Skip to main content

AA-LSTM: An Adversarial Autoencoder Joint Model for Prediction of Equipment Remaining Useful Life

  • Conference paper
  • First Online:
  • 3724 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12712))

Abstract

Remaining Useful Life (RUL) prediction of equipment can estimate the time when equipment reaches the safe operating limit, which is essential for strategy formulation to reduce the possibility of loss due to unexpected shutdowns. This paper proposes a novel RUL prediction model named AA-LSTM. We use a Bi-LSTM-based autoencoder to extract degradation information contained in the time series data. Meanwhile, a generative adversarial network is used to assist the autoencoder in extracting abstract representation, and then a predictor estimates the RUL based on the abstract representation learned by the autoencoder. AA-LSTM is an end-to-end model, which jointly optimizes autoencoder, generative adversarial network, and predictor. This training mechanism improves the model’s feature extraction and prediction capabilities for time series. We validate AA-LSTM on turbine engine datasets, and its performance outperforms state-of-the-art methods, especially on datasets with complex working conditions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Xia, T., Dong, Y., Xiao, L., Du, S., Pan, E., Xi, L.: Recent advances in prognostics and health management for advanced manufacturing paradigms. Reliab. Eng. Syst. Safety 178, 255–268 (2018)

    Google Scholar 

  2. Khelif, R., Chebel-Morello, B., Malinowski, S., Laajili, E., Fnaiech, F., Zerhouni, N.: Direct remaining useful life estimation based on support vector regression. IEEE Trans. Ind. Electron. 64(3), 2276–2285 (2017)

    Article  Google Scholar 

  3. Zhu, K., Liu, T.: Online tool wear monitoring via hidden semi-Markov model with dependent durations. IEEE Trans. Ind. Inform. 14, 69–78 (2018)

    Article  Google Scholar 

  4. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  5. Zheng, S., Ristovski, K., Farahat, A., Gupta, C.: Long short-term memory network for remaining useful life estimation. In: 2017 IEEE International Conference on Prognostics and Health Management (ICPHM) (2017)

    Google Scholar 

  6. Listou Ellefsen, A., Bjørlykhaug, E., Æsøy., Ushakov, S., Zhang, H.: Remaining useful life predictions for turbofan engine degradation using semi-supervised deep architecture. Reliab. Eng. Syst. Safety 183, 240–251 (2019)

    Google Scholar 

  7. Huang, C.G., Huang, H.Z., Li, Y.F.: A bidirectional LSTM prognostics method under multiple operational conditions. IEEE Trans. Ind. Electron. 66, 8792–8802 (2019)

    Article  Google Scholar 

  8. Wang, Q., et al.: Deep image clustering using convolutional autoencoder embedding with inception-like block. In: 2018 25th IEEE International Conference on Image Processing (ICIP), pp. 2356–2360 (2018)

    Google Scholar 

  9. Li, X., Ding, Q., Sun, J.Q.: Remaining useful life estimation in prognostics using deep convolution neural networks. Reliab. Eng. Syst. Safety 172, 1–11 (2018)

    Google Scholar 

  10. Long, W., Yan, D., Liang, G.: A new ensemble residual convolutional neural network for remaining useful life estimation. Math. Biosci. En. MBE 16(2), 862–880 (2019)

    MathSciNet  Google Scholar 

  11. Hong, C.W., Lee, K., Ko, M.S., Kim, J.K., Oh, K., Hur, K.: Multivariate time series forecasting for remaining useful life of turbofan engine using deep-stacked neural network and correlation analysis. In: 2020 IEEE International Conference on Big Data and Smart Computing (BigComp) (2020)

    Google Scholar 

  12. Xia, T., Song, Y., Zheng, Y., Pan, E., Xi, L.: An ensemble framework based on convolutional bi-directional LSTM with multiple time windows for remaining useful life estimation. Comput. Ind. 115, 103182 (2020)

    Article  Google Scholar 

  13. Liu, H., Liu, Z., Jia, W., Lin, X.: Remaining useful life prediction using a novel feature-attention based end-to-end approach. IEEE Trans. Ind. Inform. PP(99), 1 (2020)

    Google Scholar 

  14. Zhang, W., Jin, F., Zhang, G., Zhao, B., Hou, Y.: Aero-engine remaining useful life estimation based on 1-dimensional FCN-LSTM neural networks. In: 2019 Chinese Control Conference (CCC), pp. 4913–4918 (2019)

    Google Scholar 

  15. Al-Dulaimi, A., Zabihi, S., Asif, A., Mohammadi, A.: Hybrid deep neural network model for remaining useful life estimation. In: ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2019)

    Google Scholar 

  16. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Advances in Neural Information Processing Systems (2014)

    Google Scholar 

  17. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)

  18. Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I.: Adversarial autoencoders. In: ICLR (2016)

    Google Scholar 

  19. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  20. Saxena, A., Goebel, K., Simon, D., Eklund, N.: Damage propagation modeling for aircraft engine run-to-failure simulation. In: 2008 International Conference on Prognostics and Health Management, pp. 1–9 (2008)

    Google Scholar 

  21. Liu, X., et al.: Multiple kernel k-means with incomplete kernels. IEEE Trans. Pattern Anal. Machine Intell. 42, 1191–1204 (2017)

    Google Scholar 

  22. Heimes, F.O.: Recurrent neural networks for remaining useful life estimation. In: 2008 International Conference on Prognostics and Health Management (2008)

    Google Scholar 

  23. Zhang, C., Lim, P., Qin, A.K., Tan, K.C.: Multiobjective deep belief networks ensemble for remaining useful life estimation in prognostics. IEEE Trans. Neural Netw. Learn Syst. 28(10), 2306–2318 (2017)

    Article  Google Scholar 

  24. Liao, Y., Zhang, L., Liu, C.: Uncertainty prediction of remaining useful life using long short-term memory network based on bootstrap method. In: 2018 IEEE International Conference on Prognostics and Health Management (ICPHM), pp. 1–8 (2018)

    Google Scholar 

Download references

Acknowledgments

This work is jointly funded by the National Science Foundation of China (U1811462), the National Key R&D project by Ministry of Science and Technology of China (2018YFB1003203), and the open fund from the State Key Laboratory of High Performance Computing (No. 201901-11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengkun Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, D., Wu, C., Xu, C., Wang, Z. (2021). AA-LSTM: An Adversarial Autoencoder Joint Model for Prediction of Equipment Remaining Useful Life. In: Karlapalem, K., et al. Advances in Knowledge Discovery and Data Mining. PAKDD 2021. Lecture Notes in Computer Science(), vol 12712. Springer, Cham. https://doi.org/10.1007/978-3-030-75762-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75762-5_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75761-8

  • Online ISBN: 978-3-030-75762-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics