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Abstract. In this paper we consider the nonlinear inverse problem of phase re-

trieval in the context of dynamical sampling. Where phase retrieval deals with the

recovery of signals & images from phaseless measurements, dynamical sampling was

introduced by Aldroubi et al in 2015 as a tool to recover diffusion fields from spati-

otemporal samples. Considering finite-dimensional signals evolving in time under the

action of a knownmatrix, our aim is to recover the signal up to global phase in a stable

way from the absolute value of certain space-time measurements. First, we state ne-

cessary conditions for the dynamical system of sampling vectors to make the recovery

of the unknown signal possible. The conditions deal with the spectrum of the given

matrix and the initial sampling vector. Then, assuming that we have access to a spe-

cific set of further measurements related to aligned sampling vectors, we provide a

feasible procedure to recover almost every signal up to global phase using polarization

techniques. Moreover, we show that by adding extra conditions like full spark, the

recovery of all signals is possible without exceptions.

Keywords. Phase retrieval, Dynamical frames, Vandermonde matrix, Polarization

identity, Dynamical sampling

1 Introduction

Phase retrieval was introduced in [40] as a problem of reconstructing a signal from its

Fourier magnitude and has become increasingly popular in image and signal processing

due to its applications in crystallography [30, 32, 39], astronomy [19, 27], and laser op-

tics [43, 44]. In all these applications, phase retrieval occurs as ill-posed inverse prob-

lem, where the tremendous ambiguousness is the most critical point. For the classical

problem, the non-uniqueness has been well studied, and there are several approaches

to surmount this issue by enforcing a priori assumptions or exploit additional meas-

urements, see for instance [2, 16–19, 29, 33, 34, 45, 46] and references therein. Moreover,

phase retrieval also occurs in the more abstract setting of frames, where the unknown

image has to be recovered from the magnitudes of its frame coefficients. For generic

and specific frames, this problem has been studied in [10–13, 21, 22]. The purpose of the
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current paper is to consider phase retrieval in the setting of dynamical sampling [4–6,9],

which originate back to sampling and recovering diffusion fields form spatiotemporal

measurements [35, 42].

In dynamical sampling, we consider an unknown vector x ∈ C3 that evolves under the

action of a matrixG ∈ C3×3 meaning that at time ℓ ∈ N the signal becomes xℓ = (G∗)ℓx.

Our aim is to recover x up to global phase from phaseless measurements. More precisely,

we want to recover x form

| 〈(G∗)ℓx, 5〉 | = | 〈x,Gℓ5〉 |, (1)

where ℓ = 0, . . . , ! − 1 with ! ≥ 3 , and where 5 ∈ C3 is some sampling vector. Phase re-

trieval in dynamical sampling has been already considered for real Hilbert spaces in [7,8],

where the authors provided conditions to ensure that {Gℓ5}!−1
ℓ=0

has the complementary

property meaning that each subset or its complement spans the entire space. The results

have then be generalized to several sampling vectors. The complementary property is

here equivalent to the uniqueness (up to global phase) of phase retrieval from (1). How-

ever, their techniques cannot be immediately generalized to the complex setting since

here the complementary property is not sufficient [13, 14].

To insure that we can do phase retrieval in C3 , we will assume that {Gℓ5}!−1ℓ=0 is a

frame, andwewill align 5 with specifically chosen additional sampling vectors to exploit

polarization techniques. This idea is inspired by interferometry used in [10, 15]. Using

the extra information, we first recover the frame coefficients 〈x,Gℓ5〉 up to global phase

and then recover x in a stable way via the dual frame of {Gℓ5}!−1
ℓ=0

.

The paper is organized as follows. In Section 2 we set the stage by providing the ne-

cessary background information about polarization identities, frames and Vandermonde

matrices. In Section 3 we find conditions on the spectrum ofG and the vector 5 such that

the iterated set {Gℓ5}!−1ℓ=0 is a frame. Moreover, in Section 4, we provide conditions under

which this frame has full spark. In Section 5 we prove that the aligned sampling vectors

allow phase retrieval for almost all x ∈ C3 ; moreover, if the underlying dynamical frame

has full spark, the recovery of all x ∈ C3 is possible.

2 Preleminaries

2.1 Polarization and Relative Phases Our main results are based on the fol-

lowing polarization technique, which allow the recovery of the lost phases from certain

phaseless information.

Theorem 2.1 (Polarization, [15]). Let U1, U2 ∈ R satisfy U1 − U2 ∉ cZ. Then, for

every I1, I2 ∈ C \ {0}, the product Ī1I2 is uniquely determined by

|I1 |, |I2 |, |I1 + eiU1 I2 |, |I1 + eiU2 I2 |.
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Proof. On the basis of the polar decomposition Iℓ = |Iℓ | e
iqℓ with ℓ ∈ {1, 2}, the last two

absolute values are equivalent to

|I1 + eiUℓ I2 |
2
= |I1 |

2 + |I2 |
2 + 2|I1 | |I2 |ℜ[ei(q2−q1+Uℓ )].

Since I1 and I2 are non-zero, we can thus extract the real parts

Aℓ ≔ ℜ
[
ei(q2−q1+Uℓ )

]
.

Using Euler’s formula, we obtain the linear equation system

A1 = cos(U1) cos(q2 − q1) − sin(U1) sin(q2 − q1)

A2 = cos(U2) cos(q2 − q1) − sin(U2) sin(q2 − q1).

The determinant of the system matrix is here

det
(
cosU1 − sinU1
cosU2 − sinU2

)
= sin(U1 − U2),

which is non-zero by assumption; so cos(q2 − q1) and sin(q2 − q1) are uniquely deter-

mined by the given data. Knowing the relative phase q2 − q1, we calculate Ī1I2. �

Remark 2.2 (Real polarization). For every I1, I2 ∈ R \ {0}, the product I1I2 is uniquely

determined by |I1 |, |I2 |, and |I1 +UI2 | with U ∈ {−1, 1} because |I1 +UI2 |
2
= I2

1
+I2

2
+

2UI1I2.

Remark 2.3 (Polarization identities [10, 15]). For certain U1 and U2 as in Theorem 2.1, the

phase of I1, I2 can be computed without solving a linear equation system. More gener-

ally, if Z is chosen to be the  th root of unity, then we have

Ī1I2 =
1

 

 −1∑
:=0

Z : |I1 + Z
−:
 I2 |

2.

2.2 Frames Given a matrix G ∈ C3×3 and a vector 5 ∈ C3 , the set {Gℓ5}!−1ℓ=0 is

called a dynamical frame if it spans C3 . Dynamical frames were first introduced in [4] in

order to recover a signal evolving in time from certain time-space measurements, where

also the infinite dimensional problem is addressed. The topic was further developed

in [3, 5, 6, 9, 20, 24–26, 41, 42]. An arbitrary vector x ∈ C3 can be recovered from the set

{〈Gℓx, 5〉}!−1
ℓ=0

in an stable way if there exists U, V > 0 such that

U ‖~‖2 ≤ ‖{〈Gℓ~, 5〉}!−1ℓ=0 ‖
2 ≤ V ‖~‖2, for all ~ ∈ C3 ,

i.e., when the set {(G) )ℓ5}!−1
ℓ=0

is a frame for C3 .
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For any dynamical frame {Gℓ5}!−1ℓ=0 there exists a set of vectors in the form {Hℓ 5̃}!−1ℓ=0

such that every x ∈ C3 can be written as

x =

!−1∑
ℓ=0

〈x,Gℓ5〉Hℓ q̃ . (2)

Indeed for a given frame {Gℓ5}!−1
ℓ=0

, the framematrix Z ≔
∑!−1
ℓ=0 Gℓ5 (Gℓ5)∗ is symmetric

and positive definite and the canonical dual frame {Z−1Gℓ5}!−1
ℓ=0

can be written in the

form {Hℓ 5̃}!−1ℓ=0 where H ≔ Z−1GZ and 5̃ ≔ Z−15. For more information about frames,

we refer to [23].

Example 2.4. Let 3 = 2, and consider the rotation matrix G =
(
cos\ − sin\
sin\ cos\

)
with \ ≠ :c

for : ∈ Z. For every nonzero vector 5 ∈ C2 and ! ≥ 2 the set {Gℓ5}!−1
ℓ=0

is a dynamical

frame for C2.

2.3 Vandermonde Matrices As we will see in Section 3, the frame property of

the set {Gℓ5}!−1ℓ=0 is highly related to the Vandermonde matrix generated by the vector ,

whose coordinates consists of the eigenvalues of the matrixG. There are different types

of Vandermonde matrices in the literature. We will need the following kinds.

The Classical Vandermode Matrix For , ≔ (_0, . . . , _3−1)
T ∈ C3 , the Vander-

monde matrix \, ∈ C3×! generated by , is defined as

\, := (_ℓ:)
3−1,!−1
:,ℓ=0

.

The determinant of a square Vandermonde matrix \, ∈ C3×3 equals to

det \, =

∏
0≤:< 9 ≤3−1

(_: − _ 9 ).

Generalization of the First Kind A generalized Vandermonde matrix of the

first kind is a matrix consisting of selective columns of \, . More precisely, for a vector

, ≔ (_0, . . . , _3−1)
T ∈ C3 and m ≔ (<0, . . . ,<!−1)

T ∈ N!
0
, the Vandermonde matrix

\,,m ∈ C3×! is defined as

\,,m ≔
(
_
<ℓ

:

)3−1,!−1
:,ℓ=0

,

The Vandermonde determinant of the first kind may be factorized by

det \,,m =

(∏
:> 9

(_: − _ 9 )

)
( (,). (3)

where ( is a symmetric polynomial in,with non-negative, integer coefficients [28]. The

occurring polynomials ( are better known as Schur functions [36, 37].
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GeneralizationoftheSecondKind The second kind generalizedVandermonde

matrix \̃,,m ∈ C3×! is defined as

\̃,,m ≔


X0

...

X"−1


with X 9 ≔

((
ℓ

:

)
_ℓ−:9

)< 9−1,!−1

:,ℓ=0

,

where " ∈ N, , ∈ C" and m ∈ N" such that |m | ≔
∑"−1
9=0 |< 9 | = 3 . Clearly if m is

the unite vector, i.e., m = (1, . . . , 1)) ∈ N" , then \̃,,m equals the Vandermonde matrix

\, . The determinant is given by

det(\̃,,m) =
∏

0≤:< 9 ≤"−1

(_ 9 − _: )
<:< 9 , (4)

see [1, 31]. Obviously, a square Vandermonde matrix \̃,,m is invertible precisely when ,

has distinct elements.

Example 2.5. For , ≔ (_0, _1, _2)
T, m ≔ (3, 1, 2)T and ! = 3 = 6, we have

\̃,,m ≔



1 _0 _2
0

_3
0

_4
0

_5
0

0 1 2 _0 3 _2
0

4 _3
0

5 _4
0

0 0 1 3 _0 6 _2
0

10 _3
0

1 _1 _2
1

_3
1

_4
1

_5
1

1 _2 _2
2

_3
2

_4
2

_5
2

0 1 2 _2 3 _2
2

4 _3
2

5 _4
2


.

3 Dynamical Frames

To recover a signal from (1), we first study conditions on the matrix G ∈ C3×3 and

the vector 5 ∈ C3 such that {Gℓ5}!−1
ℓ=0

is a frame for C3 . The cornerstone is here the

Jordan canonical form of G. More precisely, every matrix G ∈ C3×3 is similar to a so-

called Jordan matrix meaning that there exists an invertible matrix Y ∈ C3×3 such that

G = Y P Y−1 and P ∈ C3×3 is a blocked diagonal matrix of the form

P = diag(P0, . . . , P"−1) with P 9 =

©«

_ 9 1

_ 9
. . .

. . . 1

_ 9

ª®®®®®¬
∈ C< 9×< 9 ,

where _ 9 is the 9th eigenvalue and < 9 the corresponding algebraic multiplicity, and

where the columns of Y = [Y0 | . . . |Y"−1] with blocks Y 9 = [s 9,0 | . . . |s 9,< 9−1] span the

generalized eigenspaces ofG. Further, we have (G−_ 9 O )
:+1s 9,: = 0 but (G−_ 9 O )

:s 9,: ≠ 0
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for : = 0, . . . ,< 9 − 1. The Jordan chain Y 9 related to _ 9 is generated by s 9,< 9−1 via

s 9,: = (G− _O )< 9−:−1s 9,< 9−1. We say that 5 depends on the Jordan generator or leading

generalized eigenvector s 9,< 9−1 if (Y−15):−1 ≠ 0 where : =
∑9−1
8=0

<8 . For pairwise

distinct eigenvalues _ 9 as usually assumed in the following, the generators are unique

up to scaling. In this case, Y is unique up to scaling and permutation of the blocks Y 9 .

Finally we notice that the ℓth power of a Jordan matrix and the corresponding Jordan

blocks are given by

P ℓ = diag(P ℓ
0
, . . . , P ℓ"−1) with P ℓ9 =

((
ℓ

= − :

)
_ℓ−=+:9

)< 9−1

:,==0

.

The following two theorems are special cases of [4], where the construction of a frame

by iterated actions of G on a finite set of sampling vectors {5 9 } ⊂ C3 is studied. In

difference to [4], we provide brief, direct proofs based on the Vandermonde determinant

for the case that G acts on a single generator 5.

Theorem 3.1 (Dynamical basis). Let G ∈ C3×3 be arbitrary. Then {Gℓ5}3−1
ℓ=0

is a

basis if and only if the eigenvalues of the Jordan blocks of G are pairwise distinct and 5

depends on all Jordan generators.

Proof. Assume thatG has the Jordan decompositionG = Y P Y−1. We represent the vector

5 with respect to the column-wise basis in Y according to the size of the Jordan blocks in

P . More precisely, we denote by 7 9 the coordinates corresponding to the basis vectors

in Y 9 . The coefficients are thus given by

7 ≔
©«

70

...

7"−1

ª®®¬
= Y−15.

Next, we consider the generated vectors 5ℓ ≔ Gℓ5 with ℓ = 0, . . . , 3 − 1. On the basis

of the Jordan canonical form, they are given by 5ℓ = Y P ℓ7 . Considering only the 9th

Jordan block, we notice

P ℓ9 7 9 = N (7 9 )

((
ℓ

:

)
_ℓ−:9

)< 9−1

:=0

, (5)

where

N (7 9 ) =



(7 9 )0 (7 9 )1 . . . (7 9 )< 9−1

...
... . .

. ...

(7 9 )< 9−2 (7 9 )< 9−1

(7 9 )< 9−1 0 . . . 0


,

is an upper-left Hankel matrix inC< 9×< 9 . The vector on the right-hand side of (5) is here

the ℓth column of X 9 within the definition of generalizedVandermondematrix \̃,,m . The
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matrix of the generated vectors may hence be written as

[50 | . . . |53−1] = Y


N (70) . . . 0
...

. . .
...

0 . . . N (7<−1)


\̃,,m .

This matrix is invertible if and only if the generalized Vandermonde matrix \̃,,m is in-

vertible, i.e. if the eigenvalues are pairwise distinct, see (4), and if the Hankel matrices

N (7 9 ) are regular, i.e. if the coefficients (7 9 )< 9−1 of the highest-order generalized ei-

genvectors do not vanish. �

Theorem 3.2 (Dynamical frame). Let ! ≥ 3 , and let G ∈ C3×3 be arbitrary. Then

{Gℓ5}!−1ℓ=0 is a frame if and only if the eigenvalues of the Jordan blocks of G are pairwise

distinct and 5 depends on all Jordan generators.

Proof. If the vector 5 is independent of one Jordan generator, then the images Gℓ5

are also independent of this generator; so {Gℓ5}!−1ℓ=0 can not be a frame for C3 . Now

assume that some eigenvalues of G coincide, i.e. the Jordan block to this eigenvalue

decompose into several smaller Jordan blocks. Assume that the eigenvalues _ 90 and

_ 91 coincide, and that the corresponding Jordan blocks have dimension< 90 ×< 90 and

< 91 × < 91 . Using the notation in the proof of Theorem 3.1, the coordinates of 5 in

� ≔ span{s 90,< 90−1
, s 91,< 91−1

} are (7 90)< 90−1
and (7 91)< 91−1

. Applying Gℓ to 5, we get

the coordinates _ℓ90 (7 90)< 90−1
and _ℓ91 (7 91)< 91−1

with _ 90 = _ 91 regarding the subspace

�. Thus the projections proj� ({G
ℓ5}!−1ℓ=0 ) only span a one-dimensional subspace. As a

consequence {Gℓ5}!−1ℓ=0 cannot span C3 , and we cannot obtain a frame. The opposite

direction has already be proven with Theorem 3.1. �

Since generic matrices G ∈ C3×3 are diagonalizable with pairwise distinct eigenval-

ues, for almost all matrices holds the following special case.

Corollary 3.3 (Dynamical frame). Let ! ≥ 3 , and letG ∈ C3×3 be diagonalizable.

Then {Gℓ5}!−1
ℓ=0

is a frame if and only if the eigenvalues of G are pairwise distinct and 5

depends on all eigenvectors.

Proof. Since the Jordan blocks here reduces to size 1 × 1, the matrix of the generated

vectors in the proof of Theorem 3.1 simplifies to

[5 |G5 | . . . |G3−15] = Y diag(7) \, .

This matrix is invertible if and only if the classical Vandermonde matrix \, ∈ C3×3 is

invertible and none of the coordinates of 7 vanishes. �
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For a ∈ C3 , let circ(a) denote the circulant matrix whose first column is given by the

vector a. All circulant matrices are diagonalizable with respect to the discrete Fourier

transform, i.e.,

circ(a) = 1

3
L diag(â) L−1,

where â = La is given via the Fourier matrix L = (e−
2c i9:

3 )3−1
9,:=0

.

Corollary 3.4 (Repeated convolution). Let ! ≥ 3 , and let 5, a ∈ C3 be arbitrary.

Then the family {
a ∗ · · · ∗ a

ℓ times

∗ 5
}!−1
ℓ=0

is a frame for C3 if and only if the coordinates of 5̂ do not vanish and the coordinates of â

are pairwise distinct.

Proof. Note that a ∗ 5 = circ(a)5 and G ≔ circ(a) is a diagonalizable matrix that

by hypothesis has pairwise distinct eigenvalues {0̂: }
3−1
:=0

. The result follows now from

Corollary 3.3. �

4 Full-Spark Dynamical Frames

A frame {f: }
!−1
:=0

has full spark if every subset embracing3 elements spansC3 . This prop-

erty makes full-spark frames attractive in phase retrieval and more generally in signal

processing [10, 11, 13, 38]. In the following, we study conditions ensuring that frames

generated via diagonalizable matrices have full spark. We show that a dynamical frame

has full spark precisely when the Vandermonde matrix \, related to the eigenvalues of

G has full spark.

Theorem 4.1. Let G ∈ C3×3 be diagonalizable with eigenvalues ,. For every ! ≥ 3 ,

the set {Gℓ5}!−1
ℓ=0

is a full spark frame if and only if 5 depends on all eigenvectors and

\, ∈ C3×! has full spark.

Proof. Assume that G has the eigenvalue decomposition G = Y P Y−1, where P is a diag-

onal matrix, and denote the coordinates of 5 with respect to Y by 7 ≔ Y−15. Consider

an arbitrary subset {G<ℓ 5}3−1
ℓ=0

of {Gℓ5}!−1
ℓ=0

withm = (<0, . . . ,<3−1)
) . Then the matrix

[G<05 |G<15 | . . . |G<3−15] = Y diag(7) \,,m .

is invertible if and only if all elements of 7 are non-zero and if +,,m is invertible, which

means that \, has full spark. �

The following result specializes Theorem 4.1 for G with eigenvalues _: = _: .
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Corollary 4.2. Let G ∈ C3×3 be diagonalizable with eigenvalues , = (_:)3−1
:=0

with

_: ≠ 1 for some _ ∈ C. For every ! ≥ 3 , the set {Gℓ5}!−1ℓ=0 is a full spark frame if and only

if 5 depends on all eigenvectors.

Proof. For the chosen _, every 3 × 3 sub-matrix of \, is an invertible Vandermonde

matrix. �

Example 4.3. Let ! ≥ 3 and _ = e2c i/! be the !th unit root. Consider the matrix G =

diag(_0, . . . , _3−1) and 5 = 1. Then the set {Gℓ5}!−1ℓ=0 is a frame for C3 and has full spark

by Corollary 3.3 and Corollary 4.2. This frame is called harmonic and is related to a

submatrix of the discrete Fourier matrix. In general not every submatrix of the discrete

Fourier transformmatrix forms a full-spark frame. For more informationwe refer to [11].

Theorem 4.4. Let ! ≥ 3 , and let G ∈ C3×3 be diagonalizable with distinct real and non-

negative eigenvalues. Then {Gℓ5}!−1
ℓ=0

is a full-spark frame if 5 depends on all eigenspaces.

Proof. Due to Theorem 4.1, the set {Gℓ5}!−1ℓ=0 has full spark if and only if the generalized

Vandermonde matrices \,,m are invertible for every m ∈ N3
0
with distinct coordinates.

Since the Schur functions in (3) have only non-negative coefficients, the generalizedVan-

dermonde determinant is here positive for all , with non-negative, distinct coordinates,

which establishes the assertion. �

5 Phase Retrieval in Dynamical Sampling

As mentioned in the introduction, the complementary property can be exploited to en-

sure phases retrieval for real signals [7,8] Since this approach fails in the complex setting,

we align 5 with further sampling vectors allowing polarization. This allow us to recover

the frame coefficient 〈x,Gℓ5〉 up to global phase and then using the frame property we

can reconstruct x.

Theorem 5.1. Let {Gℓ5}!−1
ℓ=0

be a frame for C3 , and let U1, U2 ∈ R be real numbers with

U1 − U2 ∉ cZ. Then almost all x ∈ C3 can be recovered from

{
| 〈x,Gℓ5〉 |

}!−1
ℓ=0

∪
{
| 〈x,Gℓ (5 + eiU:G5)〉 |

}!−2,2
ℓ=0,:=1

up to global phase.

Proof. We consider the dense set of x ∈ C3 for which 〈x,Gℓ5〉 ≠ 0 for ℓ = 0, . . . , ! − 1.

Using the polarization in Theorem 2.1, we determine the products

〈x,Gℓ5〉〈x,Gℓ+15〉 (ℓ = 0, . . . , ! − 2).
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Considering the phase of the above identity, we calculate the relative phases

arg 〈x,Gℓ+15〉 − arg 〈x,Gℓ5〉 mod 2c (ℓ = 0, . . . , ! − 2).

Choosing the phase of 〈x, 5〉 arbitrary, we may thus recover the frame coefficients

〈x,Gℓ5〉 up to global phase and thus x. �

Corollary 5.2. If {Gℓ5}!−1
ℓ=0

is a frame for R3 , and U ∈ {−1, 1}, then almost every

x ∈ R3 can be recovered from

{
| 〈x,Gℓ5〉 |

}!−1
ℓ=0

∪
{
| 〈x,Gℓ (5 + UG5)〉 |

}!−2
ℓ=0

up to sign.

Although the extended measurement set allows the extraction of relative phases, the

proposed procedure may fail in rare cases, where some of the coefficients | 〈G,Gℓ5〉 | are

zero for some ℓ which means that we are not able to recover x if it lies in the union of

finitely many hyperplanes. On the contrary, if the generated frame has full-spark, one

do not need all of the coefficients to recover the wanted signal.

Theorem 5.3. Let {Gℓ5}!−1ℓ=0 be a full-spark frame for C3 , and let U1, U2 ∈ R be real

numbers with U1 − U2 ∉ cZ. If ! ≥ 32/4 + 3/2, then every x ∈ C3 can be recovered from

the samples {
| 〈x,Gℓ5〉 |

}!−1
ℓ=0

∪
{
| 〈x,Gℓ (5 + eiU:G5)〉 |

}!−2,2
ℓ=0,:=1

up to global phase.

Proof. Since {Gℓ5}!−1ℓ=0 is a full-spark frame, we only need to know the phase of 3 coef-

ficients 〈x,Gℓ5〉 to recover x. Obviously, if at least 3 coefficients are zero, then the

unknown signal is zero everywhere. Now assume that< < 3 measurements | 〈x,Gℓ5〉 |

are zero. As soon as we find 3 −< consecutive non-zero measurements, we can transfer

the relative phases to enough frame elements to recover x using the extended measure-

ment set. In the worst case, we measure 3 −< − 1 consecutive non-zeros followed by a

zero. After this pattern has been repeated< times, the remaining measurements have

to be non-zero. If we thus have at least ! ≥ (< + 1) (3 −<) measurements, the existence

of at least 3 −< non-zero consecutive measurements is guaranteed. Considering that

the maximum over (< + 1) (3 −<) is attained at< ≔ (3−1)/2 for odd 3 and< ≔ 3/2 for

even 3 finishes the proof. �

Theorem 5.4. Let {Gℓ5}!−1ℓ=0 be a full-spark frame forC3 , let U1, U2 ∈ R be real numbers

with U1 − U2 ∉ cZ, and let � ∈ {0, . . . , 3 − 2}. If ! ≥ (3+1)2/4( � +1) + 3, then every x ∈ C3
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can be recovered from the samples

{
| 〈x,Gℓ5〉 |

}!−1
ℓ=0

∪
{
| 〈x,Gℓ (5 + eiU:G95)〉 |

}!−2,2,� +1
ℓ=0,:=1, 9=1

up to global phase.

Proof. The difference to the proof of Theorem 5.3 is that we may here jump over � con-

secutive zeros while calculating the relative phases. Thus, if< measurements | 〈x,Gℓ5〉 |

are zero, the worst case scenario is that 3 −< − � − 1 consecutive non-zero measure-

ments are followed by � + 1 zeros. Repeating this pattern ⌊</( � +1)⌋ times, and placing

the remaining<mod ( � + 1) ≤ < zeros and 3 −< non-zeros at the end – so at most 3

elements, we require at most⌊
<
� +1

⌋
(3 −<) + (3 −<) +<mod ( � + 1) ≤ <

� +1
(3 −<) + 3

measurements to transfer the relative phases far enough to recover x. The maximum on

the right-hand side is attained at< ≔ (3+1)/2 for odd 3 and< ≔ 3/2 for even 3 , which

finishes the proof. �

References

[1] A. C. Aitken. Determinants and Matrices. University Mathematical Texts. Oliver and Boyd, Edinburgh,

3rd edition, 1944.

[2] R. Alaifari, I. Daubechies, P. Grohs, and R. Yin. Stable phase retrieval in infinite dimensions. Found

Comput Math, 19(4):869–900, 2019.

[3] A. Aldroubi, C. Cabrelli, A. F. Cakmak, U. Molter, and A. Petrosyan. Iterative actions of normal oper-

ators. J Funct Anal, 272(3):1121–1146, 2017.

[4] A. Aldroubi, C. Cabrelli, U. Molter, and S. Tang. Dynamical sampling. Appl Comput Harmon Anal,

42(3):378–401, 2017.

[5] A. Aldroubi, L. Huang, and A. Petrosyan. Frames induced by the action of continuous powers of an

operator. J Math Anal Appl, 478(2):1059–1084, 2019.

[6] A. Aldroubi and I. Krishtal. Krylov subspace methods in dynamical sampling. Sampl Theory Signal

Image Process, 15:9–20, 2016.

[7] A. Aldroubi, I. Krishtal, and S. Tang. Phase retrieval of evolving signals from space-time samples. In

Proceedings of the SampTA 2017, pages 46–49, 2017.

[8] A. Aldroubi, I. Krishtal, and S. Tang. Phaseless reconstruction from space-time samples. Appl Comput

Harmon Anal, 48(1):395–414, 2020.

[9] A. Aldroubi and A. Petrosyan. Dynamical sampling and systems from iterative actions of operators.

In Frames and Other Bases in Abstract and Function Spaces, chapter 2, pages 15–26. Birkhäuser, Cham,

2017.

[10] B. Alexeev, A. S. Bandeira, M. Fickus, and D. G. Mixon. Phase retrieval with polarization. SIAM J

Imaging Sci, 7(1):35–66, 2014.

[11] B. Alexeev, J. Cahill, and D. G. Mixon. Full spark frames. J Fourier Anal Appl, 18(6):1167–1194, 2012.

[12] R. Balan, B. G. Bodmann, P. G. Casazza, and D. Edidin. Painless reconstruction from magnitudes of

frame coefficients. J Fourier Anal Appl, 15(4):488–501, 2009.



12 R. Beinert and M. Hasannasab

[13] R. Balan, P. Casazza, and D. Edidin. On signal reconstruction without phase. Appl Comput Harmon

Anal, 20(3):345–356, 2006.

[14] A. S. Bandeira, J. Cahill, D. G. Mixon, and A. A. Nelson. Saving phase: injectivity and stability for

phase retrieval. Appl Comput Harmon Anal, 37(1):106–125, 2014.

[15] R. Beinert. One-dimensional phase retrieval with additional interference measurements. Results Math,

72(1):1–24, 2017.

[16] R. Beinert and G. Plonka. Ambiguities in one-dimensional discrete phase retrieval from Fourier mag-

nitudes. J Fourier Anal Appl, 21(6):169–1198, 2015.

[17] R. Beinert and G. Plonka. One-dimensional discrete-time phase retrieval. In Nanoscale Photonic Ima-

ging, Nanoscale Photonic Imaging, chapter 24, pages 603–627. Springer, Cham, 2020.

[18] T. Bendory, R. Beinert, and Y. C. Eldar. Fourier phase retrieval: uniqueness and algorithms. In Com-

pressed Sensing and its Applications, Applied andNumerical Harmonic Analysis, chapter 2, pages 55–91.

Birkhäser, Cham, 2017.

[19] Y. M. Bruck and L. G. Sodin. On the ambiguity of the image reconstruction problem. Opt Commun,

30(3):304–308, September 1979.

[20] C. Cabrelli, U. Molter, V. Paternostro, and F. Philipp. Dynamical sampling on finite index sets. J Anal

Math, 140(2):637–667, 2020.

[21] E. J. Candès, Y. C. Eldar, T. Strohmer, and V. Voroninski. Phase retrieval via matrix completion. SIAM

J Imaging Sci, 6(1):199–225, 2013.

[22] E. J. Candès, T. Strohmer, and V. Voroninski. PhaseLift: exact and stable signal recovery from mag-

nitude measurements via convex programming. Comm Pure Appl Math, 66(8):1241–1274, 2013.

[23] O. Christensen. An introduction to frames and Riesz bases. Springer, 2016.

[24] O. Christensen and M. Hasannasab. Operator representations of frames: boundedness, duality, and

stability. Integral Equations Operator Theory, 88(4):483–499, 2017.

[25] O. Christensen, M. Hasannasab, and F. Philipp. Frame properties of operator orbits. Math Nachr,

293(1):52–66, 2020.

[26] O. Christensen, M. Hasannasab, and E. Rashidi. Dynamical sampling and frame representations with

bounded operators. J Math Anal Appl, 463(2):634–644, 2018.

[27] J. C. Dainty and J. R. Fienup. Phase retrieval and image reconstruction for astronomy. In Image

Recovery : Theory and Application, chapter 7, pages 231–275. Academic Press, Orlando (Florida), 1987.

[28] S. Delvaux and M. Van Barel. Rank-deficient submatrices of Fourier matrices. Linear Algebra Appl,

429(7):1587–1605, 2008.

[29] P. Grohs, S. Koppensteiner, and M. Rathmair. The mathematics of phase retrieval. arXiv preprint

arXiv:1901.07911, 2019.

[30] H. A. Hauptman. The phase problemof x-ray crystallography. Rep Prog Phys, 54(11):1427–1454, Novem-

ber 1991.

[31] D. Kalman. The generalized Vandermonde matrix. Math Mag, 57(1):15–21, 1984.

[32] W. Kim and M. H. Hayes. The phase retrieval problem in x-ray crystallography. In Proceedings of the

ICASSP 91, volume 3, pages 1765–1768, 1991.

[33] M. V. Klibanov and V. G. Kamburg. Uniqueness of a one-dimensional phase retrieval problem. Inverse

Problems, 30(7):075004(10), July 2014.

[34] M. V. Klibanov, P. E. Sacks, and A. V. Tikhonravov. The phase retrieval problem. Inverse Problems,

11(1):1–28, 1995.



Phase retrieval in dynamical sampling 13

[35] Y. M. Lu and M. Vetterli. Spatial super-resolution of a diffusion field by temporal oversampling in

sensor networks. In Proceedings of the ICASSP 2009, pages 2249–2252, 2009.

[36] I. G. Macdonald. Schur functions: theme and variations. In Séminaire Lotharingien de Combinatoire

(Saint-Nabor, 1992), volume 498 of Publ Inst Rech Math Av, pages 5–39. Univ Louis Pasteur, Strasbourg,

1992.

[37] I. G. Macdonald. Symmetric functions andHall polynomials. OxfordMathematical Monographs. Oxford

University Press, Oxford, 2nd edition, 1995.

[38] R. D. Malikiosis and V. Oussa. Full spark frames in the orbit of a representation. Appl Comput Harmon

Anal, 49(3):791–814, 2020.

[39] R. P. Millane. Phase retrieval in crystallography and optics. J Opt Soc Amer A, 7(3):394–411, 1990.

[40] A. L. Patterson. A Fourier series method for the determination of the components of interatomic

distances in crystals. Phys Rev, 46(5):372, 1934.

[41] F. Philipp. Bessel orbits of normal operators. J Math Anal Appl, 448(2):767–785, 2017.

[42] J. Ranieri, A. Chebira, Y. M. Lu, and M. Vetterli. Sampling and reconstructing diffusion fields with

localized sources. In Proceedings of the ICASSP 2011, pages 4016–4019, 2011.

[43] B. Seifert, H. Stolz, M. Donatelli, D. Langemann, and M. Tasche. Multilevel Gauss-Newton methods

for phase retrieval problems. J Phys A: Math Gen, 39(16):4191–4206, 2006.

[44] B. Seifert, H. Stolz, and M. Tasche. Nontrivial ambiguities for blind frequency-resolved optical gating

and the problem of uniqueness. J Opt Soc Am B, 21(5):1089–1097, May 2004.

[45] Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, and M. Segev. Phase retrieval with

application to optical imaging: A contemporary overview. IEEE Signal Process Mag, 32(3):87–109,

2015.

[46] P. van Hove, M. H. Hayes, J. S. Lim, and A. V. Oppenheim. Signal reconstruction from signed Fourier

transform magnitude. IEEE Trans Acoust Speech Signal Process, ASSP-31(5):1286–1293, October 1983.


	1 Introduction
	2 Preleminaries
	2.1 Polarization and Relative Phases
	2.2 Frames
	2.3 Vandermonde Matrices

	3 Dynamical Frames
	4 Full-Spark Dynamical Frames
	5 Phase Retrieval in Dynamical Sampling

