Skip to main content

Nonlinear Spectral Processing of Shapes via Zero-Homogeneous Flows

  • Conference paper
  • First Online:
Scale Space and Variational Methods in Computer Vision (SSVM 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12679))

  • 1158 Accesses

Abstract

In this work we extend the spectral total-variation framework, and use it to analyze and process 2D manifolds embedded in 3D. Analysis is performed in the embedding space - thus “spectral arithmetics” manipulate the shape directly. This makes our approach highly versatile and accurate for feature control. We propose three such methods, based on non-Euclidean zero-homogeneous p-Laplace operators. Each method satisfies distinct characteristics, demonstrated through smoothing, enhancing and exaggerating filters.

We acknowledge support by grant agreement No. 777826 (NoMADS), by the Israel Science Foundation (Grant No. 534/19) and by the Ollendorff Minerva Center.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Such an adaptation of [22] can be found e.g. in [23], which proposed a computationally efficient shape filtering, and demonstrated some core filtering capabilities: Shape exaggeration, detail enhancement, shape smoothing and regularization.

  2. 2.

    Models: Bust of Queen Nefertiti. gyptisches Museum und Papyrussammlung. Model: Trigon art; Stanford armadillo and poses by Belyaev, Yoshizawa, Seidel (2006); Michaels from [4]; various models from LIRIS database.

References

  1. Andreu, F., Ballester, C., Caselles, V., Mazón, J.M.: Minimizing total variation flow. Differ. Integral Equ. 14(3), 321–360 (2001)

    MathSciNet  MATH  Google Scholar 

  2. Benning, M., et al.: Nonlinear spectral image fusion. In: Lauze, F., Dong, Y., Dahl, A.B. (eds.) SSVM 2017. LNCS, vol. 10302, pp. 41–53. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58771-4_4

    Chapter  Google Scholar 

  3. Bresson, X., Chan, T.F.: Fast dual minimization of the vectorial total variation norm and applications to color image processing. Inverse Probl. Imag. 2(4), 455–484 (2008)

    Article  MathSciNet  Google Scholar 

  4. Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Numerical Geometry of Non-Rigid Shapes. MCS. Springer, New York (2009). https://doi.org/10.1007/978-0-387-73301-2

    Book  MATH  Google Scholar 

  5. Bungert, L., Burger, M., Chambolle, A., Novaga, M.: Nonlinear spectral decompositions by gradient flows of one-homogeneous functionals. Analysis & PDE (2019)

    Google Scholar 

  6. Burger, M., Gilboa, G., Osher, S., Xu, J.: Nonlinear inverse scale space methods. Commun. Math. Sci. 4(1), 179–212 (2006)

    Article  MathSciNet  Google Scholar 

  7. Burger, M., Gilboa, G., Moeller, M., Eckardt, L., Cremers, D.: Spectral decompositions using one-homogeneous functionals. SIAM J. Imag. Sci. 9(3), 1374–1408 (2016)

    Article  MathSciNet  Google Scholar 

  8. Burger, M., Osher, S.: A guide to the TV Zoo. In: Level Set and PDE Based Reconstruction Methods in Imaging, pp. 1–70. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-01712-9_1

  9. Chambolle, A., Caselles, V., Cremers, D., Novaga, M., Pock, T.: An introduction to total variation for image analysis. In: Theoretical Foundations and Numerical Methods for Sparse Recovery, vol. 9, no. 263–340, p. 227 (2010)

    Google Scholar 

  10. Do Carmo, M.P.: Differential Geometry of Curves and Surfaces: Revised and Updated Second Edition. Courier Dover Publications, Mineola (2016)

    Google Scholar 

  11. Elmoataz, A., Lezoray, O., Bougleux, S.: Nonlocal discrete regularization on weighted graphs: a framework for image and manifold processing. IEEE Trans. Image Process. 17(7), 1047–1060 (2008)

    Article  MathSciNet  Google Scholar 

  12. Fumero, M., Möller, M., Rodolà, E.: Nonlinear spectral geometry processing via the TV transform. ACM Trans. Graph. (TOG) 39(6), 1–16 (2020)

    Article  Google Scholar 

  13. Gilboa, G.: A total variation spectral framework for scale and texture analysis. SIAM J. Imag. Sci. 7(4), 1937–1961 (2014)

    Article  MathSciNet  Google Scholar 

  14. Gilboa, G.: A spectral approach to total variation. In: Kuijper, A., Bredies, K., Pock, T., Bischof, H. (eds.) SSVM 2013. LNCS, vol. 7893, pp. 36–47. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38267-3_4

    Chapter  Google Scholar 

  15. Hait, E., Gilboa, G.: Spectral total-variation local scale signatures for image manipulation and fusion. IEEE Trans. Image Process. 28(2), 880–895 (2019)

    Article  MathSciNet  Google Scholar 

  16. Jacobson, A., Panozzo, D.: Libigl: prototyping geometry processing research in C++ (2017). https://libigl.github.io/tutorial/#chapter-2-discrete-geometric-quantities-and-operators

  17. Kazhdan, M., Solomon, J., Ben-Chen, M.: Can mean-curvature flow be modified to be non-singular? In: Computer Graphics Forum, vol. 31, pp. 1745–1754. Wiley, Hoboken (2012)

    Google Scholar 

  18. Kimmel, R., Malladi, R., Sochen, N.: Images as embedded maps and minimal surfaces: movies, color, texture, and volumetric medical images. Int. J. Comput. Vis. 39(2), 111–129 (2000)

    Article  Google Scholar 

  19. Mantegazza, C.: Lecture Notes on Mean Curvature Flow, vol. 290. Springer, Basel (2011). https://doi.org/10.1007/978-3-0348-0145-4

  20. Sela, M., Aflalo, Y., Kimmel, R.: Computational caricaturization of surfaces. Comput. Vis. Image Underst. 141, 1–17 (2015)

    Article  Google Scholar 

  21. Sorkine, O., Cohen-Or, D., Lipman, Y., Alexa, M., Rössl, C., Seidel, H.P.: Laplacian surface editing. In: Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, pp. 175–184 (2004)

    Google Scholar 

  22. Taubin, G.: A signal processing approach to fair surface design. In: Proceedings of 22nd Annual Conference on Computer Graphics and Techniques, pp. 351–358 (1995)

    Google Scholar 

  23. Vallet, B., Lévy, B.: Spectral geometry processing with manifold harmonics. In: Computer Graphics Forum, vol. 27, pp. 251–260. Wiley, Hoboken (2008)

    Google Scholar 

  24. Wetzler, A., Aflalo, Y., Dubrovina, A., Kimmel, R.: The Laplace-Beltrami operator: a ubiquitous tool for image and shape processing. In: Hendriks, C.L.L., Borgefors, G., Strand, R. (eds.) ISMM 2013. LNCS, vol. 7883, pp. 302–316. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38294-9_26

    Chapter  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jonathan Brokman or Guy Gilboa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brokman, J., Gilboa, G. (2021). Nonlinear Spectral Processing of Shapes via Zero-Homogeneous Flows. In: Elmoataz, A., Fadili, J., Quéau, Y., Rabin, J., Simon, L. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2021. Lecture Notes in Computer Science(), vol 12679. Springer, Cham. https://doi.org/10.1007/978-3-030-75549-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75549-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75548-5

  • Online ISBN: 978-3-030-75549-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics