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ABSTRACT

We introduce HiPaR, a novel pattern-aided regression method for

tabular data containing both categorical and numerical attributes.

HiPaR mines hybrid rules of the form 𝑝 ⇒ 𝑦 = 𝑓 (𝑋 ) where 𝑝 is

the characterization of a data region and 𝑓 (𝑋 ) is a linear regression
model on a variable of interest 𝑦. HiPaR relies on pattern mining

techniques to identify regions of the data where the target variable

can be accurately explained via local linear models. The novelty of

the method lies in the combination of an enumerative approach to

explore the space of regions and efficient heuristics that guide the

search. Such a strategy provides more flexibility when selecting a

small set of jointly accurate and human-readable hybrid rules that

explain the entire dataset. As our experiments shows, HiPaR mines

fewer rules than existing pattern-based regression methods while

still attaining state-of-the-art prediction performance.

1 INTRODUCTION

In the golden age of data, accurate numerical prediction models

are of great utility in absolutely all disciplines. The task of pre-

dicting a numerical variable of interest from the values of other

variables –called features– is known as regression analysis and the

literature is rich in this respect [1, 4, 14, 17, 20, 24]. As data steadily

complexifies, and the need for interpretable methods becomes com-

pelling [10], a line of research in regression analysis focuses on

learning interpretable prediction models on heterogenous data. By

interpretable, we mean models that provide a compact and compre-

hensible explanation of the interaction between the features and

the target variable, e.g., a linear function. By heterogeneous data, we
mean data that can be hardly modeled by a single global regression

function, but instead by a set of local models applicable to subsets

of the data. The most prominent methods in this line are piecewise

regression (PR, also called segmented regression) [20], regression

trees (RT) [14], model trees (MT) [17, 24] and contrast pattern-aided

regression (CPXR) [4]. All these approaches mine hybrid rules on
tabular data such as the example in Table 1. A hybrid rule is a state-

ment of the form 𝑝 ⇒ 𝑦 = 𝑓 (𝑋 ) where 𝑝 is a logical expression on

categorical features such as 𝑝 : property-type = “cottage”, and
𝑦 = 𝑓 (𝑋 ) is a regression model for a numerical variable of interest,

e.g., price = 𝛼 + 𝛽 × rooms + 𝛾 × surface that applies only to the

region characterized by 𝑝 , for instance, {𝑥1, 𝑥2, 𝑥3} in Table 1.

The advantage of methods based on hybrid rules is that they

deliver statements that can be easily interpreted by humans. In

contrast, they usually lag behind black-box methods such as gradi-

ent boosting trees [1] or random forests [2] in terms of prediction

power. Indeed, our experiments show that existing pattern-aided

regression methods have difficulties in providing satisfactory per-

formance and interpretability simultaneously. On the one hand,

methods such as RT or MT offer good prediction performance, but

output many (long) rules: this makes them hard to read by a hu-

man user and thus less interpretable. On the other hand, CPXR

outputs few simple rules (better interpretability), but its regression

performance does not improve significantly over a simple global

regression. The goal of this work is to reach a sweet spot where

the produced set of hybrid rules is accurate and still simple enough

to be grasped easily by a human user.

Finding such a good set of hybrid rules is hard, because the search

space of possible conditions (the left-hand side of the rules) is huge.

Methods such as regression trees (RT) tackle this complexity with a

greedy approach that refines rules with the best condition at a given

stage. A simple regression tree for our example dataset is shown in

Figure 3, and the division of the data it entails is illustrated in Figure

1. Regions with a high goodness of fit lying between two partitions,

e.g., the dashed region on the left of Figure 1, cannot be found even

if they have short descriptions (here 𝑠𝑡𝑎𝑡𝑒 = “excellent”). They
may only be described imperfectly by two longer patterns (𝑝𝑡𝑦𝑝𝑒 =

“cottage” ∧ 𝑠𝑡𝑎𝑡𝑒 ≠ “v .good” and 𝑝𝑡𝑦𝑝𝑒 ≠ “cottage” ∧ 𝑠𝑡𝑎𝑡𝑒 ≠

“good”), which is less interpretable. To avoid the shortcomings of a

greedy exploration, CPXR [4] proposes to enumerate the conditions

of the rules using pattern mining techniques. More precisely, [4]

applies discriminative pattern mining [3] to discover conditions

describing subspaces in the data where a reference linear model

yields the highest error, that is, data regions that may most likely

benefit from local regression models. Due to its use of exhaustive

enumeration, such approach can examine many alternative for

rules and, unlike RT, authorizes overlap. A limitation of CPXR lies

in its disregard of the data points where the error is not maximal

but still high in absolute terms. Moreover, the rules found by the

enumeration phase are then filtered by a greedy post-processing

step.

Our main contribution lies in a novel strategy to explore the

search space of hybrid rules. Such a strategy is hierarchical, as

depicted in Figure 2, and is designed to find few short rules that

fit the data. This gives rise to our method called HiPaR, which

comprises two contributions:

• First, we design an hybrid rule enumeration algorithm that ouputs

short and high-quality candidate rules. This algorithm is based on

the enumeration structure of the state-of-the-art closed itemsets

miner LCM [23], which we augmented with several heuristics

focused on the accuracy and compactness of the rules produced;

• Second, we frame the problem of selecting the best set of rules

from any set of candidate rules as an Integer Linear Programming

problem. This allows for a modular and robust post-processing

step to output a small set of high quality rules.

Our experiments show that HiPaR reaches an interesting per-

formance/intepretability compromise, providing as much error re-

duction as the best interpretable approaches but with one order
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Table 1: Toy example for the prediction of real estate prices

based on the attributes of the property. The symbols *, +, -

denote high, medium, and low prices respectively.

id property-type state rooms surface price

𝑥1 cottage very good 5 120 510k (*)

𝑥2 cottage very good 3 55 410k (*)

𝑥3 cottage excellent 3 50 350k (+)

𝑥4 apartment excellent 5 85 320k (+)

𝑥5 apartment good 4 52 140k (-)

𝑥6 apartment good 3 45 125k (-)

magnitude fewer atomic elements (conditions) to examine for the

analyst. Before detailing our approach and these experiments, we

introduce relevant concepts and related work in the next two sec-

tions.

2 PRELIMINARIES AND NOTATION

Pattern-aided regression methods assume tabular data with cate-

gorical and numerical attributes as in Table 1. We define the notions

of datasets, attributes, and patterns more formally in the following.

2.1 Datasets

A dataset 𝐷 = {𝑥1, . . . , 𝑥𝑛} ⊆ 𝑉 |𝐴 |
is a set of |𝐴|-dimensional

points or observations, where 𝐴 is a finite set of attributes and

each component of 𝑥𝑖 is associated to an attribute 𝑎 ∈ 𝐴 with

domain 𝑉𝑎 . We denote the value of attribute 𝑎 for point 𝑥𝑖 by 𝑥𝑖𝑎 .

For instance, 𝑥1state = “very good” in Table 1. From a statistical

perspective, attributes are random variables, thus in this work the

terms “attribute”, “feature”, and “variable” are used interchangeably.

A categorical (also symbolic) attribute holds elements on which

partial and total orders are meaningless. Examples are zip codes

or property types as in Table 1. A numerical attribute, conversely,
takes integer or real values and represents a measurable quantity

such as a price or a temperature measure. Numerical attributes are

the target of regression analysis.

2.2 Patterns

A pattern is a characterization of a dataset region (subset of points).

An example is 𝑝 : property-type = “cottage” ∧ surface ∈ (−∞, 60]
that describes the subset {𝑥2, 𝑥3} in Table 1. In this work we focus

on conjunctive patterns on non-negated conditions. These con-

ditions take the form 𝑎𝑖 = 𝑣 for categorical attributes or 𝑎 𝑗 ∈ 𝐼

for discretized numerical attributes, where 𝐼 is an interval such as

(−∞, 𝛼), [𝛼, 𝛽], or (𝛽,∞), and 𝛼, 𝛽 ∈ R.
If 𝑝 is a pattern, we denote by 𝐷𝑝 its corresponding region on

dataset 𝐷 , and by 𝑠𝐷 (𝑝) = |𝐷𝑝 | its support. We also define its rel-

ative support as 𝑠𝐷 (𝑝) = 𝑠𝐷 (𝑝)
|𝐷 | . For instance, if 𝐷 is our example

dataset from Table 1, 𝑠𝐷 (𝑝) = 2 and 𝑠𝐷 (𝑝) = 2
6 . When the tar-

get dataset 𝐷 is implicit, we write 𝑠 (𝑝) and 𝑠 (𝑝) for the sake of

brevity. A pattern 𝑝 is frequent if 𝑠 (𝑝) ≥ \ , that is, if its associ-

ated region consists of at least \ data points for a given threshold

\ . A pattern is closed if it is the maximal characterization of a

region, i.e., no longer pattern can describe the same region. As

each region can be described by a single closed pattern, we de-

fine the closure operator cl(𝑝) of a pattern 𝑝 so that cl returns
𝐷𝑝 ’s associated closed pattern. For instance, given the pattern

𝑝 : state = “good” characterizing the region {𝑥5, 𝑥6} in Table 1,

cl(𝑝) is state = “good”∧property-type = “apartment”, because
this is the maximal pattern that still describes {𝑥5, 𝑥6}. Given two

subsets 𝐷1 and 𝐷2 of 𝐷 and a threshold 𝛾 , 𝑝 is a contrast or emerg-

ing pattern if (i) 𝑠𝐷1
(𝑝) > 0 and (ii)

𝑠𝐷1 (𝑝)
𝑠𝐷2 (𝑝)

≥ 𝛾 or 𝑠𝐷2
(𝑝) = 0, put

differently, 𝑝 is a contrast pattern if it is at least 𝛾 times (relatively)

more frequent in 𝐷1 than in 𝐷2.

Last, we define the interclass variance [21] of a pattern 𝑝 in 𝐷

w.r.t. a target numerical variable 𝑦 ∈ 𝐴 as:

iv𝐷 (𝑝) = |𝐷𝑝 | (`𝐷 (𝑦) − `𝐷𝑝
(𝑦))2 + |𝐷¬𝑝 | (`𝐷 (𝑦) − `𝐷¬𝑝 (𝑦))

2

In the formula `◦ (𝑦) denotes the average of variable 𝑦 in a given

dataset, whereas ¬𝑝 is the negation of pattern 𝑝 and 𝐷¬𝑝 = 𝐷 \𝐷𝑝

is the complement of 𝐷𝑝 . The interclass variance is a measure

of exceptionality. A large iv suggests that the values of 𝑦 in 𝐷𝑝

constitute a region of low variance that lies far from the variable’s

global mean, and is therefore a good candidate to learn local models.

3 RELATEDWORK

Having introduced a common notation, we now revisit the state-of-

the-art in pattern-aided regression. Furthermore, we discuss about

two related paradigms for data analysis, namely subgroup discovery

(SD) and exceptional model mining (EMM).

3.1 Piecewise Regression (PR)

[20] is among the first approaches for pattern-aided regression. PR

splits the domain of one of the numerical variables, called the split-
ting variable, into segments such that the dataset regions defined

by those segments exhibit a good linear fit for a target variable.
The splitting variable must be either ordinal

1
or numerical. The

regions are constructed via bottom-up hierarchical agglomerative

clustering: Starting with clusters of size \ , this bottom-up approach

greedily picks the segment with the smallest residual average of

squares, and fix it for the next iteration while declustering the re-

maining points. Fixed clusters can be extended by incorporating

adjacent points and other adjacent fixed clusters. The process stops

when the number of isolated points drops below a threshold or the

goodness of fit does not improve with subsequent merging steps.

Other variants of PR, such as [12], focus on detecting regions of

the space where the target variable correlates with polynomials of

degree 𝑛 ≠ 1 on the input features. That includes regions where

we can predict a constant value for the target (𝑛 = 0), or regions
where polynomial regression is required (𝑛 > 1).

PR usually outperforms single linear models on data with a mul-

timodal distribution, however its limitations are manyfold. Firstly, it

can only split the dataset based on one attribute at a time. Secondly,

it cannot characterize data regions in terms of arbitrary categorical

attributes. Thirdly, its greedy strategy does not guarantee to find

the best possible segmentation of the data [20]. PR models can be

seen as sets of hybrid rules 𝑧 ∈ [𝑣1, 𝑣2] ⇒ 𝑦 = 𝑓 (𝑋 ), where the
antecedent is an interval constraint on the splitting variable 𝑧.

1
A special type of categorical attribute on which a total order on the values of its

domain can be defined.
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ptype=cottage ptype≠cottage
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Figure 1: Two steps of the exploration of regions by a regres-

sion tree learner induced on Table 1.

state=excellent

ptype=appart.

state=good

state=excellent
∧ptype=cottage

ptype=cottage

state=excellent

ptype=appart.
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*
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-
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-
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Figure 2: Our hierarchical exploration applied to Table 1.

ptype=cottage

state=v. good state= good

price = 460 price = 350 price = 132.50 price = 320 

yes

yes yesno

no

no

ptype=cottage ∧ state=v. good ➞ price = 460  

Figure 3: Regression tree learned to predict the price in Ta-

ble 1. Paths from the root to the leaves are hybrid rules.

3.2 Tree-based Methods

A regression tree [14] (RT) is a decision tree such that its leaves

predict a numerical variable. Like decision trees, RTs are constructed

in a top-down fashion. At each step, the data is partitioned into

two regions according to the condition that maximizes the intra-

homogeneity of the resulting subsets w.r.t. the target variable (e.g.,

Figure 1). The conditions are defined on categorical and discretized

numerical attributes. This process is repeated while the subsets are

large enough and its goodness of fit still improvable, otherwise the

learner creates a leaf that predicts the average of the target variable

in the associated data region. Model trees (MT) [17, 24] associate

linear functions to the leaves of the tree.

We canmine hybrid rules from RT andMT if we enumerate every

path from the root to a leaf (or regression node in [24]) as depicted

in Figure 3. Unlike piecewise regression, RT and MT do exploit

categorical features. Yet, their construction obeys a greedy principle:

Data is split according to the criterion that maximizes the goodness

of fit at a particular stage, and steps cannot be undone. This makes

RT and MT prone to overfitting when not properly parameterized.

More accurate methods such as random forests (RF) reduce this risk

by learning tree ensembles that model the whole picture. Alas, RF
models are not interpretable. Some approaches [16, 19] can extract

representative rules from RF at the expense of accuracy.

Our experiments in Section 5 confirm that RT and MT can make

too many splitting steps yielding large and complex sets of rules,

even though we can attain a performance comparable to RF with

fewer rules.

3.3 Contrast Pattern-Aided Regression

[4] proposes CPXR, a method that mines hybrid rules on the regions

of the input dataset where a global linear regressionmodel performs

poorly. First, CPXR splits the dataset into two classes consisting

of the data points where the global model yielded a large (LE) and

a small error (SE) respectively. Based on this partitioning, CPXR

discretizes the numerical variables and mines contrast patterns [15]

that characterize the difficult class LE. The algorithm then induces

hybrid rules on the regions defined by those patterns. After an

iterative selection process, the approach reports a small set of hybrid

rules with low overlap and good error reduction w.r.t. the global

regression model. This set includes also a default model induced on

those points not covered by any rule. Prediction for new cases in

CPXR is performed by weighting the answers of all the rules that

apply. The weights depend on the error reduction of the rules w.r.t.

the global regression model.

Despite its error-reduction-driven selection for rules, CPXR it-

erative search strategy is still greedy in nature. Moreover, regions

spanning across the classes LE and SE are disregarded, discretiza-

tion is done once, and the search is restricted to the class of contrast

patterns of the LE class (ignoring any error reduction in SE). While

the latter decision keeps the search space under control, our ex-

periments show that exploring the (larger) class of closed patterns

allows for a significant gain in prediction accuracy with a reason-

able penalty in runtime.

3.4 Related Paradigms

The problem of finding data regions with a high goodness of fit for

a target variable is similar to the problem of subgroup discovery [9]

(SD). In its general formulation, SD reports subgroups –data regions

in our jargon– where the behavior of the target variable deviates

notably from the norm. There exist plenty of SD approaches [11] tai-

lored for different subgroup description languages, different types

of variables and different notions of “exceptionality”. For exam-

ple, [9] studies discretization techniques to deal with numerical

attributes in subgroup descriptions, and shows the application of

SD in diabetes diagnosis and fraud detection, i.e., to find the charac-

terizations of subgroups with high incidence of diabetes and high

fraud rate in mail order data.

A more general framework, called Exceptional Model Mining

(EMM) [5, 6], extends the notion of exceptionality to arbitrary sets

of target variables. In this spirit EMM can find exceptional groups

where the joint distribution of the target variables in a subgroup dif-

fers greatly from the global joint distribution. Finding exceptionally

well-correlated subgroups in data can be framed as an SD or EMM

task, nonetheless, these paradigms are concerned with reporting

subgroups that are individually exceptional. For this reason, EMM

and SD methods are usually greedy and resort to strategies such
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as beam search to find a small set of exceptional subgroups. Con-

versely, we search for hybrid rules that are jointly exceptional, that
is, they (i) explain the whole dataset, and (ii) they jointly achieve

good performance. While methods such as [9] propose an average

exceptionality score for sets of subgroups, such a simple score does

not capture the requested synergy between sets of hybrid rules.

Indeed, our experimental section shows that a SD-like selection

strategy for hybrid rules yields lower performance gains than the

strategy proposed in this paper.

4 HIPAR

In this section we describe our pattern-aided regression method

called HiPaR, which is summarized in Algorithm 1. HiPaR mines

hybrid rules of the form 𝑝 ⇒ 𝑦 = 𝑓𝑝 (𝐴′
num ) for a pattern 𝑝 charac-

terizing a region𝐷𝑝 ⊆ 𝐷 , and a target variable𝑦 on a dataset𝐷 with

attributes𝐴 = 𝐴num∪𝐴cat . The sets𝐴num and𝐴cat define numer-

ical and categorical attributes respectively, and𝐴′
num = 𝐴num \{𝑦}.

Patterns and regions define a containment hierarchy that guides

HiPaR’s search. This hierarchy is rooted at the empty pattern ⊤
that represents the entire dataset. After learning a global linear

model of the form ⊤ ⇒ 𝑦 = 𝑓⊤ (𝐴′
num) (also called the default

model), HiPaR operates in three stages: (i) initialization, (ii) candi-

dates enumeration and (iii) rules selection. We elaborate on these

phases in the following.

Algorithm 1: HiPaR

Input: a dataset: D with attributes 𝐴cat, 𝐴num
target variable: 𝑦 ∈ 𝐴num with 𝐴′

num = 𝐴num \ {𝑦}
minimum support threshold: \

Output: a set 𝑅 of hybrid rules 𝑝 ⇒ 𝑦 = 𝑓𝑝 (𝐴′
num)

1 Learn default hybrid rule 𝑟⊤ : ⊤ ⇒ 𝑦 = 𝑓⊤ (𝐴′
num) from 𝐷

2 𝐶 := hipar-init(𝐷,𝑦, \ )
3 R := hipar-candidates-enum(D, 𝑟⊤,𝐶, \ )
4 return hipar-rules-selection(R ∪ {𝑟⊤})

Algorithm 2: hipar-init

Input: a dataset: 𝐷 with attributes 𝐴cat, 𝐴num
target variable: 𝑦 ∈ 𝐴num
minimum support threshold: \

Output: a set of frequent patterns of size 1

1 𝐶cat :=
⋃

𝑎∈𝐴cat {𝑐 : 𝑎 = 𝑣 | 𝑠𝐷 (𝑐) ≥ \ }
2 𝐶num := ∅
3 for 𝑎 ∈ 𝐴num do

4 𝐶num := 𝐶num∪{𝑐 : (𝑎 ∈ 𝐼 ) ∈ discr(𝑎, 𝐷,𝑦) | 𝑠𝐷 (𝑐) ≥ \ }
5 return 𝐶cat ∪𝐶num

4.1 Initialization.

The initialization phase (line 2 in Algorithm 1) computes a set of

frequent patterns that bootstrap HiPaR’s hierarchical search. We

describe the initialization routine hipar-init in Algorithm 2. The

procedure computes patterns of the form 𝑎 = 𝑣 for categorical at-

tributes (line 1), and 𝑎 ∈ 𝐼 for numerical attributes (lines 2-4), where

Algorithm 3: hipar-candidates-enum

Input: a dataset: 𝐷 with attributes 𝐴cat, 𝐴num
parent hybrid rule: 𝑟𝑝 : 𝑝 ⇒ 𝑦 = 𝑓𝑝 (𝐴′

num)
patterns of size 1: 𝐶

minimum support threshold: \

Output: a set R of candidate rules 𝑝 ⇒ 𝑦 = 𝑓𝑝 (𝐴′
num)

1 R := ∅
2 C′ := 𝐶

3 𝐶𝑛 := {𝑐 ∈ 𝐶 | 𝑐 : 𝑎 ∈ 𝐼 ∧ 𝑎 ∈ 𝐴num}
4 a := k-th percentile of iv𝐷 in 𝐶𝑛

5 for 𝑐 ′ ∈ 𝐶 ′
do

6 𝑝 := 𝑝 ∧ 𝑐 ′

7 𝐶 ′ := 𝐶 ′ \ {𝑐 ′}
8 if 𝑠𝐷 (𝑝) ≥ \ ∧ iv𝐷 (𝑝) > a then

9 𝑝 ′ = cl(𝑝)
10 𝐶 ′ := 𝐶 ′ \ 𝑝 ′
11 if 𝑝 is the left-most parent of 𝑝 ′ then
12 Learn 𝑟𝑝′ : 𝑝

′ ⇒ 𝑦 = 𝑓𝑝′ (𝐴′
num) on D𝑝′

13 if𝑚(𝑟𝑝′) < 𝑚(𝑟𝑝∗ ) ∀𝑝∗ : 𝑝∗ is parent of 𝑝 ′ then
14 R = R ∪ {𝑟𝑝′}
15 𝐶 ′

𝑛 := ∅
16 for 𝑎 ∈ 𝐴′

num \ attrs(𝑝 ′) do
17 𝐶 ′

𝑛 := {𝑐 ∈ discr(𝑎, 𝐷𝑝′, 𝑦) | 𝑠𝐷 (𝑐) ≥
\ } ∪𝐶 ′

𝑛

18 R := R∪hipar-candidates-enum(𝐷, 𝑟𝑝′, (𝐶 ′ \
𝐶𝑛) ∪𝐶 ′

𝑛, \ )

19 return R

𝐼 is an interval of the form (−∞, 𝛼), [𝛼, 𝛽], or (𝛽,∞) (Section 2.2).

The intervals are calculated by discretizing the numerical attributes.

The discretization is inspired on CPXR [4], that is, we first split the

target variable into two classes, namely large value (LV) and small

value (SV) and then run a routine [7] that segments the domain of

each numerical attribute so that the points in each segment are as

pure as possible w.r.t. LV and SV. This way, HiPaR minimizes the

variance of 𝑦 within the points that match a condition. The major

difference with the discretization proposed in [4] is that the classes

LV and SV are defined w.r.t. the actual value of the target variable

and not based on the residuals of a global regression model. We

remark that hipar-init enforces the bootstrapping patterns to be

frequent, that is, their support must be higher than a user-defined

threshold \ in the dataset (line 4 in Algorithm 2)
2
.

4.2 Candidates Enumeration

This stage uses the patterns computed in the initialization step to

explore the different regions of the dataset and learn local accurate

candidate hybrid rules. These regions are characterized by closed

patterns on categorical and discretized numerical variables. Our

preference for closed patterns is based on two reasons. In the first

place, and contrary to frequent and free patterns, closed patterns

2
When the intervals of an attribute 𝑎 are very imbalanced, that is, only one of the

segments 𝑐 is large enough (e.g., 𝑠 (𝑐) ≥ \ for a small \ ), it may be convenient to

disregard the attribute for discretization.
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are not redundant. A region is characterized by a unique closed

pattern, whereas there may be a myriad of frequent or free patterns

describing the exact same region. This property prevents us from

visiting the same region multiple times when traversing the search

space. In the second place, closed patterns are expressive as they

compile the maximal set of attributes that portray a region. This

expressivity can be particularly useful in specialized domains when

experts need to inspect the local regression models and identify all
the attribute values that correlate with the target variable.

Inspired on methods for closed itemset mining [23], the routine

hipar-candidates-enumeration in Algorithm 3 takes as input a hybrid

rule 𝑝 ⇒ 𝑦 = 𝑓𝑝 (𝐴′
num) learnt on a region characterized by 𝑝 , and

returns a set of hybrid rules defined on closed descendants of 𝑝 .

Those descendants are visited in a depth-first hierarchical manner

as depicted in Figure 4. Lines 1 and 2 in Algorithm 3 initialize the

procedure by generating a working copy𝐶 ′
of the set of conditions

used to refine 𝑝 (loop in lines 5-18). At each iteration in line 5,

Algorithm 3 extends the parent pattern 𝑝 with a condition 𝑐 ′ ∈ 𝐶 ′

and removes 𝑐 ′ from the working copy (line 7). After this refinement

step, the routine proceeds in multiple phases detailed below.

4.2.1 Pruning. In line 8, Algorithm 3 enforces thresholds on sup-

port and interclass variance for the newly refined pattern 𝑝 = 𝑝∧𝑐 ′.
The support threshold \ serves two purposes. First, it prevents

us from learning rules on extremely small subsets and incurring

overfitting – a problem frequently observed in unbounded regres-

sion trees. Second, since HiPaR’s search space is exponential in

the number of conditions, a threshold on support allows us for

pruning, and hence lower runtime. While a reasonable support

threshold can mitigate the pattern explosion in low-dimensional

datasets, the on-the-fly discretization of the numerical attributes

carried out in lines 16-17 may contribute with a large number of

new frequent conditions. On these grounds HiPaR applies a second

level of pruning by means of a threshold a on the interclass variance

iv as proposed in [21]. We highlight the heuristic nature of using

iv for pruning, since this metric lacks the anti-monotonicity of

support. That means that a region with an iv below the threshold

can contain sub-regions with high iv that will not be explored.

Having said that, thresholding on interclass variance proves effec-

tive at keeping the size of the search space under control with no

impact on prediction performance. We set a empirically to the 85-th

percentile of the interclass variance of the patterns derived from

the discretization of the numerical features (lines 3 and 4). Lower

percentiles did not result in better performance in our experimental

datasets.

4.2.2 Closure Computation. If a refinement 𝑝 = 𝑝 ∧ 𝑐 ′ passes the
test in line 8, HiPaR computes its corresponding closed pattern 𝑝 ′

in line 9. Since the closure operator may add further conditions

besides 𝑐 ′, line 10 ensures that those conditions are not considered
for future refinements

3
. Next, the check in line 11 guarantees that

no path in the search space is explored more than once. This is

achieved by verifying whether pattern 𝑝 is the leftmost parent of 𝑝 ′.
In Figure 2, this check ensures that the sub-tree rooted at the node

ptype = “cottage” ∧ ptype = “𝑒𝑥𝑐𝑒𝑙𝑙𝑒𝑛𝑡” is explored only once, in

this case from its leftmost parent ptype = “cottage”.

3
Our abuse of notation treats 𝑝 as a set of conditions

ptype=cottage ptype=appartment state=excellent 
state=good ∧ 
ptype=appartment

ptype=cottage ∧
state=excellent  

Level 0

Level 1

Level 2

Figure 4: HiPaR hierarchical region exploration tree.

4.2.3 Learning a Regression Model. In line 12, Algorithm 3 learns

a hybrid rule 𝑝 ′ ⇒ 𝑦 = 𝑓𝑝′ (𝐴′
num ) from the data points that match

𝑝 ′. Before being accepted as a candidate (line 14), this new rule

must pass a test in the spirit of Occam’s razor (line 13): among

multiple hypotheses of the same prediction power, the simplest

should be preferred. This means that if a hybrid rule defined on

region 𝐷𝑝′ does not predict better than the hybrid rules defined in

the super-regions of 𝐷𝑝′ , then the rule is redundant, because we

can obtain good predictions with more general and simpler models.

In this line of thought, HiPaR adds the newly created hybrid rule

as a candidate if it performs better than the hybrid rules induced

on the immediate ancestors of 𝑝 ′ in the hierarchy. Performance is

defined in terms of an error metric𝑚 (e.g., RMSE). This requirement

makes our search diverge from a pure DFS as shown in Figure 4.

For instance, the performance test for the node ptype=“cottage”
∧ state=“excellent” requires us to visit its parent state=“excellent”
earlier than in a standard DFS.

DFS Exploration. The final stage of the routine hipar-candidates-
enum discretizes the numerical variables not yet discretized in 𝑝 ′

(lines 16-17)
4
and uses those conditions to explore the descendants

of 𝑝 ′ recursively (line 18). We remark that this recursive step could

be carried out regardless of whether 𝑝 ′ passed or not the test in

line 13: Error metrics are generally not anti-monotonic, thus the

region of a rejected candidate may still contain sub-regions that

yield more accurate hybrid rules. Those regions, however, are more

numerous, have a lower support, and are characterized by longer

patterns. Given HiPaR’s double objective for accuracy and inter-

pretability, recursive steps become less appealing as we descend

in the hierarchy. This early stopping heuristic had no impact on

prediction accuracy in our experiments.

4.3 Rule Selection

The discovered set R of candidate rules 𝑟𝑝 : 𝑝 ⇒ 𝑦 = 𝑓𝑝 (𝐴′
num ),

being generated from a combinatorial enumeration process, is likely

to be too large for presentation to a human user. Thus,HiPaR carries

out a selection process (line 4 in Algorithm 1) that picks a subset

(of rules) of minimal size and minimal joint error such that as many

observations as possible in𝐷 are covered. We formulate these multi-

objective desiderata as an integer linear program (ILP):

4attrs(p) returns the set of attributes present in a pattern
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min

∑︁
𝑟𝑝 ∈R

−𝛼𝑝 · 𝑧𝑝 +
∑︁

𝑟𝑝 ,𝑟𝑞 ∈R,𝑝≠𝑞
(𝜔 · J (𝑝, 𝑞) · (𝛼𝑝 + 𝛼𝑞)) · 𝑧𝑝𝑞

s.t.

∑︁
𝑟𝑝 ∈R

𝑧𝑝 ≥ 1

∀𝑟𝑝 , 𝑟𝑞 ∈ R, 𝑝 ≠ 𝑞 : 𝑧𝑝 + 𝑧𝑞 − 2𝑧𝑝𝑞 ≤ 1

∀𝑟𝑝 , 𝑟𝑞 ∈ R, 𝑝 ≠ 𝑞 : 𝑧𝑝 , 𝑧𝑝𝑞 ∈ {0, 1}
(1)

Each single rule 𝑟𝑝 ∈ R is associated to a variable 𝑧𝑝 that takes

either 1 or 0 depending on whether the rule is selected or not.

The first constraint guarantees a non-empty set of rules. The term

𝛼𝑝 = 𝑠 (𝑝)𝜎 ×𝑒 (𝑟𝑝 )−1 is the support-to-error trade-off of the rule. Its

terms 𝑒 (𝑟𝑝 ) ∈ [0, 1] and 𝑠 (𝑝) ∈ [0, 1] correspond to the normalized

error and normalized support of rule 𝑟 calculated as follows:

𝑒 (𝑟𝑝 ) =
𝑚(𝑟𝑝 )∑

𝑟𝑝′ ∈R𝑚(𝑟𝑝′)
(2) 𝑠 (𝑝) = 𝑠 (𝑝)∑

𝑟𝑝′ ∈R 𝑠 (𝑝 ′) (3)

In plain English, 𝑒 (𝑟𝑝 ) is the error of rule 𝑟𝑝 according to an error

metric𝑚 divided by the sum of the errors of all rules in the set of

candidates. The normalized support 𝑠 (𝑝) is calculated in the same

spirit. It follows that the objective function rewards rules with

small error defined on regions of large support. This latter property

accounts for our maximal coverage desideratum and protects us

from overfitting. The support bias𝜎 ∈ R≥0 is a meta-parameter that

controls the importance of support in rule selection. When 𝜎 = 0
the solver disregards support, whereas larger values define different

trade-offs between accuracy and support. Due to our hierarchical

exploration, the second term in the objective function penalizes sets

with rules defined on overlapping regions. The overlap is measured

via the Jaccard coefficient on the regions of each pair of rules, i.e.,

J (𝑝, 𝑞) =
|𝐷𝑝 ∩ 𝐷𝑞 |
|𝐷𝑝 ∪ 𝐷𝑞 |

.

If two rules 𝑟𝑝 , 𝑟𝑞 are selected, i.e., 𝑧𝑝 and 𝑧𝑞 are set to 1, the second

family of constraints enforces the variable 𝑧𝑝𝑞 to be 1 and pay a

penalty proportional to 𝜔 × (𝛼𝑝 + 𝛼𝑞) times the degree of overlap

between 𝐷𝑝 and 𝐷𝑞 in the objective function. The overlap bias

𝜔 ∈ R≥0 controls the magnitude of the penalty. Values closer to 0

will make the solver tolerate overlaps and choose more rules. The

solution to Equation 1 is a set of accurate hybrid rules 𝑅 ⊆ R that

can be used as a prediction model for the target variable 𝑦.

4.4 Prediction with HiPaR

To use the rules reported by HiPaR as a prediction model, we have

to define a procedure to deal with overlapping rules as well as with

orphan data points. A rule 𝑟 : 𝑝 ⇒ 𝑦 = 𝑓𝑝 (𝐴′
num ) is relevant to

or covers a seen or unseen data point 𝑥 if the condition defined

by the pattern 𝑝 evaluates to true on 𝑥 . If 𝑥 is not covered by

any hybrid rule, HiPaR uses the default regression model 𝑟⊤ to

produce a prediction. Otherwise, HiPaR returns a weighted sum of

the predictions of all relevant rules of 𝑥 (as done in [4]). The weight

𝛼𝑝,𝑥 associated to a rule 𝑟𝑝 when predicting 𝑥 is calculated as:

𝛼𝑝,𝑥 =
𝑒 (𝑟𝑝 )−1∑

𝑟𝑝′ ∈Φ(𝑥) 𝑒 (𝑟𝑝′)−1

Φ(𝑥) denotes the set of rules that cover 𝑥 , and 𝑒 (𝑟𝑝 ) is the rule’s
normalized error in the training set (Equation 2).

5 EVALUATION

We evaluate HiPaR on the dimensions of prediction accuracy, in-

terpretability, and runtime through three rounds of experiments.

In the first round (Section 5.2), we measure the impact of HiPaR’s

parameters on our evaluation aspects. The second round compares

HiPaR with state-of-the-art regression methods (Section 5.3). In a

third round, we carry out an anecdotal evaluation by showing and

analyzing some of the rules mined by HiPaR on well-studied use

cases (Section 5.4). Section 5.1 provides a preamble by describing

our experimental setup.

5.1 Experimental Setup

5.1.1 HiPaR’s implementation. We implemented HiPaR in Python

3 with scikit-learn
5
. In addition to the parameters described in

Algorithm 1, our implementation accepts as input a support bias 𝜎 ,

an overlap bias 𝜔 (with default values 𝜎 = 1 and 𝜔 = 1), an error

metric𝑚, and a type of regression model. We shed light on how

to tune 𝜎 and 𝜔 in Section 5.2. We evaluate HiPaR with two error

metrics, namely the root mean square error (RMSE) and the median

absolute error (MeAE). Moreover, we test HiPaR with two methods

for sparse linear regression, namely OMP [18] and LASSO [22].

Sparse linear models optimize a regularized objective function that

instructs the regressor to use as few non-zero coefficients as possible.

This choice makes linear functions more legible and conforms to

our interpretability requirement. Since there is no clear winner

between OMP and LASSO, we configured HiPaR to learn, for each

pattern 𝑝 , hybrid rules with both methods and keep the rule with

the lowest error in a test set of 20% the size of 𝐷𝑝 . In regards to the

discretization of the numerical attributes (Section 4.1), HiPaR uses

the MLDP algorithm [7]. This method resorts to the principle of

minimum description length (MDL) to obtain simple multi-interval

discretizations of the numerical variables. The source code of HiPaR

is available at http://gitlab.inria.fr/lgalarra/hipar.

5.1.2 Opponents. We compare HiPaR to multiple regression meth-

ods comprising:

• Three pattern-aided regression methods, namely CPXR [4], re-

gression trees (RT) [14], and model trees (MT) [24].

• Three accurate black-box methods: random forests (RF) [2], gra-

dient boosting trees (GBT) [1], and rule fit (Rfit) [8].

• HiPaR when all rules output by the enumeration stage are se-

lected (𝜔 = 0.0, called HiPaR𝑓 ), and HiPaR with a rule selection

in the spirit of subgroup discovery: the top 𝑞 rules with the best

support-to-error trade-off are reported. The parameter 𝑞 is set to

the average number of rules output by HiPaR in cross-validation.

We denote this opponent by HiPaR𝑠𝑑 .

• Two hybrid methods resulting from the combination of HiPaR’s

enumeration phase with Rfit, and Rfit’s rule generation with

HiPaR’s rule selection. We denote these methods by HiPaR+Rfit,

and Rfit+HiPaR respectively. These competitors are designed to

evaluate the two phases of HiPaR in isolation.

5
http://scikit-learn.org

http://gitlab.inria.fr/lgalarra/hipar
http://scikit-learn.org
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The opponents that can work with any linear regression method,

namely, MT, CPXR, and HiPaR𝑠𝑑 , are reported with the best per-

forming method (either LASSO or OMP). Since there is no available

implementation of CPXR, we implemented the algorithm in Python

3 with scikit-learn (the implementation is provided with HiPaR’s

source code).We use the scikit-learn implementation of RT, whereas

for MT we use the implementation available at https://is.gd/Gk9Y20

(based on CART). By default, RT and MT do not impose constraints

on the size of trees. Hence, they can yield large numbers of complex

hybrid rules that are hardly interpretable. For this reason we test

compact variants of RT and MT obtained by allowing at most 𝑞 + 1
leaves in the trees. We set 𝑞 equals the number of rules found by

HiPaR in cross-validation. This way, we can compare the accuracy

of HiPaR and tree-based methods at a similar level of interpretabil-

ity. We denote these two settings by RT𝐻 andMT𝐻 respectively. For

GBT and RF we use the implementations available in scikit-learn,

whereas for Rfit we use the source code provided by the authors
6
.

All black-box methods are ensemble methods on regression trees,

that is, they rely on the answers of multiple trees (called estima-
tors) to compute a final prediction. The main hyper-parameters –

that are not fixed by the requirements of the experimental setup

– are tuned using hyperopt7 for all competitors. That includes, for

instance, the support threshold for CPXR and RT, or the maximal

tree depth for RT, RF, and Rfit. All the experiments were run on

a computer with a CPU Intel Core i7-6600U (@2.60GHz), 16GB of

RAM, and Fedora 26 as operating system.

5.1.3 Datasets. We test HiPaR and the competitors in 7 out of the

50 datasets used to evaluate CPXR [4]. Neither the authors of CPXR

nor the original collectors of the datasets [13] could provide us

with the data, thus we collected by ourselves the 7 datasets that

are publicly available at the UCI repository
8
: abalone, cpu, houses,

mpg2001, servo, strikes, and yatch. We also downloaded 8 additional

datasets from Kaggle
9
, namely cb_nanotubes, fuel_consumption,

healthcare (we used a sample due to its large size), optical, wine,
concrete, beer_consumption and admission. These datasets match

the keyword “regression” in the Kaggle’s search engine (as of 2019),

and define meaningful regression tasks. In addition, our anecdotal

evaluation in Section 5.4 relies on the results presented in [5] on

the datasets giffen and wine2. Table 2 provides details about the

different datasets. The datasets and their descriptions are available

for download with HiPaR’s source code.

5.1.4 Metrics. We evaluate the prediction accuracy of the different

approaches in terms of the root mean square error (RMSE) and the

median absolute error (MeAE). We report the error reduction w.r.t.

a baseline non-regularized linear model B on the entire dataset.

The reduction 𝜌 of a regression modelM for an error metric𝑚 is

calculated as follows:

𝜌 =
𝑚(B) −𝑚(M)

𝑚(B) × 100

Since our goal is to mine sets of human-readable rules, we also eval-

uateHiPaR’s rules in terms of interpretability. We remark, however,

that this notion is subjective and may depend on factors such as

6
https://github.com/christophM/rulefit

7
https://github.com/hyperopt/hyperopt

8
http://archive.ics.uci.edu/ml/index.php

9
http://kaggle.com

Table 2: Experimental datasets.

Dataset # obs. # cat. attrs # num. attrs

abalone 4177 1 8

admission 500 2 7

beer_consumption 365 2 5

cb_nanotubes 10722 0 8

concrete 1030 0 9

cpu 209 2 5

fuel_consumption 389 5 5

giffen 6668 6 47

houses 6880 0 9

mpg2001 852 7 10

servo 167 2 3

strikes 625 1 6

healthcare 518 6 192

optical 641 3 10

wine 6498 1 12

wine2 9600 6 5

yatch 308 0 7

the user’s background. Nevertheless, it is widely accepted that ana-

lyzing 100 rules with 20 conditions each is more challenging than

grasping the information in 5 rules with 3 conditions each. In this

line of thought, and due to the diversity of domains of our datasets,

we use complexity as a proxy for interpretability. Hence, we con-

duct a quantitative analysis based on the number of “elements” in

a model. An element is either a condition on a categorical attribute

or a numerical variable with a non-zero coefficient in a regression

function. For tree-based models, we count each non-leaf node as an

element, whereas a leaf contributes with multiple elements: one per

variable present in the associated regression function. For example,

the regression tree in Figure 3 consists of 7 elements.

5.2 Impact of Parameters

5.2.1 Support Threshold. The minimum support threshold \ con-

trols the exhaustivity of HiPaR’s candidates enumeration (Alg. 3).

Lower values make HiPaR report more rules defined on very spe-

cific regions. Thus, \ has a direct impact on HiPaR’s runtime and

complexity as depicted in Figures 5 and 6 where we plot relative

support vs. HiPaR’s average RMSE reduction, average training

runtime, and average number of elements of a round of (10-fold)

cross-validation across the experimental datasets. We observe that

values between 0.1 and 0.3 offer a good trade-off between prediction

accuracy, runtime, and interpretability. Support thresholds below

0.1 increase prediction accuracy marginally at the price of dou-

bling runtime and model complexity. Conversely, as \ approaches 1,

HiPaR tends to select only the default rule 𝑟⊤ becoming tantamount

to a regularized linear regression.

5.2.2 Support and Overlap Biases. Figures 7 and 8 show the im-

pact on HiPaR’s RMSE reduction and number of elements of the

arguments that govern the rule selection, that is, the support and

overlap biases 𝜎 and 𝜔 (Section 4.3). We plot the averages across

our experimental datasets when fixing one parameter and varying

the other one. We set \ = 0.02 in order to guarantee a large number

https://is.gd/Gk9Y20
https://github.com/christophM/rulefit
https://github.com/hyperopt/hyperopt
http://archive.ics.uci.edu/ml/index.php
http://kaggle.com
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Figure 5: Support threshold vs. error reduction and training

time in seconds.

Figure 6: Support threshold vs. average # of elements.

of candidates as input to the selection phase. We observe that the

RMSE reduction is mostly insensitive to changes in 𝜎 and – to a

lesser extent – 𝜔 . Contrary to the error reduction, the number of

elements always tends to decrease as the parameters take higher

values. This corroborates our intuition, so to say, that many of the

rules induced in the exploration phase are not essential for accurate

prediction. Small values of 𝜎 downplay the role of support in the

importance of rules since 𝑠 (𝑝)𝜎 → 1 as 𝜎 → 0 (Section 4.3). This

rewards rules with low error regardless of their coverage. For low

support thresholds, a small 𝜎 translates into large sets of highly

specific rules that are unlikely to overlap. As 𝜎 increases, specific

rules are penalized and their selection becomes less likely (recall

that 0 < 𝑠 (𝑝) ≤ 1). On the other hand, a large 𝜔 means that sets

of overlapping rules are highly penalized, and points are covered

by fewer rules as depicted in Figure 9. This makes HiPaR closer to

compact RTs and MTs as it forces rules to cover disjoint regions.

Based on our observations, we recommend to set 𝜔 = 1 and 𝜎 ≥ 1
depending on the need for more general or more specific rules.

5.3 Comparison with the State of the Art.

5.3.1 Accuracy and Complexity Evaluation. Figures 10 and 11 de-

pict the mean RMSE and median MeAE reductions in 10-fold cross-

validation for the different methods on our experimental datasets.

The methods are sorted by the median reduction of all executions.

We first note that the black-box methods, i.e., GBT, Rfit, and

RF (in blue) rank higher than the interpretable methods HiPaR,

MT or RT in terms of error reduction. The unbounded tree-based

approaches usually achieve good performance, however this comes

at the expense of complex sets of rules as depicted in Figure 12 for

Figure 7: Support bias vs. error reduction and # of elements.

Figure 8: Overlap bias vs. error reduction and # of elements.

Figure 9: Overlap bias vs. average # of rules per point.

the RMSE (the MeAE exhibits the same behavior). If we tune the

maximum number of leaves in the trees using HiPaR – denoted

by RT𝐻 and MT𝐻 –, we observe a positive impact on the RMSE

for MT, whereas RT see a slight drop in performance (Figure 10).

This suggests that the greedy exploration of RT and MT may lead

to unnecessary splitting steps where good performance is actually

attainablewith fewer rules. Conversely, setting a limit in the number

of leaves has a deleterious effect on the MeAE.

We observe that HiPaR’s median RMSE reduction is comparable

to unbounded MT and HiPaR𝑓 . Yet, HiPaR outputs one order of

magnitude fewer elements as shown in Figure 12, thanks to our

rule selection step. Besides, HiPaR’s behavior is more stable than

the tree-based methods, i.e., it yields fewer extreme values, and

is comparable to RF (Figure 10). The situation is slightly different

for the MeAE (Figure 11), where HiPaR has a lower median reduc-

tion than MT and competes with Rfit+HiPaR, although the latter
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Figure 10: Mean RMSE reduction in cross-validation. Black-

box methods are in blue

Figure 11: Median MeAE reduction in cross-validation.

two methods exhibit a larger variance. This shows that HiPaR’s

rule selection can work with other rule generation methods – tree

ensembles as implemented by Rfit. The greedy rule selection imple-

mented by HiPaRsd yields poorer results than standard HiPaR and

HiPaR𝑓 .

We also observe that CPXR and HiPaR+Rfit lie at the bottom of

the ranking in Figures 10 and 11. Despite the high quality of the

rules output by CPXR, the method is too selective and reports only

1.42 rules on average in contrast to HiPaR and MT that find on

average 8.81 and 23.92 rules respectively. This is also reflected by

the low variance of the reductions compared to other methods. We

highlight the large variance of HiPaR+Rfit. While it can achieve

high positive error reductions, its rule extraction is not designed for

further filtering, because Rfit reports weak estimators (trees) that

become accurate only in combination, for instance, by aggregating

their answers or as features for a linear regressor.

All in all, Figure 12 suggests that HiPaR offers an interesting

trade-off between model complexity and prediction accuracy. This

makes it appealing for situations where users need to inspect the

correlations that explain the data, or for tuning other methods.

5.3.2 Runtime Evaluation. Figure 13 depicts the average runtime

of a fold of cross-validation for the different regression methods.

We advise the reader to take these results with a grain of salt be-

cause of the heterogeneity of the implementations and the fact

that the selection of the parameters (e.g., the minimum support \ )

was optimized for error reduction and not runtime. RT, GBT, and

RF are by far the most performant algorithms partly because they

count on a highly optimized native scikit-learn implementation.

They are followed by Rfit and the hybrid methods HiPaR+Rfit and

Figure 12: Trade-off between number of elements and RMSE

reduction of the different methods.

Figure 13: Average runtime of the different methods on the

experimental datasets.

Rfit+HiPaR, which combine Rfit with HiPaR’s candidate enumera-

tion and rule selection respectively. We observe HiPaR is slower

than its variants HiPaR𝑓 and HiPaRsd because of it adds a more

sophisticated rule selection that can take on average 46% of the total

runtime (97% for optical, 0.26% for carbon_nanotubes). Finally, we
highlight that MT is one order of magnitude slower than HiPaR’s

despite its best-first-search implementation.

5.4 Anecdotal Evaluation.

We illustrate the utility of HiPaR at finding interpretable rules on

two use cases used in the evaluation of the EMM approach pre-

sented in [5]. In this work, the authors introduce the Cook’s distance

between the coefficients of the default model and the coefficients

of the local models as a measure of exceptionality for regions –

referred as subgroups in [5]. A subgroup with a large Cook’s dis-

tance is cohesive and its slope vector deviates considerably from

the slope vector of the bulk of the data (w.r.t. a target variable). We

emphasize that HiPaR’s goal is different from EMM’s: The former

looks for compact sets of accurate rules, whereas the latter searches

for individually exceptional regions. In this spirit, nothing prevents

HiPaR from pruning an exceptional region according to EMM if

one of its super-regions or sub-regions contributes better to reduce

the error. That said, we can neutralize the pruning effect of the

selection phase by setting 𝜔 = 0.0 (HiPaR𝑓 ) to make HiPaR output

more hybrid rules. This wayHiPaR can reproduce the insights of [5]

for the wine2 dataset. This dataset consists of 9600 observations

derived from 10 years (1991-2000) of tasting ratings reported in the

online version of the Wine Spectator Magazine for California and

Washington red wines. The task is to predict the retail price 𝑦 of

a wine based on features such as its age, production region, grape

variety, wine type, etc. We report the best performing set of rules

in 5-fold cross-validation. In concordance with [5], this set contains
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the default rule:

⊤ ⇒ 𝑦 = −189.69 − 0.0002 × cases + 2.39 × score + 5.08 × age,

where score is the score from the magazine, age is the years of aging
before commercialization, and cases is the number of cases produced

(in thousands). As pointed out in [5], non-varietal wines, i.e., those

produced from several grape varieties, tend to have a higher price,

and this price is more sensitive to score and age. HiPaR𝑓 (\ = 0.05)
found 69 rules including the rule supporting this finding (support

7%):

variety = “non-varietal” ⇒ 𝑦 = −349.78 − 0.003 × cases

+ 4.20 × score + 7.97 × age

HiPaR could also detect the so called Giffen effect, observed
when, contrary to common sense, the price-demand curve exhibits

an upward slope. We observe this phenomenon by runningHiPaR𝑓

on the giffen dataset that contains records of the consumption

habits of households in the Chinese province of Hunan at different

stages of the implementation of a subsidy on staple foodstuffs. The

target variable 𝑦 is the percent change in household consumption

of rice, which is predicted via other attributes such as the change in

price (cp), the household size (hs), the income per capita (ipc), the
calorie consumption per capita (ccpc), the share of calories coming

from (a) fats (shf ), and (b) staple foodstuffs (shs, shs2 according to
two different definitions), among other indicators. HiPaR finds the

default rule:

⊤ ⇒ 𝑦 = 37.27- 0.06×cp+1.52×hs+0.0004×𝑖𝑝𝑐+0.003×ccpc
− 146.28 × shf + 54.13 × shs − 156.78 × shs2

The negative sign of the coefficient for cp suggests no Giffen effect

at the global level. As stated in [5], when the subsidy was removed

(characterized by the condition round=3), the Giffen effect was

also not observed in affluent and very poor households. It rather

concerned thosemoderately poor who, despite the surge in the price

of rice, increased their consumption at the expense of other sources

of calories. Such households can be characterized by intervals in

the income and calories per capita (ipc, ccpc), or by their share of

calories from staple foodstuffs (sh, sh2). This is confirmed by the

hybrid rule (support 4%):

round = 3∧𝑐𝑝𝑐 ∈ [1898, 2480)∧sh2 ∈ [0.7093,∞) ⇒ 𝑦 = 42.88

+1.17 × cp + 1.08 × hs − 0.005 × ipc + 0.018 × ccpc

− 7.42 × shf − 3.08 × shs − 114.21 × shs2.

The positive coefficient associated to cp shows the Giffen effect for

households of moderate calories per capita, whose calories share

from staple food is higher than 0.7093. The latter condition aligns

with the results of [5] that suggested that households with higher

values for this variable were more prone to this phenomenon.

6 CONCLUSIONS AND OUTLOOK

We have presented HiPaR, a pattern-aided regression method de-

signed for heterogenous and multimodally distributed data. HiPaR

mines compact sets of accurate hybrid rules thanks to (1) a novel

hierarchical exploration of the search space of data regions, and

(2) a selection strategy that optimizes for small sets of rules with

joint low prediction error and good coverage. HiPaR mines fewer

rules than state-of-the-art methods at comparable performance.

As future work, we envision to extend the rule language bias to

allow for negated conditions as in RT and MT, and increase the

exhaustivity in the quest for accurate hybrid rules. We also envision

to parallelize the candidates enumeration phase, and apply other

quality criteria and metrics in the search, e.g., the p-values of the

linear coefficients. As a natural follow-up, we envision to port the

notion of hybrid rules to the problem of classification.
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