X

N/2 +
a0 using the Chinese Remainder Theorem: CRT (a) = (a (mod XN/2 − r), a
(mod XN/2 + r)). Even though the conversions are efficient due to the choice of
polynomials, we sample ring elements directly in this representation whenever
possible. As in [LS18], we implement the base case for degree N/2 using FLINT
for polynomial arithmetic [HJP13]. We use SHA256 for hashing to generate chal-
lenges.

Commitment. A commitment is generated by multiplying the matrix B by a
vector rm over Rp and finally adding the message m to the second component
in the CRT domain. Computing and opening a commitment takes 0.9 ms and
1.2 ms, respectively, and sampling randomness rm takes only 0.2 ms.

Verifiable Encryption. Verifiable encryption needs to sample vectors according
to a discrete Gaussian distribution. For an Rq element with standard deviation
σE ≈ 215.7 (for the encryption scheme), the implementation from COSAC [ZSS20]
made available for σ = 217 samples 1024 integers in 0.12 ms using very small
precomputation tables. Each encryption iteration takes 69 ms and, because we
expect to need 3 attempts to generate one valid encryption (line 8 in Figure 3),
the total time of encryption is around 208 ms. For verification, 39 ms are neces-
sary to execute a test; and 6 ms are required for the actual decryption.

Shuffle Proof. The shuffle proof operates over Rp and is thus more efficient.
Sampling uses the same approach as above for σC from the commitment scheme.
Benchmarking includes all samplings required inside the protocol, the commit-
ment, the proof of linearity and, because we expect to need 3 attempts to gen-
erate each of the proofs of linearity to the cost of 7.5 ms, amounts to 27τ ms for
the entire proof, omitting the communication cost.

6.3 Comparison

We briefly compare our scheme with the scheme by del Pino et al. [dLNS17]
from CCS 2017 in Table 4. We note that the scheme in [dLNS17] requires at
least ξ ≥ 2 authorities to ensure ballot privacy, where at least one authority
must be honest. The authorities run the proof protocol in parallel, and the time
they need to process each vote is ≈ 5 times slower per vote than in our scheme.
We only need one party to compute the shuffle proof, where we first decrypt all
votes and then shuffle. Our proof size is at least 14 KB smaller per vote when

27

ξ = 2, that is, a saving of 40 %, and otherwise much smaller in comparison
for ξ ≥ 3. We further note that both implementations partially rely on FLINT
for polynomial arithmetic and were benchmarked on Intel Skylake processors. A
significant speedup persists after correcting for clock frequency differences.

Comparison Vote Size Voter Time Proof Size Prover Time

Our Scheme: 120 KB 209 ms 22τ KB 33τ ms

CCS 2017 [dLNS17]: 20ξ KB 9 ms 18ξτ KB 150τ ms

Table 4: Comparing our scheme with the yes/no voting scheme in [dLNS17]

For a fair comparison, we only included the size and timings of the commit-
ment of the vote and the encrypted openings from our scheme. In practice, the
size and timings of the voter will be twice of what it is in the table, because of
the return code mechanism, which is not a part of [dLNS17]. This has no impact
on the decryption and shuffle done by the prover. The work done by the voter is
still practical. For [dLNS17] to be used in a real world election, they would need
to include an additional mechanism for providing voter verifiability, like the one
we have constructed.

Finally, we note that [dLNS17] can be extended from yes/no voting to votes
consisting of strings of bits. However, the size and timings of such an extension
will be linear in the length of the bit-strings, and our scheme would do even better
in comparison, as we can handle votes encoded as arbitrary ring-elements.

Thanks

We thank Andreas Hülsing and the anonymous reviewers for helpful comments.

References

Adi08. Ben Adida. Helios: Web-based open-audit voting. In Paul C. van
Oorschot, editor, USENIX Security 2008, pages 335–348. USENIX Asso-
ciation, July / August 2008.

ALS20. Thomas Attema, Vadim Lyubashevsky, and Gregor Seiler. Practical prod-
uct proofs for lattice commitments. In Daniele Micciancio and Thomas
Ristenpart, editors, CRYPTO 2020, Part II, volume 12171 of LNCS, pages
470–499. Springer, Heidelberg, August 2020.

APS15. Martin R Albrecht, Rachel Player, and Sam Scott. On the concrete hardness
of learning with errors. Journal of Mathematical Cryptology, 9(3):169–203,
2015.

BBC+18. Carsten Baum, Jonathan Bootle, Andrea Cerulli, Rafaël del Pino, Jens
Groth, and Vadim Lyubashevsky. Sub-linear lattice-based zero-knowledge
arguments for arithmetic circuits. In Hovav Shacham and Alexandra
Boldyreva, editors, CRYPTO 2018, Part II, volume 10992 of LNCS, pages
669–699. Springer, Heidelberg, August 2018.

28

BCG+15. David Bernhard, Véronique Cortier, David Galindo, Olivier Pereira, and
Bogdan Warinschi. SoK: A comprehensive analysis of game-based ballot
privacy definitions. In 2015 IEEE Symposium on Security and Privacy,
pages 499–516. IEEE Computer Society Press, May 2015.

BDL+18. Carsten Baum, Ivan Damg̊ard, Vadim Lyubashevsky, Sabine Oechsner, and
Chris Peikert. More efficient commitments from structured lattice assump-
tions. In Dario Catalano and Roberto De Prisco, editors, SCN 18, volume
11035 of LNCS, pages 368–385. Springer, Heidelberg, September 2018.

BG14. Shi Bai and Steven D. Galbraith. An improved compression technique for
signatures based on learning with errors. In Josh Benaloh, editor, CT-
RSA 2014, volume 8366 of LNCS, pages 28–47. Springer, Heidelberg, Febru-
ary 2014.

BGV12. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully
homomorphic encryption without bootstrapping. In Shafi Goldwasser, edi-
tor, ITCS 2012, pages 309–325. ACM, January 2012.

BHM20. Xavier Boyen, Thomas Haines, and Johannes Müller. A verifiable and prac-
tical lattice-based decryption mix net with external auditing. In Liqun
Chen, Ninghui Li, Kaitai Liang, and Steve A. Schneider, editors, ES-
ORICS 2020, Part II, volume 12309 of LNCS, pages 336–356. Springer,
Heidelberg, September 2020.

CGGI16. Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène.
A homomorphic LWE based E-voting scheme. In Tsuyoshi Takagi, editor,
Post-Quantum Cryptography - 7th International Workshop, PQCrypto 2016,
pages 245–265. Springer, Heidelberg, 2016.

Cha81. David Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Commun. ACM, 24(2):84–88, 1981.

CMM19. Núria Costa, Ramiro Mart́ınez, and Paz Morillo. Lattice-based proof of
a shuffle. In Andrea Bracciali, Jeremy Clark, Federico Pintore, Peter B.
Rønne, and Massimiliano Sala, editors, FC 2019 Workshops, volume 11599
of LNCS, pages 330–346. Springer, Heidelberg, February 2019.

dLNS17. Rafaël del Pino, Vadim Lyubashevsky, Gregory Neven, and Gregor Seiler.
Practical quantum-safe voting from lattices. In Bhavani M. Thuraisingham,
David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages
1565–1581. ACM Press, October / November 2017.

FS87. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Andrew M. Odlyzko, editor,
CRYPTO’86, volume 263 of LNCS, pages 186–194. Springer, Heidelberg,
August 1987.

Gjø11. Kristian Gjøsteen. The norwegian internet voting protocol. In E-Voting and
Identity - Third International Conference, VoteID 2011, pages 1–18, 2011.

GL16. Kristian Gjøsteen and Anders Smedstuen Lund. An experiment on the
security of the Norwegian electronic voting protocol. Annals of Telecommu-
nications, pages 1–9, 2016.

GLP12. Tim Güneysu, Vadim Lyubashevsky, and Thomas Pöppelmann. Practical
lattice-based cryptography: A signature scheme for embedded systems. In
Emmanuel Prouff and Patrick Schaumont, editors, CHES 2012, volume 7428
of LNCS, pages 530–547. Springer, Heidelberg, September 2012.

GS17. Kristian Gjøsteen and Martin Strand. A roadmap to fully homomorphic
elections: Stronger security, better verifiability. In Michael Brenner, Kurt
Rohloff, Joseph Bonneau, Andrew Miller, Peter Y. A. Ryan, Vanessa Teague,

29

Andrea Bracciali, Massimiliano Sala, Federico Pintore, and Markus Jakob-
sson, editors, FC 2017 Workshops, volume 10323 of LNCS, pages 404–418.
Springer, Heidelberg, April 2017.

HJP13. W. Hart, F. Johansson, and S. Pancratz. FLINT: Fast Library for Number
Theory, 2013. Version 2.4.0, http://flintlib.org.

HR16. Feng Hao and Peter Y. A. Ryan, editors. Real-World Electronic Voting:
Design, Analysis and Deployment. CRC Press, 2016.

LN17. Vadim Lyubashevsky and Gregory Neven. One-shot verifiable encryption
from lattices. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EU-
ROCRYPT 2017, Part I, volume 10210 of LNCS, pages 293–323. Springer,
Heidelberg, April / May 2017.

LPR13. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. A toolkit for ring-
LWE cryptography. In Thomas Johansson and Phong Q. Nguyen, editors,
EUROCRYPT 2013, volume 7881 of LNCS, pages 35–54. Springer, Heidel-
berg, May 2013.

LPT19. Sarah Jamie Lewis, Olivier Pereira, and Vanessa Teague. Trapdoor com-
mitments in the SwissPost e-voting shuffle proof, 2019.

LS15. Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions
for module lattices. Des. Codes Cryptography, 75(3):565–599, June 2015.

LS18. Vadim Lyubashevsky and Gregor Seiler. Short, invertible elements in
partially splitting cyclotomic rings and applications to lattice-based zero-
knowledge proofs. In Jesper Buus Nielsen and Vincent Rijmen, editors, EU-
ROCRYPT 2018, Part I, volume 10820 of LNCS, pages 204–224. Springer,
Heidelberg, April / May 2018.

Lyu09. Vadim Lyubashevsky. Fiat-Shamir with aborts: Applications to lattice and
factoring-based signatures. In Mitsuru Matsui, editor, ASIACRYPT 2009,
volume 5912 of LNCS, pages 598–616. Springer, Heidelberg, December 2009.

Lyu12. Vadim Lyubashevsky. Lattice signatures without trapdoors. In David
Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume
7237 of LNCS, pages 738–755. Springer, Heidelberg, April 2012.

Nef01. C. Andrew Neff. A verifiable secret shuffle and its application to e-voting. In
Michael K. Reiter and Pierangela Samarati, editors, ACM CCS 2001, pages
116–125. ACM Press, November 2001.

PFH+17. Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim
Lyubashevsky, Thomas Pornin, Thomas Ricosset, Gregor Seiler, William
Whyte, and Zhenfei Zhang. FALCON. Technical report, National Institute
of Standards and Technology, 2017. available at https://csrc.nist.gov/
projects/post-quantum-cryptography/round-1-submissions.

Scy. Scytl. Scytl sVote, complete verifiability security proof report - software
version 2.1 - document 1.0. https://www.post.ch/-/media/post/evoting/
dokumente/complete-verifiability-security-proof-report.pdf.

Str19. Martin Strand. A verifiable shuffle for the GSW cryptosystem. In Aviv
Zohar, Ittay Eyal, Vanessa Teague, Jeremy Clark, Andrea Bracciali, Federico
Pintore, and Massimiliano Sala, editors, FC 2018 Workshops, volume 10958
of LNCS, pages 165–180. Springer, Heidelberg, March 2019.

ZSS20. Raymond K. Zhao, Ron Steinfeld, and Amin Sakzad. COSAC: COmpact
and scalable arbitrary-centered discrete gaussian sampling over integers. In
Jintai Ding and Jean-Pierre Tillich, editors, Post-Quantum Cryptography
- 11th International Conference, PQCrypto 2020, pages 284–303. Springer,
Heidelberg, 2020.

30

http://flintlib.org
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://www.post.ch/-/media/post/evoting/dokumente/complete-verifiability-security-proof-report.pdf
https://www.post.ch/-/media/post/evoting/dokumente/complete-verifiability-security-proof-report.pdf

Appendix

A Security Proof of the Shuffle Protocol

We now show how to prove correctness and the zero-knowledge property of the
protocol ΠShuffle as described in Figure 2.

Theorem 2. The shuffle protocol ΠShuffle as described in Figure 2 is complete
for the relation RShuffle if τ ≪ |Rp| and ΠLin is complete.

Proof. Due to the size of Rp there must always exist such a value ρ. Furthermore,
the instances of ΠLin always succeed due to the completeness of the respective
proof if the si indeed fulfill the required linear relations. As Lemma 4 shows that
the respective values for si always exist, the claim follows. ⊓⊔

We prove Special Honest Verifier Zero-Knowledge (HVZK) by a series of
games, as shown in Figure 7. In the first game, we swap the HVZK protocol
ΠLin from Figure 1 with its simulation. Then we change the way we calculate
the initial commitments [[Di]] by instead sampling si uniformly random and
computing what Di should be. In this step we make no use of the values θi.
Next, we let the [[Di]]’s be commitments [[0]], and sample random si’s. Thus, we
do not use any permutation in the last game; the Simulator is indistinguishable
from the Real game. We proceed with the proofs that an adversary cannot
distinguish between any of these games.

Real

1 : θi
$← Rp

2 : Di ← (1)

3 : Send [[Di]]

4 : si ← (2)

5 : Send si

6 : SHVZK

Game 1

1 : θi
$← Rp

2 : Di ← (1)

3 : Send [[Di]]

4 : si ← (2)

5 : Send si

6 : Sim

Game 2

1 : si
$← Rp

2 : θi
$← Rp

3 : Di ← (8)

4 : Send [[Di]]

5 : Send si

6 : Sim

Simulator

1 : [[Di]]← [[0]]

2 : si
$← Rp

3 : Send [[Di]]

4 : Send si

5 : Sim

Fig. 7: Honest Verifier Zero-Knowledge games. We denote by x← (i) that x was
computed according to equation (i). The steps that changes from game to game
are indicated with boxes.

Lemma 6. If there exists an adversary that can distinguish between Real and
Game 1 in Figure 7, then there exists an adversary that can break the HVZK
property of ΠLin.

31

Proof. This follows because the only difference between Real and Game 1 is that
we simulate the last step, which is exactly the zero-knowledge proof. ⊓⊔

Lemma 7. The distribution of the transcripts ({[[Di]]}, β, {si}) produced by Game 1
and Game 2 are perfectly indistinguishable.

Proof. We give the argument for one of the equations. The argument is identical

for the remaining equations. In Game 1 we sample θ1
$← Rp, compute

[[D1]] = [[θ1M̂1]],

and then compute s1 according to (3). Since θ1 is uniform, this is a commitment
to a uniformly random value. Also, we know that s1 is uniformly distributed.

In Game 2 we sample a uniformly random s1
$← Rp and then compute

[[D1]] = [[βM̂1 + s1M1]]. (8)

Now, s1 is uniformly random, so [[D1]] is a commitment to a uniformly random
value. Hence, it follows that the transcripts are perfectly indistinguishable. ⊓⊔

Lemma 8. If there exists an adversary A that can distinguish between the tran-
scripts of Game 2 and Simulator, then there exists an adversary A′ who breaks
the hiding property of the commitment scheme.

Proof. The proof is shown in Figure 8.
We use a standard distinguishing game. A commitment oracle will then com-

mit to random values m ∈ Rp or to 0. The oracle will send the challenges {cb,i}
to A′ where b is a bit indicating commitments to 0 or m if b is 0 or 1, respectively.
Then A′ will pick random values si and send the transcript ({cb,i}, β, {si}) to
the distinguishing adversary A. We then use the distinguishing power of A to
decide on a bit b′ and send this back to the commitment challenger.

We now show that the cb,i’s are distributed as A expected. When querying A
on the transcripts, we use the challenges cb,i ← C(mi, ri) for a uniformly random
mi, but A expects the commitments [[Di]] from (8). For the first equation of (8),
we note that the committed message is βM̂1 + s1M1. Since each si is a uniform
sample from Rp, this expression is a uniformly random sample from Rp. Hence,
the distributions of c1,i and [[Di]] (from (8)) are identical. ⊓⊔

This means that we can simulate a transcript of the real protocol without
knowing any of the private information known to P. We summarize this result
in a theorem.

Theorem 3. Assuming that ΠLin is an HVZK proof and that the used commit-
ment scheme is hiding, then the transcripts of Real and Simulator in Figure 7
are indistinguishable.

Proof. This is true by combining Lemma 6, 7 and 8. ⊓⊔

32

Adversary Breaking the Hiding Property

Commitment Oracle

for i = 1, . . . τ do

m
$← Rp

r
$← Dk

β∞

c0,i ← C(0, r)
c1,i ← C(m, r)

b← {0, 1}

{cb,i}τi=1 Using Adversary

A′ A

si
$← Rp

β
$← Rp

{cb,i}, β, {si}

b′ ← A({cb,i}, β, {si})

b′

b′

if b′ = b then

Return 1

Return 0

Fig. 8: Using an adversary A who can distinguish between Game 2 and Simulator
in Figure 7, we can construct an adversary A′ who can break the hiding property
of the commitment scheme.

33

B Security of the Voting Protocol

Our return code mechanism does not fit the standard voting scheme syntax secu-
rity definitions such as [BCG+15]. The usual solution is to define ad hoc security
definitions (see e.g. [Scy] and [Gjø11]). Note that protocols with this [Gjø11] and
similar architectures have been deployed in large-scale national elections.

We follow the standard approach for voting system analysis, which is to
consider a voting system to be fairly simple cryptographic protocol built on top
of a cryptographic voting scheme, which is in some sense similar to a public key
cryptosystem with some very specific functionality.

We begin by describing a verifiable cryptographic voting scheme with return
codes, explain how our voting system can be described as a simple protocol on
top of such a cryptographic voting scheme. We define security notions for this
cryptosystem, sketch the security proof, and then informally discuss the voting
protocol and its security properties in terms of the cryptosystem’s security.

B.1 Verifiable Voting Schemes with Return Codes

A verifiable cryptographic voting scheme in our architecture is usually defined in
terms of algorithms for the four tasks election setup, casting ballots, counting
cast ballots and verifying the count. To support return codes, we need algorithms
for two more tasks: voter registration and pre-code computation.

The setup algorithm Setup outputs a public key pk, a decryption key dk and
a code key ck.

The register algorithm Reg takes a public key pk as input and outputs a voter
verification key vvk, a voter casting key vck and a function f from ballots to
pre-codes.

The cast algorithm Cast takes a public key pk, a voter casting key vck and
a ballot v, and outputs an encrypted ballot ev and a ballot proof Πv.

The code algorithm Code takes a code key ck, an encrypted ballot ev and a
proof Πv as input and outputs a pre-code r̂ or ⊥.

The count algorithm Count takes a decryption key dk and a sequence of en-
crypted ballots ev1, ev2, . . . , ev lt , and outputs a sequence of ballots v1, v2, . . . , vlt
and a proof Πc, or ⊥.

The verify algorithm Verify takes a public key pk, a sequence of encrypted
ballots ev1, ev2, . . . , ev lt , a sequence of ballots v1, v2, . . . , vlt and a proof Πc, and
outputs 0 or 1.

A cryptographic voting scheme is correct if for any (pk, dk, ck) output by
Setup and any (vvk1, vck1, f1), . . . , (vvklV , vcklV , flV) output by Reg(pk), any
ballots v1, . . . , vlV , any (ev i, Π

v
i) output by Cast(pk, vcki, vi), i = 1, 2, . . . , lV ,

and any (v′1, . . . , v
′
lV
, Πc) output by Count(dk, ev1, . . . , ev lV), then:

– Code(ck, vvki, ev i, Π
v
i) = fi(vi),

– Verify(pk, ev1, . . . , ev lV , v
′
1, . . . , v

′
lV
, Πc) = 1, and

– v1, . . . , vlV equals v′1, dots, v
′
lV
, up to order.

34

We further require that the distribution of ev i only depends on pk and vi, not
vcki. Also, whether Count outputs ⊥ does not depend on the order of the en-
crypted ballots, and if Count outputs ⊥ for some list (ev1, . . . , ev lV) of encrypted
ballots, Count outputs ⊥ for any other list with (ev1, . . . , ev lV) as a prefix.

B.2 Our Scheme

We summarize the scheme from Section 5 in the above terms. The commitment
algorithms are (KeyGenC , Com(,)Open()), the verifiable encryption algorithms are
(KeyGenVE , EncVE , VerVE , DecVE).

– The setup algorithm computes pkC ← KeyGenC , (pkV , dkV) ← KeyGenVE ,
(pkR, dkR)← KeyGenVE . The public key pk = (pkC , pkV , pkR), the decryp-
tion key is dk = (pkC , dkV) and the code key is ck = (pkC , pkV , dkR).

– The register algorithm takes pk = (pkC , pkV , pkR) as input. It samples a
$←

Rp and computes (ca, da)← Com(pkC , a). The voter verification key is vvk =
ca, the voter casting key is (a, ca, da), and the function f is v 7→ v + a.

– The cast algorithm takes pk = (pkC , pkV , pkR), vck = (a, ca, da) and v as
input. It computes (c, d)← Com(pkC , v), r̂ ← a+ v, (cr̂, dr̂)← Com(pkC , r̂),
Π lin

r̂ is a proof that c+ ca (which is a commitment to v + a) and cr̂ satisfy
the relation v + a = r̂. Then it encrypts e = (v,w, c,z) ← EncVE (pkV , d)
and er̂ = (vr̂,wr̂, cr̂, zr̂) ← EncVE (pkR, dr̂). The encrypted ballot is ev =
(c, d,v,w, c), while the ballot proof is Πv = (z, cr̂, er̂, Π

lin
r̂).

– The code algorithm takes ck = (pkC , pkV , dkR), a voter verification key vvk,
an encrypted ballot ev = (c, d,v,w, c) and a ballot proofΠv = (z, cr̂, er̂, Π

lin
r̂)

as input. It verifies Π lin
r̂ , and then verifies (v,w, c,z)) and er̂ using VerVE .

If any verification fails, it outputs ⊥. It then decrypts dr̂ ← er̂ and recovers
r̂ from cr̂ and dr̂, and outputs r̂.

– The count algorithm takes as input dk = (pkC , dkV) and encrypted ballots
(c1,v1,w1, c1), . . . , (clt ,vlt ,wlt , clt). It computes di ← DecVE (dkV ,vi,wi, ci)
and recovers v′i from ci and di. If any decryption fails, it outputs ⊥. Oth-
erwise, it chooses a random permutation π on {1, 2, . . . , lt}, sets vπ(i) = v′i,
and creates a proof of shuffle of known values Πc. It outputs v1, v2, . . . , vlt
and Πc.

– The verify algorithm takes as input pk = (pkC , pkV , pkR), encrypted ballots
(c1,v1,w1, c1), . . . , (clt ,vlt ,wlt , clt), ballots v1, v2, . . . , vlt and a count proof
Πc. It verifies that Πc is a correct proof of shuffle of known values for
c1, c2, . . . , clt and v1, v2, . . . , vlt . It outputs 1 if verification holds, otherwise
it outputs 0.

It is straight-forward to verify that the scheme is correct.

B.3 Our Voting Protocol

Recall the protocol described in Fig. 6.

35

In the setup phase, a trusted set of players run the setup algorithm Setup.
The derived public key pk is given to every player, the decryption key dk is given
to the shuffler S and the code key ck is given to the return code generator R.

In the registration phase, a set of trusted players run the register algorithm
Reg to generate per-voter keys (vvk, vck, f) for the voter V , making every verifi-
cation key public and giving vck to the voter’s computer. Then the return code
generator chooses key k for PRF, and a set of trusted players compute the return
code table {(vi, PRFk(V, f(vi))} for a relatively small set of ballots v1, . . . , vω.
The voter gets the return code table.

In the casting phase, the voter V instructs the voter’s computer D which
ballot to cast. The voter’s computer D runs the casting algorithm Cast and
sends the encrypted ballot and the ballot proof to the ballot box B. (In practice,
the ballot box will verify the ballot proofs, but it is not necessary.) The ballot box
B sends the encrypted ballot and the ballot proof to the return code generator
R, who runs the code algorithm Code to get the precode r̂. It computes the
return code r ← PRFk(r̂) and sends r to the voter’s phone F , which sends it on
to the voter V . The voter V compares the return code to the code in its return
code table, and accepts the ballot as cast if and only if the codes match.

In addition, the voter’s computer will sign the encrypted ballot and ballot
proof on behalf of the voter. The ballot box and the return code generator will
verify this signature. The return code generator will countersign everything and
return this signature to the voter’s computer via the ballot box. The voter’s
computer will verify the countersignature. (This ensures that if the voter’s com-
puter accepts the ballot as cast, the ballot box and the return code generator
agree that the ballot was indeed cast. If either of them is honest, this gives us a
stronger form of integrity.)

In the casting phase, every player uses fixed-length encodings for messages,
ensuring that every message of a given type has a fixed length that is public
knowledge.

In the counting phase, the ballot box B and the return code generator R
send the encrypted ballots and ballot proofs they have seen to the auditor A.
If the data is consistent, the auditor A approves. The ballot box B then sorts
the list of encrypted ballots and sends this to the shuffler S. (In the event that
some voter has cast more than one ballot, only the encrypted ballot seen last is
included.) The shuffler S uses the count algorithm Count to compute a list of
ballots v1, . . . , vlt and a shuffle proof, which is sent to the auditor A. The auditor
A uses the verification algorithm Verify to verify the shuffle proof against the
encrypted ballots received from B and R.

This concludes the description of the voting protocol in terms of a verifiable
cryptographic voting scheme with return codes.

If some limited verifiability is desired, the ballot box B, return code generator
R and auditor A may make commitments to the encrypted ballots received
public. The voter’s computer can be given the commitment and an opening to
verify the correctness of the commitment to the voter’s encrypted ballot, as well
as its presence in the public record.

36

Note that more than one auditor can be used in the protocol.

B.4 Security Notions

Our notion of confidentiality is similar to the usual ballot box privacy no-
tions [BCG+15]. An adversary that sees both the contents of the ballot box
and the decrypted ballots should not be able to determine who cast which bal-
lot. This should hold even if the adversary can see pre-codes, learn the code key
and some voter casting keys, and insert maliciously generated ciphertexts into
the ballot box.

Our notion of integrity is again fairly standard, adapted to return codes.
An adversary should not be able to cause an incorrect pre-code or inconsistent
decryption or non-unique decryption, even if the adversary knows all of the key
material.

We define security notions for a verifiable cryptographic voting scheme using
an experiment where an adversary A is allowed to reveal keys, make challenge
queries, create ciphertexts and choose which ballots get counted. This experiment
models both a left-or-right game for confidentiality, and a test query for integrity.
The experiment works as follows:

– Sample b, b′′
$← {0, 1}. Set L to be an empty list.

– (pk, dk, ck) ← Setup. For i = 1, . . . , lV : (vvki, vcki, fi) ← Reg(pk). Send
(pk, vvk1, . . . , vvklV) to A.

– On a voter reveal query i, send (vcki, fi) to A. On a decrypt reveal query,
send dk to A. On a code reveal query, send ck to A.

– On a challenge query (i, v0, v1), compute (ev , Πv)← Cast(pk, vcki, vb), r̂ ←
Code(ck, vvki, ev , Π

v), append (i, v0, v1, ev , Π
v) to L and send (ev , Πv) to

A.
– On a chosen ciphertext query (i, ev , Πv), compute r̂ ← Code(ck, vvki, ev , Π

v).
If r̂ ̸= ⊥, append (i,⊥,⊥, ev , Πv) to L. Send r̂ to A.

– On a count query (j1, . . . , jls), with

L = ((i1, v0,1, v1,1, ev1, Π
v
1), . . . , (ilt , v0,lt , v1,lt , ev lt , Π

v
lt)),

compute result ← Count(dk, ev j1 , . . . , ev jls
) and send result to A.

– On a test query (j1, . . . , jls , v1, . . . , vls , Π
c), compute result ←

Verify(pk, ev j1 , . . . , ev jls
, v1, . . . , vls , Π

c) and send result to A.

Eventually, the adversary outputs a bit b′.
Confidentiality fails trivially for the usual reasons, and in particular, the

count trivially reveals the challenge bit unless the left hand ballots and the
right-hand ballots are identical, up to order. (Recall that the adversary should
figure out who cast which ballots, not what ballots were cast.) For executions
where confidentiality fails trivially, we should not count the adversary’s answer
towards the advantage, so we will compare the adversary’s guess with a secret
random bit. Integrity can fail, either if pre-codes are incorrect, if an outcome

37

verifies as correct but is inconsistent with the challenge ciphertexts, or if there
is no unique decryption.

We define events related to confidentiality and integrity. Let Eg be the event
that b = b′ and let Er be the event that b′′ = b′. Let Ef denote the event
that an execution is fresh, which is true if the following are satisfied: there is no
decrypt reveal query; for any i, there is either no challenge query, or at most one
challenge query and no voter reveal query or chosen ciphertext query; if there
is a count query where result ̸= ⊥, then the sequence (v0,j1 , . . . , v0,jls) equals
(v1,j1 , . . . , v1,jls), up to order.

Let Fi (incorrect pre-code) be the event that for some chosen ciphertext
query (i, ev , Πv) where Code(ck, vvki, ev , Π

v) = r̂ ̸= ⊥, we have that either
Count(dk, ev) = ⊥ or Count(dk, ev) = (v,Πc) and fi(v) ̸= r̂. Let Fc (count
failure) be the event that a count query gets result = ⊥. Let Fd (inconsistent
decryption) be the event that a test query (j1, . . . , jls , v1, . . . , vls , Π

c) with L =
((i1, v0,1, v1,1, ev1, Π

v
1), . . . , (ilt , v0,lt , v1,lt , ev lt , Π

v
lt
)) gets result = 1 and there

is no permutation π on {1, 2, . . . , ls} such that vb,k = ⊥ or vb,k = vπ(k) for
k = 1, 2, . . . , ls. Let Fu (no unique decryption) be the event that two test queries
(j1, . . . , jls , v1, . . . , vls , Π

c) and (j1, . . . , jls , v
′
1, . . . , v

′
ls
, Πc′) both get result = 1,

but there is no permutation π on {1, 2, . . . , ls} such that vk = v′π(k) for k =
1, 2, . . . , ls.

The advantage of the adversary is

max{2|Pr[Ef ∧ Eg] + Pr[¬Ef ∧ Er]− 1/2|,Pr[Fi ∨ Fc ∨ Fd ∨ Fu]}.

B.5 Security Proof Sketch

We briefly sketch how a proof to bound the advantage of an adversary against
the cryptographic voting scheme in terms of adversaries against the shuffle of
known values, the underlying commitment scheme or the related linearity proofs,
or the verifiable encryption scheme.

Confidentiality events We begin by analyzing the confidentiality events. Note
that Pr[¬Ef ∧ Er] = (1− Pr[Ef])/2. We must therefore analyze Pr[Ef ∧ Eg] =
Pr[Eg | Ef] Pr[Ef].

The proof would proceed as a sequence of games, where the first is the inter-
action between the experiment and the adversary.

In the next game, we stop the adversary with a forced guess b′ = 0 imme-
diately upon any query that would make the execution non-fresh. Note that a
query that makes the execution non-fresh can be recognized with no secret infor-
mation. This changes nothing, but in the further analysis we may assume that
the execution remains fresh.

We next simulate all the zero knowledge proofs involved, which is straight-
forward in the random oracle model since all our proofs are HVZK.

Next, we change the challenge query so that instead of computing the precode
as r̂ = a+ v, it samples r̂ uniformly at random. If this change is observable, we

38

create a real-or-random adversary against the commitment scheme by making a
the challenge and getting a commitment that is either a or a random value.

Next, in the count query, instead of decrypting an encrypted ballot from a
challenge query, we use the corresponding left cleartext (regardless of the value
of b). Since the shuffle proof has been simulated, the execution is fresh and the
ballots are permuted randomly, this change is not observable.

Next, in the count query, instead of decrypting an encrypted ballot from a
challenge query, we instead compute the ballot from the corresponding pre-code
r̂ and voter casting key component a as v = r̂−a. This change is only observable
if the linear proof verified in the code algorithm was unsound, that is, if we have
openings of c to v, of ca to a, of c + ca to v + a and cr̂ to r̂, but r̂ ̸= v + a.
Also, the change is observable if the encrypted ballot does not decrypt to an
opening, but since the proof for the encrypted ballot was verified during the
code query, it follows that this results in an adversary against the verifiability
of the encryption scheme.

Observe that at this point, the decryption key dkV is no longer used. Also,
the pre-code encrypted in the challenge query is independent of the challenge
ballots.

In the next game, we encrypt randomness instead of the correct opening of
c. If this change is observable, we get a real-or-random adversary against the
verifiable encryption.

Finally, we commit to a random value instead of the challenge ballot. If this
change is observable, we get a real-or-random adversary against the commitment
scheme.

We can now observe that the challenge query processing is independent of the
challenge bit. The adversary no longer has any information about the challenge
bit, and therefore has no advantage in this game. The claim that the difference
between Pr[Ef ∧Eg] + Pr[¬Ef ∧Er] and 1/2 is appropriately bounded follows.

Integrity events Next, we analyze the integrity events. In this case, the adversary
may have revealed every secret key, and there is no need for the execution to be
fresh.

If a chosen ciphertext query results in an incorrect pre-code, then like above
either the ciphertext e does not decrypt to an opening of the commitment
(in which case we get an adversary against the verifiability of the encryption
scheme), or we have broken the linearity proof for commitments. It follows that
the probability of Fi happening is appropriately bounded.

In the event that Fc happens, then since every encrypted ballot either origi-
nates with a challenge query or a chosen ciphertext query, we know that either
the ciphertext e will decrypt to an opening of the commitment or we will have
an adversary against the verifiability of the encryption scheme. In either case, it
follows that the probability of Fc happening is appropriately bounded.

In the event that Fd happens, we have openings of the ciphertexts that orig-
inated with challenge queries. Since the shuffle is a proof of knowledge, we get
an adversary against binding for the commitment scheme. It follows that the
probability of Fd happening is appropriately bounded.

39

In the event that Fu happens, then since the shuffle is a proof of knowledge,
we get an adversary against binding for the commitment scheme. It follows that
the probability of Fu happening is appropriately bounded.

The claim that Pr[Fi ∨ Fc ∨ Fd ∨ Fu] is appropriately bounded follows.

B.6 Voting System Security Properties

Coercion Resistance A coercer controls the voter during ballot casting. The
appropriate mental image we should have in mind is that the coercer is a “help-
ful” person who observes the voter while the voter is casting a ballot of the co-
ercer’s choice. The coercer may “assist” the voter in the casting process. When
the ballot casting is done, the coercer leaves and the voter is left to their own
devices. (The coercer may return at a later point in time and redo the coercion
process.)

The voter may choose to resist the coercion attempt. This may involve active
steps during the coerced ballot casting (e.g. lying about authentication data).
For remote voting, it will usually also involve recovery after the coercer has left.

The coercer plays a game with a set of voters, some of which may be corrupt.
The coercer may coerce one or more voters, who will either all resist or all accept
coercion. The coercer may also ask voters to cast ballots uncoerced. Eventually,
there is a tally and the coercer receives the outcome (including any transcripts).

A system is coercion resistant if the coercer cannot decide if the voters re-
sisted.

It is generally assumed that a coercer does not control any infrastructure
players and cannot monitor networks, since for remote voting either capabil-
ity usually allows trivial winning strategies for the coercer. In the real world, a
coercer will always be able deduce some information about the success of the
coercion attempt by looking at unavoidable public information such as the elec-
tion result. This applies, regardless of the voting system used (so-called Italian
attacks are an example of this). It is desirable to avoid this class of attacks,
which can be done by having the coercer decide the voting intention of every
voter. The consequence is that the coercer must organize coercion such that it
has no effect on the election result, regardless of whether voters resist or not.

Analysis. Our voting system uses re-voting to resist coercion: after the coercer
has left, the voter casts another ballot, this time according to their true voting
intention. The use of re-voting for coercion resistance is well-understood and
largely independent of the underlying cryptosystem. Since the coercer does not
learn the contents of the ballot box (except possibly for the commitments), nor
any network traffic, it is impossible for the coercer to discover the re-voting.

In summary, the coercer cannot decide if the voter re-voted or not.

Privacy Privacy is modeled as an indistinguishability game between an adver-
sary and a set of voters, some of which may be corrupt. The adversary gives
pairs of ballots to honest voters, and they will all either cast the left ballot or
the right ballot. The adversary must decide which they cast.

40

Unlike for coercion resistance, the adversary can corrupt infrastructure play-
ers and also control the network. Like for coercion resistance, we want to avoid
adversaries that deduce the honest voters’ ballots from the cast ballots. Again,
we require that the adversary organizes the pairs of ballots given to the honest
voters in such a way that the ballots cast are independent of whether the voters
cast the left or the right ballot. The difference between privacy and coercion is
that for privacy, the adversary learns the ballots cast by compromising infras-
tructure players. For coercion, the coercer only has access to public information
from the infrastructure players, but may have access to private information about
the voter.

The adversary controls the network, but we shall assume that players use
secure channels to communicate. This means that only the fact that players are
communicating and the length of their communications leak. Since message flows
and message lengths are fixed and public knowledge, we can ignore the network
in the subsequent analysis.

Analysis. If some honest voter’s computer D is compromised, the adversary can
trivially win the privacy game.

Next, consider the case that the shuffler S is compromised. If any of B,
R or A is compromised, the adversary can trivially win the game, since B,
R and A all know who submitted which encrypted ballot, while the shuffler
S has the decryption key. If the shuffler S is the only compromised player,
then since the ballot box B sorts the list of encrypted ballots before sending
them to the shuffler and encrypted ballots are independent of the per-voter key
material, the correspondence between the ciphertexts and the voters is lost, so
the encrypted ballots alone reveal only the cast ballots. By assumption, these
ballots are independent of the left-or-right choice of the voters.

If a voter casts more than one ballot, a compromised return code generator
will always be able to decide if they are the same or not by observing the return
code sent to the voter. If the ballots are distinct (e.g. if the voter is resisting
coercion), the return code generator will get information about which ballots
were submitted, and typically learn both ballots.

Suppose the honest voters cast at most one ballot each. Then privacy against
B, R and A follows from confidentiality of the cryptographic voting system, since
the protocol execution can be interpreted as an interaction with the cryptosystem
experiment and our assumptions ensure a fresh execution.

Note that cut-and-paste attacks against confidentiality, which commonly af-
fect this type of voting protocol, do not work against this protocol because the
ballot proof includes an encryption of the return code and a proof that the re-
turn code is correct, which means that the adversary must know the ballot to
make a cut-and-paste attack work.

In summary, privacy holds if none of the honest voters’ computers are com-
promised, and either only the decryption service is corrupted or no honest voter
casts more than one ballot.

41

Integrity. Integrity for a voting system is modelled using a game between an
adversary and a set of voters, some of which may be corrupt. The adversary
tells the honest voters what ballots to cast. If the count phase eventually runs
and ends with a result, the adversary wins if the result is inconsistent with the
ballots accepted as cast by the honest voters. (Recall that only the voter’s last
ballot cast is counted, so if the voter first accepts a ballot as cast, and then tries
to cast another ballot and this fails, the end result is that they have not accepted
a ballot as cast.)

We can define a variant notion called ϵ-integrity where we allow a small
error, and say that the adversary wins if the result is inconsistent with any
(1 − ϵ) fraction of the ballots accepted as cast by the honest voters. (We need
this since return codes for a single voter must be human-comparable, and can
therefore collide with some non-negligible probability.)

Analysis. The voter will only accept the ballot as cast if the correct return
code is received. If the correct return code is received, then the correct pre-code
must have been computed at some point (except with some small probability of
collision in the PRF).

If the return code generator R is honest, integrity of the cryptographic voting
scheme implies that this can only happen if the correct ballot has been encrypted.
If the auditor A is honest, the count will only be accepted if the encrypted
ballot has been included in the count by the shuffler S. By the integrity of the
cryptographic voting system, all such ballots must then be included in the count.

If the voter’s computer D, the ballot box B and the auditor A are honest,
the count will only be accepted if the encrypted ballot has been included in the
count by the shuffler S. By the integrity of the cryptographic voting system, all
such ballots must then be included in the count.

If a voter receives a return code without casting a ballot, the voter will no
longer accept their ballot as cast.

In summary, ϵ-integrity holds if the auditor and either the return code gen-
erator, or both the voters’ computers and the ballot box are honest.

Limited Verifiability. In a verifiable voting system voters receive a receipt, the
voting system provides an election proof in addition to the election outcome, and
there is an additional verification algorithm that accepts or rejects the proof and
a voter’s receipt. Roughly speaking, the voting system is verifiable if when all
the receipts accepted by the honest voters verify as accepted with the election
proof, then the outcome is consistent with the honest voters’ cast ballots.

We have limited verifiability if the same claim holds when certain players are
honest during the election.

(Verifiability is a technical property. The practical idea is not that every
voter verifies their ballot. But it can be shown that if a sufficiently large and
random sample of voters separately accept their receipts together with the ballot
proof, then ϵ-integrity holds for the voting system. In our particular system, if
a sufficiently random selection of voters finds their commitments on the public

42

list, then with high probability almost all the voters would have found their
commitments on the list if they had looked for them.)

Analysis. If the voters’ computers are honest, then a voter’s computer will not
accept the ballot as cast unless it receives a commitment that opens to its en-
crypted ballot. A voter will not accept the result as verified unless the commit-
ment has been made public.

An honest auditor will only make commitments public if both the ballot box
and the return code generator agree on the presence of the encrypted ballot, and
this ballot was given to the shuffler. By the integrity of the cryptographic voting
system, almost all the ballots accepted as cast by honest voters will be among
the ballots output by the decryption service.

In summary, for the variant voting system with limited verifiability, ϵ-integrity
holds if the voters’ computers and the auditor are honest.

43

	Lattice-Based Proof of Shuffle and Applications to Electronic Voting

