Skip to main content

Splines for Image Metamorphosis

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12679))

Abstract

Cubic splines are a classical tool for higher order interpolation of points in Euclidean space known to minimize the integral of the squared acceleration along the interpolation path. This paper transfers this method to the smooth interpolation of key frames in the space of images. To this end the metamorphosis model based on a simultaneous transport of image intensities and a modulation of intensities along motion trajectories is generalized. The proposed spline energy combines quadratic functionals of the Eulerian motion acceleration and of the second material derivative representing an acceleration in the change of intensities along motion paths. A variational time discretization of this spline model is proposed and the convergence to a suitably relaxed time continuous model is discussed using the tool of \(\varGamma \)-convergence. In particular, this also allows to establish the existence of an optimal spline path interpolating given key frame images. The spatial discretization is based on a finite difference and a stable spline interpolation. A variety of numerical examples demonstrates the robustness and versatility of the proposed method for real images using a variant of the iPALM algorithm for the minimization of the fully discrete energy functional.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The comprehensive proof is available for review on request and will appear elsewhere.

References

  1. Arnold, V.: Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits. Ann. Inst. Fourier (Grenoble) 16(fasc., fasc. 1), 319–361 (1966)

    Google Scholar 

  2. Beg, M.F., Miller, M.I., Trouvé, A., Younes, L.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int. J. Comput. Vis. 61(2), 139–157 (2005)

    Article  Google Scholar 

  3. Benamou, J.D., Gallouët, T.O., Vialard, F.X.: Second-order models for optimal transport and cubic splines on the Wasserstein space. Found. Comput. Math. 19(5), 1113–1143 (2019)

    Article  MathSciNet  Google Scholar 

  4. Berkels, B., Effland, A., Rumpf, M.: Time discrete geodesic paths in the space of images. SIAM J. Imaging Sci. 8(3), 1457–1488 (2015)

    Article  MathSciNet  Google Scholar 

  5. de Boor, C.: Best approximation properties of spline functions of odd degree. J. Math. Mech. 12, 747–749 (1963)

    MathSciNet  MATH  Google Scholar 

  6. Chen, Y., Conforti, G., Georgiou, T.T.: Measure-valued spline curves: an optimal transport viewpoint. SIAM J. Numer. Anal. 50(6), 5947–5968 (2018)

    Article  MathSciNet  Google Scholar 

  7. Chewi, S., Clancy, J., Gouic, T.L., Rigollet, P., Stepaniants, G., Stromme, A.J.: Fast and smooth interpolation on Wasserstein space. arXiv preprint arXiv:2010.12101 (2020)

  8. Ciarlet, P.G.: Mathematical Elasticity. Vol. I, Studies in Mathematics and its Applications, vol. 20. North-Holland Publishing Co., Amsterdam (1988)

    Google Scholar 

  9. Dupuis, P., Grenander, U., Miller, M.I.: Variational problems on flows of diffeomorphisms for image matching. Quart. Appl. Math. 56(3), 587–600 (1998)

    Article  MathSciNet  Google Scholar 

  10. Effland, A., Kobler, E., Pock, T., Rajković, M., Rumpf, M.: Image morphing in deep feature spaces: theory and applications. J. Math. Imaging Vis. 63(2), 309–327 (2021)

    Article  MathSciNet  Google Scholar 

  11. Effland, A., Neumayer, S., Rumpf, M.: Convergence of the time discrete metamorphosis model on Hadamard manifolds. SIAM J. Imaging Sci. 13(2), 557–588 (2020)

    Article  MathSciNet  Google Scholar 

  12. Heeren, B., Rumpf, M., Wirth, B.: Variational time discretization of Riemannian splines. IMA J. Numer. Anal. 39(1), 61–104 (2018)

    MathSciNet  MATH  Google Scholar 

  13. Inci, H., Kappeler, T., Topalov, P.: On the regularity of the composition of diffeomorphisms. Mem. Am. Math. Soc. 226(1062), vi+60 (2013)

    Google Scholar 

  14. Joshi, S.C., Miller, M.I.: Landmark matching via large deformation diffeomorphisms. IEEE Trans. Image Process. 9(8), 1357–1370 (2000)

    Article  MathSciNet  Google Scholar 

  15. Miller, M.I., Trouvé, A., Younes, L.: On the metrics and Euler-Lagrange equations of computational anatomy. Annu. Rev. Biomed. Eng. 4(1), 375–405 (2002)

    Article  Google Scholar 

  16. Mosco, U.: Convergence of convex sets and of solutions of variational inequalities. Adv. Math. 3, 510–585 (1969)

    Article  MathSciNet  Google Scholar 

  17. Noakes, L., Heinzinger, G., Paden, B.: Cubic splines on curved spaces. IMA J. Math. Control Inform. 6(4), 465–473 (1989)

    Article  MathSciNet  Google Scholar 

  18. Pock, T., Sabach, S.: Inertial proximal alternating linearized minimization (iPALM) for nonconvex and nonsmooth problems. SIAM J. Imaging Sci. 9(4), 1756–1787 (2016)

    Article  MathSciNet  Google Scholar 

  19. Singh, N., Vialard, F.X., Niethammer, M.: Splines for diffeomorphisms. Med. Image Anal. 25(1), 56–71 (2015)

    Google Scholar 

  20. Tahraoui, R., Vialard, F.X.: Minimizing acceleration on the group of diffeomorphisms and its relaxation. ESAIM Control Optim. Calc. Var. 25 (2019)

    Google Scholar 

  21. Trouvé, A., Vialard, F.X.: Shape splines and stochastic shape evolutions: a second order point of view. Quart. Appl. Math. 70(2), 219–251 (2012)

    Article  MathSciNet  Google Scholar 

  22. Trouvé, A., Younes, L.: Local geometry of deformable templates. SIAM J. Math. Anal. 37(1), 17–59 (2005)

    Article  MathSciNet  Google Scholar 

  23. Trouvé, A., Younes, L.: Metamorphoses through Lie group action. Found. Comput. Math. 5(2), 173–198 (2005)

    Article  MathSciNet  Google Scholar 

  24. Younes, L.: Shapes and Diffeomorphisms. Applied Mathematical Sciences, vol. 171. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12055-8

    Book  MATH  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) via project 211504053 - Collaborative Research Center 1060 and project 390685813 - Hausdorff Center for Mathematics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marko Rajković .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Justiniano, J., Rajković, M., Rumpf, M. (2021). Splines for Image Metamorphosis. In: Elmoataz, A., Fadili, J., Quéau, Y., Rabin, J., Simon, L. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2021. Lecture Notes in Computer Science(), vol 12679. Springer, Cham. https://doi.org/10.1007/978-3-030-75549-2_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75549-2_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75548-5

  • Online ISBN: 978-3-030-75549-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics